二次函数教案-(第一课时)
二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数教案(第一课时)

21.4 二次函数的应用第1课时二次函数的应用(1)教学目标:【知识与技能】经历探究图形的最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验.【过程与方法】经历探索问题的过程,获得利用数学方法解决实际问题的经验,感受数学模型和数学应用的价值,通过观察、比较、推理、交流等过程,发展获得一些研究问题与合作交流的方法与经验.【情感态度】通过动手做及同学之间的合作与交流,让学生积累经验,发展学习动力.【教学重点】会根据不同的情况,利用二次函数解决生活中的实际问题.【教学难点】从几何背景及实际情景中抽象出函数模型.教学过程:一、情景导入,初步认知问题:某开发商计划开发一块三角形土地,它的底边长100米,高80米.开发商要沿着底边修一座底面是矩形的大楼,这座大楼地基的最大面积是多少?二、思考探究,获取新知探究:在第21.1节的问题中,要使围成的水面面积最大,则它的边长应是多少米?它的最大面积是多少平方米?根据题意,可得,S=x(20-x)问题:①这是一个什么函数?②要求最大面积,就是求的最大值.③你会求S的最大值吗?将这个函数的表达式配方,得S=-(x-10)2+100(0<x<20)这个函数的图象是一条开口向下抛物线中的一段,如图,它的顶点坐标是(10,100),所以,当x=10时,函数取最大值,即=100(m2)S最大值此时,另一边长=20-10=10(m)答:当围成的矩形水面边长都为10m时,它的面积是最大为100m2.你能总结此类题目的解题步骤吗?【归纳结论】在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决.其步骤为:第一步设自变量;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内).三、运用新知,深化理解1.教材P37例2.2.求下列函数的最大值或最小值.(1)y=2x2-3x-5;(2)y=-x2-3x+4.【分析】由于函数y=2x2-3x-5和y=-x2-3x+4的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.(让学生自主完成)3.要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?【分析】先写出函数关系式,再求出函数的最大值.解:设矩形的宽AB为xm,则矩形的长BC为(20-2x)m,由于x>0,且20-2x>0,所以0<x<10.围成的花圃面积y与x的函数关系式是y=x(20-2x),即y=-2x2+20x.配方得y=-2(x-5)2+50所以当x=5时,函数取得最大值,最大值y=50.因为x=5时,满足0<x<10,这时20-2x=10.所以应围成宽5m,长10m的矩形,才能使围成的花圃的面积最大.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.五.布置作业:教材“习题21.4”中第1、2题.教学反思:在教学中一定要注意学生易错地方:学生往往列出表达式后不根据背景写出自变量的范围;求最值时,只知代入顶点坐标公式,不考虑自变量范围.。
《26_1二次函数》教案 (1)

课题:§26.1 二次函数(第1课时)【教学目标】1.理解二次函数的概念;2.会根据简单实际问题列出二次函数解析式;3.初步会用待定系数法求二次函数的解析式.【教学重点】理解二次函数的概念.【教学难点】求二次函数的解析式.【活动过程】创设情境,引入新课1.展示精美的抛物线图片,激发学生学习的兴趣2.设正方体的棱长为a ,棱长和为l ,表面积为S .(1)a ,l 之间有什么关系?(2)a ,S 之间有什 么关系?由一次函数引出本节课要学习的二次函数.活动一 理解二次函数的概念(一)学生独立完成:1.自学课本第4至6页,思考下列问题.(1)问题1中的n (n -3)为什么要除以2?你能想到类似的数学问题吗?(单循环问题,如:单循环比赛、握手等).(2)你怎样理解问题2中的“每年都比上一年的产量增加x 倍”?(增长率问题).(3)问题1和问题2中所列函数解析式有什么共同点?(函数都是用自变量的二次式表示的).(4)你知道了二次函数的哪些知识,请在课本上做上记号,并举出一个二次函数的例子加以说明.2.练习(1)判断下列函数是否为二次函数,如果是,指出它的二次项系数、一次项系数和常数项.①y =3x -1;②y =3x 2+2;③ y =3x 3+2x 2;④ y =2x 2-2x +1;⑤ y =x 2;⑥ y =x 2-x (1+x ).(2)函数y =ax 2+bx +c (a 、b 、c 是常数),当a 、b 、c 满足什么条件时,①它是二次函数? ②它是一次函数? ③它是正比例函数?(二)组内交流:通过自学和交流,你知道了什么解题经验或解题注意点?(三)全班展示、教师点拨:教师注意引导:1.什么是二次函数?什么是二次函数的二次项系数、一次项系数、常数项。
2.注意⑴a ≠0,但b 、c 能够为0;⑵判断是否为二次函数时,要化成一般形式。
活动二 求二次函数的解析式(一)学生独立完成,三人板演:1.关于x 的函数y =(m +1)m m 2x 是二次函数, 求m 的值.2. 已知关于x 的二次函数y =x 2+bx +c ,当x =-2时,函数值为-3;当x =2时,函数值为5,求3. 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且 经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,若设每件降价x 元, 每星期售出商品的利润为y 元,请求出y 与x 的函数关系式.(二)组内交流:通过刚才的交流和展示,你知道了什么解题经验或解题注意点?(三)全班展示、教师点拨:教师注意引导:1.由二次函数的概念去求二次函数的解析式.2.用待定系数法去求二次函数的解析式,步骤:设、代、解、答、验3.根据实际问题去求二次函数的解析式,注意弄清数量关系.课堂练习1.下列函数中,是二次函数的是( ).A.y =8x 2+1B.y =8x +1C.y =x 8 D.y =28x 2.若函数y =(m 2+m )122x --m m 是二次函数,那么m 的值是 .3.n 支球队参加比赛,每两队之间实行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式 .4.某种商品的价格是2元,准备实行两次降价.如果每次降价的百分率都是x ,经过两次降价后的价格y (单位:元)随每次降价的百分率x 的变化而变化,写出y 与x 之间的关系式 .5.已知关于x 的二次函数y =ax 2+bx ,当x =-1时,函数值为10;当x =1时,函数值为4,求这个 二次函数的解析式.6.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不 高于800元/件,经调查,发现销售量y (件)与销售单价x (元/件)可近似于一次函数y =kx +b 的关系,如图.(1)根据图象,求一次函数y =kx +b 的表达式;(2)设公司获得毛利润(毛利润 =销售总额-成本总价)为S (元).试用销售单价x 表示毛利润S ,并写出自变量x 的取值范围.小结这节课你的收获是什么?你学会了哪几种求二次函数解析式的题型?作业见课后练习教学反思。
二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
初中数学二次函数教案(5篇)_1

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。
次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。
【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。
【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。
重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。
【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。
教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。
)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。
3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。
)二、新课教授【例1】画出二次函数y=x2的图象。
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。
《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的教学设计
一、教学内容
二次函数(新人教版九年级下册第26.1.1节)
二、教学目标
1.知识技能
通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。
2.教学思考
学生能对具体情境中的数学信息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。
3.解决问题
体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。
4.情感态度
通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。
三、教学重点与难点
1.教学重点
认识二次函数,经历探索函数关系、归纳二次函数概念的过程。
2.教学难点
根据函数解析式的结构特征,归纳出二次函数的概念。
四、教学流程安排
五、教学过程设计
六、板书设计
26.1.1二次函数
七、教学评价与反思。