高中数学《导数的概念》公开课优秀教学设计
《导数的概念》教案

《导数的概念》教案教案:导数的概念1.教学目标:1.1.知识目标:学生能够了解导数的概念及其基本性质。
1.2.能力目标:学生能够应用导数的概念解决实际问题。
1.3.情感目标:通过对导数的学习,培养学生的分析和解决问题的能力,并培养学生的兴趣和热爱数学的情感。
2.教学重点:2.1.导数的定义和概念。
2.2.导数的基本性质。
3.教学难点:3.1.导数的基本性质的理解和应用。
3.2.导数的计算和应用。
4.教学过程:4.1.导入(10分钟):引入导数的概念,通过一个简单的例子说明导数的作用和意义。
4.2.导数的定义(20分钟):4.2.1.简单介绍导数的定义和符号表示。
4.2.2.讲解导数的物理意义和几何意义。
4.2.3.通过实例和图像说明导数的计算。
4.3.导数的基本性质(30分钟):4.3.1.导数的定义区间和存在性。
4.3.2.导数的唯一性和连续性。
4.3.3.导数的运算法则。
4.4.导数的应用(30分钟):4.4.1.导数在函数图像的研究中的应用。
4.4.2.导数在最值问题中的应用。
4.4.3.导数在速度和加速度中的应用。
4.5.小结(10分钟):对导数的概念及其应用进行总结,并布置相应的作业。
5.教学手段:5.1.板书与讲解相结合的教学方法。
5.2.生动形象的实例和图像辅助讲解。
5.3.教师提问和学生互动的教学方式。
6.教学资源:教材、黑板、彩色粉笔、投影仪等。
7.教学评价:7.1.反馈评价:学生在课堂上积极参与,课堂气氛活跃。
7.2.笔试评价:设计一套综合性的习题,考查学生对导数概念理解和应用的能力。
7.3.直观评价:观察学生在计算和解决实际问题时运用导数的能力和方法。
8.教学延伸:8.1.导数的计算和应用在微积分的后续学习中具有重要的作用,学生还需继续加深对导数概念和应用的理解。
8.2.练习不同类型的导数计算题目,提高运算能力和分析解决问题的能力。
8.3.进一步了解导数的发展与应用,拓宽数学知识的广度。
《导数的概念教案》

教案名称:导数的概念教案课时安排:2课时教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学方法:1. 采用讲解、示例、练习相结合的方式进行教学;2. 引导学生通过观察、思考、讨论,发现导数的本质;3. 利用多媒体课件辅助教学,提高学生的学习兴趣。
教学内容:第一课时一、导入(5分钟)1. 复习相关概念:函数、极限的概念;2. 提问:函数在某一点的极限有什么意义?二、新课讲解(15分钟)1. 引入导数的定义:导数是函数在某一点的瞬时变化率;2. 解释导数的物理意义:描述物体在某一时刻的瞬时速度;3. 示例讲解:利用极限的概念推导函数的导数;4. 强调导数的计算方法:求导数的关键是找到函数的导数公式。
三、课堂练习(10分钟)1. 请学生独立完成练习题,巩固导数的定义和计算方法;2. 教师选取部分学生的作业进行讲解和评价。
第二课时四、新课讲解(15分钟)1. 介绍导数的运算法则:加法、减法、乘法、除法的导数法则;2. 示例讲解:利用导数法则计算复合函数的导数;3. 强调导数在实际问题中的应用:优化问题、物理问题等。
五、课堂练习(10分钟)1. 请学生独立完成练习题,巩固导数的运算法则和应用;2. 教师选取部分学生的作业进行讲解和评价。
教学评价:1. 课后作业:检查学生对导数的定义、计算方法和应用的掌握程度;2. 课堂表现:观察学生在课堂上的参与程度、思考能力和合作意识。
教学反思:本节课通过讲解、示例和练习,使学生初步掌握了导数的定义、计算方法和应用。
在教学过程中,要注意引导学生积极参与,提高学生的思考能力和合作意识。
加强对学生的个别辅导,提高学生的学习效果。
教案名称:导数的概念教案课时安排:2课时教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学方法:1. 采用讲解、示例、练习相结合的方式进行教学;2. 引导学生通过观察、思考、讨论,发现导数的本质;3. 利用多媒体课件辅助教学,提高学生的学习兴趣。
导数的概念教学设计

导数的概念教学设计教学设计:导数的概念一、教学目标:1.了解导数的概念及其作用;2.能够求解简单的导数;3.培养学生观察、推理和解决问题的能力。
二、教学内容:1.导数的定义;2.导数的性质;3.导数的求法。
三、教学过程:导入(5分钟):1.引入:请学生回顾一下斜率的概念。
2.提问:斜率有什么作用?在什么情况下,斜率很大或者很小?3.讨论:学生回答问题,并和同学一起讨论。
引入(10分钟):1.对比斜率:通过比较两个点的斜率和曲线上一点的斜率,引入导数的概念。
2.引入导数的定义:导数即为函数在其中一点上的变化率,可以表示为函数f(x)在x点的极限:f'(x)= lim(h→0) (f(x+h)-f(x))/h。
3.解释导数的意义:导数可以用来衡量函数在其中一点的变化速率,斜率大表示函数变化快,斜率小表示函数变化慢。
讲解(15分钟):1.导数的性质:导数具有以下性质:a.常数的导数为0;b.导数存在的函数是连续函数;c.导数的次数与函数的次数相差12.实例分析:通过实例展示函数的导数和函数的关系,进一步解释导数的性质。
练习(20分钟):1.求导数的基本方法:通过多个实例,引导学生掌握求导的基本方法。
2.练习题:让学生自主完成一些基本的导数计算练习。
拓展(20分钟):1.导数的应用:通过一些实际问题的导数应用,如求函数的极值点、判断函数的单调性等,让学生了解导数的一些应用。
2.练习题:让学生自主完成一些关于导数应用的练习。
归纳总结(10分钟):1.让学生通过回顾导数的定义和应用,总结导数的概念及其作用。
2.解答学生提出的疑问,并帮助学生进一步理解导数的概念。
四、教学反思:通过以上教学过程,学生可以初步了解导数的概念及其作用,并掌握一些求导的基本方法。
教师在讲解过程中应注重与学生的互动,引导学生发现问题,培养学生的分析和解决问题的能力。
教学中可以引入一些例子和实际应用,提高学生的学习兴趣和能力。
在练习环节,教师可以设置一些有挑战性的问题,让学生进一步巩固所学知识。
《导数的概念》教学设计(高效课堂教学模式)数学优质课评选活动参赛课例

导数的概念(高效课堂教学模式)
一、教材分析
《导数的概念》是高中新教材人教A 版选修2-2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础.
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数.
问题1 高台跳水的平均速度--→瞬时速度
--
根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点. 二、 教学目标
1、通过实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景;
2、理解导数的概念,会用定义求导数;
3、通过导数概念的形成过程,体验逼近、类比、从特殊到一般的数学思想方法. 三、 重点、难点
重点:导数概念的形成,导数内涵的理解.
难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵. 通过逼近的方法,引导学生观察来突破难点. 四、 教学设计。
《导数的概念》教学设计

《导数的概念》教学设计《《导数的概念》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.教学内容分析1.导数的地位、2.本课内容剖析教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.教学目的1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念.教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.教学准备1.查找实际测速中测量瞬时速度的方法;2.为教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学复习准备理解平均速度与瞬时速度的区别与联系.体会模型感受当△t→0时,平均速度逼近于某个常数.提炼模型从形式上完成从平均速度向瞬时速度的过渡.形成概念由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义.应用概念理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义.小结作业通过师生共同小结,使学生进一步感受极限思想对人类思维的重大影响.教学过程设计0=1.6 →-9.18《导数的概念》教学设计这篇文章共9711字。
导数的概念优秀教学设计

导数的概念优秀教学设计导数是微积分中的重要概念,是描述函数变化率的工具。
设计优秀的导数教学,需要结合具体的学生特点和教学环境,以下是一个1200字以上的教学设计。
课程名称:导数的概念课时安排:2个课时教学目标:1.理解导数的概念和意义;2.掌握导数的计算方法;3.能够应用导数计算函数在给定点的切线和法线。
教学准备:1.教师准备黑板和粉笔;2.给学生准备纸和笔;3.提前准备好导数的相关练习题。
教学过程:第一课时(40分钟):1.导入(5分钟):教师首先简要回顾一下上节课讲解的函数及其性质,引导学生回忆函数图像的特点和函数值的意义。
2.引入导数的概念(15分钟):a.教师通过画图的方式,介绍导数的定义,即函数在其中一点的导数定义为函数在该点的斜率,引导学生对导数有初步的直观理解。
b.教师提供一些具体的例子,如从平面图中点A的位置移动到点B的位置所经过的路径,引导学生思考为什么我们需要斜率来描述这一移动过程的速率。
3.导数的计算方法(20分钟):a.教师通过画图和计算的方式,教学常见函数的导数计算方法,如幂函数、指数函数、对数函数、三角函数等。
b.教师提醒学生导数是一个极限的概念,需要进行极限运算,以此引导学生理解导数的计算方法。
4.小结(5分钟):教师进行本节课的小结,回顾本节课讲解的内容,强调导数是函数的变化率,需用斜率来描述。
第二课时(40分钟):1.复习(5分钟):教师简要回顾上节课讲解的导数的概念和计算方法,提问学生导数的意义和计算方法。
2.用导数计算切线和法线(15分钟):a.教师通过具体例子,如给定一条曲线上的一点P,求曲线上其中一点的切线方程和法线方程,引导学生应用导数的概念和计算方法进行求解。
b.教师提醒学生切线和法线的斜率分别等于导数和导数的负倒数,以此理解切线和法线的几何意义。
3.应用题练习(15分钟):a.教师出示一些应用题,如给定函数的图像,要求求函数在其中一点的切线和法线方程,并计算切点坐标等。
高等数学导数的概念教案

1. 让学生理解导数的概念,掌握导数的定义和性质。
2. 培养学生运用导数解决实际问题的能力。
3. 引导学生掌握求导数的基本方法。
二、教学内容1. 导数的定义2. 导数的性质3. 求导数的方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、性质和求导数的方法。
2. 难点:导数的直观理解和求复杂函数的导数。
四、教学过程1. 导入:通过生活中的实例,如速度、加速度等,引导学生思考导数的概念。
2. 讲解:讲解导数的定义,引导学生理解导数的几何意义。
3. 练习:让学生独立完成一些简单函数的导数计算,巩固导数的求法。
4. 应用:结合实际问题,让学生运用导数解决问题,体会导数的应用价值。
5. 总结:对本节课的内容进行总结,强调导数的重要性和求导数的方法。
五、课后作业1. 完成教材上的课后练习题。
2. 找一些实际问题,运用导数解决。
3. 复习本节课的内容,准备下一节课的学习。
1. 评价学生对导数概念的理解程度。
2. 评价学生掌握导数性质和求导数方法的情况。
3. 评价学生在实际问题中运用导数的熟练程度。
七、教学策略1. 采用生动的生活实例引入导数概念,提高学生的学习兴趣。
2. 通过多媒体手段展示导数的几何意义,增强学生的直观感受。
3. 设计具有梯度的练习题,让学生在实践中掌握求导数的方法。
4. 鼓励学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
八、教学资源1. 教材:高等数学导数部分。
2. 多媒体课件:用于展示导数的几何意义和实例分析。
3. 练习题库:用于巩固所学知识和提高解题能力。
4. 网络资源:用于拓展学生视野,了解导数在实际应用中的广泛性。
九、教学反思在教学过程中,要及时关注学生的学习反馈,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,要加强针对性训练,提高学生的理解能力和应用能力。
注重培养学生的数学思维,激发学生学习高等数学的兴趣。
十、教学拓展1. 导数在微积分学中的应用:极限、积分等。
《 导数 的概念》教学设计

《导数的概念》教学设计一、学习内容分析:1.本节内容:导数的概念是高中新教材人教版选修1-1第一章第一节1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率的基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念。
新教材从平均变化率入手,用形象直观的"逼近"方法定义导数。
2.在课程标准、高考考纲中的地位与作用:"导数的概念"是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性。
3.与前后章节的联系:在前节课所学的平均变化率的基础上学习平均变化率,进而得到导数的概念,为下一节研究导数的几何意义和导数的应用奠定基础。
二、学生分析:1.学生的情感特点和认知特点:学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础2.已具备的与本节课相联系的知识、生活经验:学生已较好地在物理中学过平均速度、瞬时速度,并学习了一些的关于函数变化率的知识,为本节课学习瞬时变化率、导数做好铺垫。
3.学习本课存在的困难:导数概念建立在极限基础之上,极限是文科学生没有学习过的新知,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.三、学习环境分析:导数的方法是今后全面研究微积分的重要方法和基本工具,在其它学科中同样具有十分重要的作用.在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展.四、学习目标:(1)知识与技能目标:①通过实例分析,经历由平均变化率过度到瞬时变化率的过程,体会导数概念的实际背景。
②会用定义求导数。
(2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟"逼近"思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.(3)情感、态度与价值观目标:通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:导数的概念一、教学内容解析《导数的概念》是《选修2-2》第一章第1.1节中第1.1.2小结的内容,是高中数学的一节概念课.数学学习离不开推理,推理离不开判断,而判断是以一切概念为基础的.因此,数学教师必须要重视概念的教学.纵观《导数及其应用》这章内容,导数以高起点,高观点和更一般的方法简化了中学数学中许多与函数相关的问题.导数的出现也为我们今后微积分的发展提供了方法和工具,从而使得它在其它学科领域也有了广泛的应用.但我们又不能将导数作为一种规则和步骤来学习,否则,学生很难体会导数的思想及其内涵,这样导数概念的学习就至关重要.一般地,导数概念学习的起点是极限,但就高中学生的认知水平而言,他们很难理解极限的形式化定义.因此,我们对导数概念的引入从变化率入手,用形象直观的“逼近”方法定义导数.我们将导数概念的建立分为两个阶段,在明确瞬时速度含义的基础上,将瞬时速度一般化,即抽象为一般的函数,从而形成导数的概念.第一阶段:明确瞬时速度的含义及平均速度与瞬时速度的区别和联系.让学生在观察实验的同时,体会当||t ∆变小,趋于0时,ts∆∆趋于一个定值,这个定值就是瞬时速度.在经历平均速度到瞬时速度的过程中,第一次体会逼近的数学思想.第二阶段,将平均速度和瞬时速度抽象为一般的表达式,完全转化为数学问题,在揭示研究瞬时变化率必要性的同时,用类比的思想方法,经历从平均变化率到瞬时变化率的过渡,再次体会逼近的思想方法.最后,建立导数的概念.因此,根据以上对教学内容的分析,确立本节课的教学重点:在充分经历导数概念的建立过程中,体会逼近的数学思想,理解导数的思想及其内涵. 二、教学目标1.在导数概念建立的过程中,引导学生通过观察、数值逼近、几何直观感受、解析式抽象、类比等方法体会数学概念的发生和形成.2.理解导数的概念,初步掌握导数的计算方法,并在具体数学问题中进一步理解导数的概念.3.通过对瞬时速度、瞬时变化率的探索,激发学生对本部分内容学习的兴趣. 三、学生学情分析1.导数是对变化率的一种“度量”.实际生活中,学生最为熟悉的一种变化率就是物体的运动速度.学生在1.1.1小结学习了导数的物理意义,掌握了变化率,在高一年级的物理课程中学习过瞬时速度,因此,学生已经具备了一定的认知基础,他们不会对新知识感到无所适从.2.可能存在的问题:(1)“逼近”的思想对于学生而言,还是比较陌生,需要精心设计教学活动,比如借助物理知识等,激发学生的兴趣,从学生已有的知识背景出发,帮助学生经历从平均速度到瞬时速度,从平均变化率到瞬时变化率的过渡.(2)使学生能通过观察发现:运动的物体在某一时刻的平均速度在时间间隔越来越小时,逐渐趋于一个不变的常数,而且这个常数就是物体在这一时刻的瞬时速度.这个过程学生难以想象,同时数值逼近的运算繁琐,但又不能采取简单的方式告知学生,而是要学生通过实际的计算,在计算过程中,充分感知当||t ∆趋于0时,t h ∆∆趋于一个定值;当||x ∆趋于0时,xy∆∆趋于一个定值.(3)在实际教学中,学生需要用到思想方法和表达形式的迁移,即把从平均速度到瞬时速度过渡中所运用的“逼近”的思想方法迁移到从平均变化率到瞬时变化率的过渡,从对一个具体函数在一个确定点的瞬时变化率的表达式迁移到任意一个函数在任意一点的瞬时变化率的表达,这样的探究方法可能会导致学生的不适应而产生困难.因此,如何引导学生根据生活中具体的实例,结合已有的知识经验,通过“逼近”的方法,由特殊到一般,用类比的方法归纳探究出导数的概念是本节课的难点. 四、教学策略分析根据学生情况,为了完成本节课的教学目标,突破教学重难点,主要采取教师问题引导,学生自主探究、归纳的教学方法.具体的策略有:1.从具体到抽象的教学方法.学生由生活中的具体实例和已有的知识背景出发,历经平均速度到瞬时速度的过渡,再把物体的运动变化量抽象为一般的函数,从而得到瞬时变化率的概念.2.从特殊到一般的教学方法.让学生在知道2=t 是的瞬时速度以后,直观地理解运动员在任意时刻t 的瞬时速度.同样,在学生探究出一个指定函数在某一点处的瞬时变化率之后,可以归纳出一般函数在任意一点的瞬时变化率.3.几何直观感受.通过几何画板的演示让学生形象的感知“逼近”.4.利用计算器进行分组合作,取不同的t ∆,x ∆,计算t h ∆∆以及xy∆∆的值.计时间学内容15分钟1回顾复习实例研究讲授:上节课我们通过气球膨胀率、高台跳水的实例,建立起了平均变化率的概念.也请大家计算了高台跳水运动员在49650≤≤t这段时间里的平均速度.经过计算,大家发现运动员在49650≤≤t这段时间里的平均速度是0.难道说运动员在这段时间是静止的?显然,运动员在这段时间里不是静止的.由此可见,用平均速度描述运动员的运动状态是有一定的局限性.所以我们说“平均速度”只能粗略地描述运动员的运动状态.还有一种速度,它能更精确地刻画运动员在每个时刻的运动状态,我们称之为:瞬时速度.那如何求运动员的瞬时速度呢?比如,高台跳水运动员在st2=时的瞬时速度是多少呢?大家有没有好的想法?讲授:我们来看物理中测瞬时速度的小视频.问:观看的时候思考仪器在测量瞬时速度时的工作原理是什么?问:这里所得的真是瞬时速度吗?为什么?.问:对,也就是我们很难测量到真正的瞬时速度,我们测量到的是千分之一,万分之一秒,以致更短时间间隔内的学生思考.学生思考.找不到好的方法来求运动过程中的瞬时速度.根据已有的物理知识,学生回答仪器是通过测量气轨上滑块在t∆时间内滑过的距离s∆,用st∆∆计算而得.学生回答不是.答:时间间隔越组织学生讨论、交流计算结果,激发学生的求知欲.明确本节课的教学内容.平均速度为0?通过计算结果与学生的认知产生冲突.在实例观察中,感受逼近的思想,为求瞬时速度奠定基础.趋近于2时,平均速度都趋近于一个确定的值1.13-.我们就把1.13-讲授:我们用这个方法得到了高台跳水运动员在s t 2=附近,平均速度逼近一个确定的常数.那其他时刻呢?比如s t 5.2=、s t 3=等?请大家按照刚才我们探究s t 2=时的过程,用你手中的计算器,分别计算s t 5.2=、s t 3=这两个时刻附近的平均速度.请两个同学把小组计算出来的数据输入Excel 表格.s t 5.2=附近的平均速度变化:s t 3=附近的平均速度变化:讲授:经过以上三个时刻的计算,大家都发现:当时间间隔很小,也就是当两个时间的端点无限靠近时,就逼近了一个时刻,我们就把平均速度用为瞬时速度的近似值.之前我们在学习函数零点的时候,利用“二分法”逼近函数零点. 今天,根据上面的讨论,我们又用平均速度逼近了瞬时速度,这都体现了我们数学中无限逼近的思想.学生分组合作,思考、计算、讨论.学生总结计算结果.让学生熟悉符号,在亲自计算的过程中感受逼近的思想.从特殊到一般,让学生直观地理解运动员在任意时刻t 的瞬时速度.讲授:对于高台跳水运动员的运动时刻,我们有这样的10分钟2自主探究形成概念结论,那其他运动会吗?如果我们把运动员的运动变化抽象为一个函数,也有这样的结论吗?其实,物体的运动变化量可以抽象成一个函数()y f x=,这样我们用到的th∆∆就可以用一个跟为一般烦人表达式yx∆∆来表达,而yx∆∆就是我们上节课所学的平均变化率.我们可以用它来刻画一个函数在某个区间的变化趋势.问:那如何更好地刻画一个函数的变化趋势呢?为了探讨这个问题,我们来做这样的两个实验活动:实验活动1:求函数y x=,2y x=,y x=从0到1的平均变化率?问:是不是这三个函数在0到1的变化趋势是一样的呢?讲授:由此可见,正如平均速度只能粗略反映物体在某个时间段的运动状态,而要想更为精确的刻画物体在某个时刻的运动状态,我们只能通过瞬时速度.由此类比,对于函数来说,平均变化率也只能粗略的描述函数的变化趋势,那如何精确的描述函数的变化呢?问:那如何求函数在某一点处的瞬时变化率呢?讲授:下面我们就做另一个实验活动,看一下,当x∆缩短时,平均变化率发生了什么样的变化?请大家分组合作.答:根据平均变化率的公式2121()()y f x f xx x x∆-=∆-计算得这三个函数在同一个变化区间上平均变化率都是1.但根据图像发现这三个函数在0到1的变化趋势是不一样的.答:瞬时变化率.答:把区间x∆缩短.这个计算与学生的认知发生了冲突。
同时也让学生认识到平均变化率只能粗略的描述函数的变化.由上面从平均速度到瞬时速度的过渡,由对瞬时速度的形成和理解,学生很容易联想到可以用一个词,叫做“瞬时变化率”。
用它可以精确的描述函数在某一个点的变化趋实验活动2:已知函数2()f x x = ,分别计算f (x )在下列区间上的平均变化率:结论:用几何画板演示:讲授:我们就把2记作是2()f x x =在1x =处的瞬时变化率,用数学语言表达就是 0(1)(1)lim2x f x f x∆→+∆-=∆.讲授:这样,我们就实现了从平均变化率到瞬时变化率的过渡.得到了一个具体函数2()f x x =在1x =处的瞬时变化率.问:那对于任意一个函数()f x 在0x x =处的瞬时变化率该怎么表示?讲授:一般地,函数()y f x =在0x x =处的瞬时变化率学生分组合作,计算结果,得出结论.要求一个小组展示成果,表达对结果的看法.经过计算,学生会发现当两个区间的端点无限靠近,即x ∆逼近0时,平均变化率都逼近一个确定的值2,即瞬时变化率.自己尝试来写. 学生自己归纳总结.体会由特殊到一般的思想方法势.这体现了类比的思想方法.学生在上一个问题中遇到了认知冲突,希望寻求新的认知来解决这个冲突。
老师提出的这个实验活动引导学生通过计算,自主探究,使得获得新知的过程自然而然。
引导学生舍弃具体问题的实际意义,完全抽象为数学问题.在函。