导线测量概述

合集下载

全站仪导线测量原理

全站仪导线测量原理

全站仪导线测量原理一、全站仪导线测量的概述全站仪导线测量是一种广泛应用的测量技术,它通过全站仪进行高精度角度和距离测量,实现平面控制测量。

全站仪导线测量具有自动化程度高、精度稳定可靠、操作简便等优点,广泛应用于城市规划、建筑、交通、水利等领域。

二、全站仪导线测量的基本原理全站仪导线测量的基本原理是利用全站仪进行角度和距离的测量,通过数学计算得出测量点的平面坐标。

全站仪是一种集测距仪、电子经纬仪和计算机技术于一身的智能型测量仪器,它可以通过内部计算机系统自动进行数据采集和处理,大大提高了测量的精度和效率。

具体来说,全站仪导线测量的基本步骤如下:1.在测量区域布设控制点,通常选择地势较高、通视良好的位置。

2.在控制点上架设全站仪,对中整平,设置测站点和后视点,输入相关参数,如仪器高、棱镜高、气压等。

3.配置全站仪参数,包括坐标系统、投影参数、单位设置等,确保与实际工程要求一致。

4.对测量区域进行角度和距离测量,通过全站仪的望远镜和内置计算机系统进行数据自动记录和处理。

5.根据测量的角度和距离数据,通过数学计算得出测量点的平面坐标。

三、全站仪导线测量的实施步骤1.确定测量方案:根据工程要求和实际情况,确定测量范围、控制点布设方案、测量精度等。

2.准备工具和资料:准备全站仪、棱镜、脚架、记录本、测绳等工具,收集相关资料,如地形图、控制点资料等。

3.实地踏勘:对测量区域进行实地踏勘,了解地形地貌、建筑物等情况,以便更好地布设控制点和选择合适的测量方法。

4.控制点布设:根据测量方案和控制点布设要求,在测量区域内选择合适的位置布设控制点,并做好标记。

控制点应尽量均匀分布,方便后续测量和数据处理。

5.全站仪架设与校准:将全站仪安装在三脚架上,对中整平,然后进行校准。

校准包括对中器校准、水平器校准和误差校准等,以确保测量的精度和准确性。

6.角度和距离测量:根据实际情况选择合适的测量模式,如距离模式、角度模式或跟踪模式等。

导线测量

导线测量

您的位置:第五章导线测量第五章导线测量※内容概述:介绍了导线测量的基本知识和方法。

导线测量是折线形式,一般只有两个方队故显得灵活,在平坦或荫蔽地区以及建筑区更为优越。

导线测量的外业工作包括:选点、标定、绘制点之记。

为了进行导线边的定向,起始边应与另外的高级控制点相连接,也即测定连接角。

若无已知点连测时,则用罗盘仪测定磁方位角进行定向;除观测连接角外,就是观测相邻两导线边之间的水平角和丈量边长。

不同等级的导线对测角和量边有不同的要求,可参见测量规范。

外业工作结束之后应全面检查记录手簿,并检查角度闭合差及全长闭合差是否在限差允许范围之内,若符合要求,则进行误差调整(即平差)。

本章所述为近似平差,即首先调整角度闭合差,根据改正后的转折角计算各边的坐标方位角,然后根据各边坐标方位角与边长计算各边的坐标增量,根据改正后的坐标增量和已知坐标推算各导线点的坐标,这种将角度与坐标分别进行调整的方法,就是近似平差法。

测量的基本工作为测角、测距和测高差。

测量高差已经在第三讲中详细讲述了,本讲主要讲述角度测量及方法,距离测量的方法,导线测量的方法和应用,简单介绍了一下全站仪。

※教学目的:通过对基本测量的学习,了解测量的原理及仪器,掌握测量工作外业操作和内业计算的步骤和方法,并会近似平差。

※内容详述:§5.1 角度测量在确定地面点的位置时,常常需要进行角度测量。

角度测量最常用的仪器是经纬仪。

角度测量分为水平角测量与竖直角测量。

水平角测量用于求算点的平面位置,竖直角测量用于测定高差或将倾斜距离改化成水平距离。

一、水平角测量原理水平角是地面上一点到两目标的方向线投影到水平面上的夹角,也就是过这两方向线所作两竖直面间的二面角。

图5-1 角度测量原理经纬仪需有一刻度盘和在刻度盘上读数的指标。

观测水平角时,刻度盘中心应安放在过测站点的铅垂线上,并能使之水平。

为了瞄准不同方向,经纬仪的望远镜应能沿水平方向转动,也能高低俯仰。

《导线测量内业计算》课件

《导线测量内业计算》课件
导线测量原理
利用几何学原理,通过测量相邻点之间的角度和距离,按照 一定的数学模型进行计算,从而确定点的平面坐标。
导线测量的分类
按照精度要求分类
可以分为一等、二等、三等、四等以 及一级、二级、三级、四级导线测量 。不同精度的导线测量对应不同的测 量仪器和测量方法。
按照布设形式分类
可以分为闭合导线、附合导线、支导 线等形式。不同的布设形式适用于不 同的测量环境和测量需求。
高程计算方法
高程计算方法包括水准测量、三角高 程测量和GPS高程测量等,其中水准 测量是最常用的一种方法。
角度计算步骤和方法
角度计算步骤
首先需要确定各导线边的方位角,然后根据测量数据计算各导线边的转折角,最后根据已知点坐标和方位角、转 折角计算出未知点坐标和方位角。
角度计算方法
角度计算方法包括方向法、距离法、导线法和前方交会法等,其中方向法是最常用的一种方法。
《导线测量内业计算 》PPT课件
• 导线测量概述 • 导线测量的内业计算 • 导线测量内业计算的步骤和方法 • 导线测量内业计算的注意事项 • 导线测量内业计算的实例分析
目录
01
导线测量概述
导线测量的定义
导线测量定义
导线测量是利用测量仪器和工具,通过一定的测量方法,测 定一系列点的位置,从而根据这些点的平面坐标推算出某段 直线的长度、某个点的位置以及待测点的坐标的方法。
04
导线测量内业计算的注意事

数据检查和校核
01
02
03
数据完整性
确保所有测量数据都已准 确录入,无遗漏。
数据准确性
对录入的数据进行核实, 排除可能的错误或异常值 。
数据匹配性
检查各数据之间是否相互 一致,无矛盾。

《导线测量计算》课件

《导线测量计算》课件

数据校准
对测量设备进行校准,确保数据的准 确性。
数据整合
通过统计分析方法,检测并排除异常 值。
数据后处理
01
结果验证
对计算结果进行验
证,确保其准确性
02
和可靠性。
误差分析
分析测量和计算过 程中的误差来源, 提出改进措施。
04
报告编写
根据处理结果编写
03
报告,提供给相关
人员使用和参考。
数据归档
将处理后的数据归 档保存,方便后续
导线测量的应用场景
1 2
3
城市规划与建设
在城市规划和建设中,导线测量用于确定地物的位置和地形 图测绘。
土地调查
土地调查中需要精确测定地块的位置和面积,导线测量是一 种常用的方法。
交通工程
在道路、桥梁和隧道等交通工程建设中,导线测量用于确定 工程的位置和地形。
导线测量的基本原则
先整体后局部
先进行整体控制测量,确定控制点的大致位置,再进行局部的详细测量。
案例三:大型工程中的导线测量
总结词
在大型工程中,导线测量用于监测工程项目的施工进度和质量控制,确保工程的安全和 稳定。
详细描述
在大型工程项目中,导线测量是施工监测的重要手段之一。通过布设控制网和定期进行 导线测量,可以监测施工进度和质量控制,及时发现施工中的问题并采取相应的措施。 这对于确保工程的安全和稳定具有重要的意义。同时,导线测量还可以用于大型工程中
包括闭合导线公式、附合导线公式等 。
坐标计算方法
坐标计算方法概述
坐标计算方法是根据已知的起始 点坐标、转折角和边长等参数, 利用导线测量公式计算其他点坐
标的方法。
手工计算方法

导线测量

导线测量

导线坐标计算表
点 观测角 改正数 号 (°′″) (″)
α 距离
(°′ ″)
(m)
增量计算值
δx δy (m) (m)
改正后增量 Δy
Δx (m) (m)
坐标值

X
Y号
(m)
(m)
辅助计算:角度闭合差、导线全长闭合差、导线全长相对闭合差、 容许闭合差。
导线草图
(一)几个基本公式
1、坐标方位角(grid bearing)的推算
1
970300
484318 A1
A
XA=536.27m
A
1122224
2
1051706
2
YA=328.74m
1233006
4 1014624
4
3
3
1
(1)计算坐标增量闭合差:
f x x测 x理 x测
1
970300
f y y测 y理 y测
484318 A1
➢导线全长闭合差:
A
§1 基本知识
(3)支导线
从一个已知控 制点起,经过若干 个控制点,既不附 合到另一个已知控 制点,又不回到原 来的起始点的导线。
§1 基本知识
(4)导线网
若干条导线汇 合于一点或几个点 所构成的网状结构, 称为导线网。
导线网分为单 结点导线网、多结 点导线网、闭合环 导线网等多种形式。
§2 导线测量外业工作
增量。
1
Vxi
f
x
D
Di
Vyi
f
y
D
Di
xˆi x Vxi yˆi x Vyi
1
970300
484318 A1

全站仪导线测量原理

全站仪导线测量原理

全站仪导线测量原理
全站仪是一种测量设备,通常用于进行导线测量。

导线测量是一种确定地面上两点之间的距离和方向的方法。

全站仪利用光学和电子技术来实现测量。

全站仪测量原理涉及到以下几个方面:
1. 视距测量激光:全站仪通过发射一束激光并测量它的回弹时间来确定两个点之间的距离。

这个过程被称为视距测量。

全站仪通过记录激光发射时间和回弹时间来计算出测量距离。

2. 视线方向测量:全站仪可以测量地面上两点之间的方向。

它通过测量激光束在垂直方向上的角度来确定两点之间的方向。

全站仪上配备有精确的角度测量装置,可以测量角度的变化。

3. 数据处理:全站仪能够将测量数据存储在内部存储器中,并可以通过连接到计算机来进行数据处理和分析。

测量数据可以通过全站仪的界面传输到计算机上,然后使用特定的软件进行处理。

4. 定位:全站仪还可以通过测量地面上的控制点来确定测量点的准确位置。

控制点是已知位置的点,通过在这些点上测量可以建立一个坐标系统。

通过与控制点的连接,全站仪可以确定测量点的坐标。

总的来说,全站仪通过测量视距和方向来确定导线的距离和方向。

它利用精确的测量技术和数据处理功能来提供准确和可靠
的测量结果。

这使得全站仪成为现代导线测量中非常重要的工具。

导线测量-PPT

导线测量-PPT

f
' 终

角度闭合差分配原则:角度为左角时,以反符号平均分配 角度为右角时以相同符号平均分配。
⊿xAB
(二)、坐标增量闭合差的计算: x
⊿x3B ⊿x23
3 2
B X终、y终 (n)
⊿x12
1
⊿xA1
X起、y起
A
⊿y12 ⊿y23 ⊿y34
⊿y4n
0
⊿yAB
y
理论值: x理 x终 x起 则闭合差为:fx x测 x理
二、各导线形式的使用条件:
(一)闭合导线:适用于宽阔地区,无高级控制点的地区。
(二)附和导线:适用于狭长地带。例铁路、公路。
(三)支导线:无校核条件,适用
于导线数目不足时的测图。在钢
B
A
尺量距时由于量距精度低一般不
D
超过两个点。
(四)结点导线:增加校核条 件可以提高导线点的精度。 (五)导线网:测区范围较大时, 首级控制可布成导线网。
475.90 299.80 +24.10 +200.20
1
-10
121-26-52
+24.04 +200.16
500.00 500.00
121-27-02
24-36-00
2
∑ 540-00-52 540-00-00
1137.7 -0.32 -0.24
0
0
计算注意事项:
1、角度分配值以秒为单位,剩余值分配至含 有短边的夹角。
f
f
2 x
f
2 y
考虑导线误差与边长有关,衡量导线精度用相对误差表示。
图根导线精度要求:
K
f
S
1 T

导线测量

导线测量

第四部分导线测量一平面控制测量概述⑴.目的与作用1)为测图或工程建设的测区建立统一的平面控制网和高程控制网。

2)控制误差的积累。

3)作为进行各种细部测量的基准。

⑵.有关名词1)小地区(小区域):不必考虑地球曲率对水平角和水平距离影响的范围。

2)控制点:具有精确可靠平面坐标或高程的测量基准点(一般由设计部门提供)。

3)控制网:由控制点分布和测量方法决定所组成的图形。

4)控制测量:为建立控制网所进行的测量工作。

⑶.控制测量分类1)按内容分:平面控制测量、高程控制测量2)按精度分:一等、二等、三等、四等;一级、二级、三级3)按方法分:三角测量、导线测量、水准测量、GPS卫星定位测量4)按区域分:国家控制测量、城市控制测量、小区域工程控制测量⑷.国家控制网在全国范围内建立的控制网,称为国家控制网。

它是全国各种比例尺测图的基本控制,并为确定地球的形状和大小提供研究资料。

国家控制网是用精密测量仪器和方法建立的。

平面控制网:国家平面控制网由一、二、三、四等三角网组成。

高程控制网:国家高程控制网由一、二、三、四等水准网组成。

国家控制网的特点:高级点逐级控制低级点。

⑸.小区域(15km2以内)控制测量平面:国家或城市控制点——首级控制——图根控制。

高程:国家或城市水准点——三、四等水准——图根点高程。

二导线测量⑴.导线的定义1)定义:将测区内相邻控制点(导线点)连成直线而构成的折线图形。

2)适用范围较广:主要用于带状地区 (如:公路、铁路和水利) 、隐蔽地区、城建区、地下工程等控制点的测量。

⑵.导线布设形式根据测区情况和要求,导线布设可分为以下几种形式:1)闭合导线多用于面积较宽阔的独立地区。

2)附合导线多用于带状地区及公路、铁路、水利等工程的勘测与施工。

3)支导线支导线的点数一般不宜超过2个,仅作为补设导线点时使用。

4)此外:还有导线网,其多用于测区情况较复杂地区和精度要求较高的地区。

⑶.导线的外业1)踏勘选点及建立标志⒈导线点应选择在地势较高、视野开阔处,便于扩展加密控制和实测碎部。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导线测量名词:导线点导线测站英文名称:traverse survey定义1:将一系列测点依相邻次序连成折线形式,并测定各折线边的边长和转折角,再根据起始数据推算各测点平面位置的技术与方法。

应用学科:测绘学(一级学科);工程测量学(二级学科)定义2:依次测定各导线边边长和各导线角,根据起算数据推算各导线点坐标的平面控制测量工作。

应用学科:水利科技(一级学科);水利勘测、工程地质(二级学科);水利工程测量(三级学科)为导线测量选择的测量路线称为导线。

它应当尽可能直伸,但由于地形限制,导线一般成一条折线。

导线上设置测站的点称为导线点。

测量每相邻两点间的距离,并在每一点上观测相邻两边之间的夹角,从一起始点坐标和方位角出发,利用测量的距离和角度,便可依次推算各导线点的水平位置(如图)。

为建立国家大地网以及某些城市测量和工程测量所实施的导线测量,称为精密导线测量。

其等级和精度要求与三角测量相同。

这些等级以下的导线测量,分为经纬仪导线测量、视距导线测量和视差导线测量,其精度、使用的仪器和测量方法各不相同。

传统的精密导线测量用基线尺在地面上直接丈量每相邻两点间的距离。

由于距离测量的精度高,导线中不存在尺度误差积累;而方位误差积累则比三角测量严重。

因此,导线上每隔一定距离要测定天文经纬度和方位角。

由于导线以单线扩展,无其他几何校核,故必须闭合成环,或布设在高级控制点之间。

当测区较大时,则构成导线网。

在一般地区,由于地面不平,难于用基线尺直接丈量距离,故传统的精密导线测量不及三角测量优越。

但在平坦的森林地区,为了实施三角测量,必须建造过高的测量觇标,又为了清除通视障碍,还要砍伐树木,这样将使作业进展迟缓,用费较大。

若改用导线测量,沿道路、林区分界地带或河流推进,利用平坦地势丈量距离,则可降低觇标高度,减少辅助工作,达到较好的经济效果。

英国曾在非洲赤道附近平坦的森林地区,广泛采用传统的精密导线测量以代替三角测量。

除了这些特殊地区之外,传统的精密导线测量则很少应用。

测量分类电磁波导线测量;经纬仪导线测量;视差导线测量和视距导线测电磁波导线测量自电磁波测距仪于20世纪50年代出现后,导线测量受到了重视。

用电磁波测距仪测定距离,所受地形限制较小,作业迅速,精度随着仪器的不断改进而越来越高。

因此,电磁波导线测量得到日益广泛的应用,有逐渐取代三角测量之势。

60年代初,中国利用电磁波测距仪在自然条件极其困难的青藏高原实施了精密导线测量,构成了包括10个闭合环的导线网。

美国从60年代初开始,用高精度电磁波测距仪实施了横贯大陆的高精度导线测量,现在已经完成,全长达22000公里。

导线上每条边的方位角都直接观测,因而不存在尺度误差和方位误差的积累。

高精度导线测量的质量优于一等三角测量,称为零等控制测量。

美国正以这种高精度导线为骨干,重新处理原有的三角测量,提高其精度。

1979年由于三波长电磁波测距仪的出现,测距精度接近千万分之一,电磁波导线测量可以用来建立更高级的大地测量控制。

目前有些电磁波测距仪已同测角仪器合为一体,并带有计算装置,成为多功能的测量仪器,称为全站式电子速测仪。

利用这种仪器布设导线,经济效益极高。

经纬仪导线测量用于建立四等以下的测量控制。

传统的经纬仪导线测量是用因瓦尺或钢卷尺直接丈量距离,用经纬仪观测角度。

这种导线是各种比例尺,特别是大比例尺测图所必须的。

在勘测铁路、公路和运河时,必须沿其轴线布设主干经纬仪导线。

城市测量中,由于建筑群形成荫蔽地区,必须沿街道布设短边经纬仪导线。

随着电磁波测距技术的发展,目前大都用电磁波测距仪布设经纬仪导线,传统的经纬仪导线的应用越来越少。

视差导线测量和视距导线测量完全采用光学方法,用视差法和视距法测量导线边长,不必用因瓦尺或钢卷尺丈量,因而比传统的经纬仪导线测量方便,且具有较高的灵活性,但精度较低。

一、导线测量概述导线——测区内相邻控制点连成直线而构成的连续折线(导线边)。

导线测量——在地面上按一定要求选定一系列的点依相邻次序连成折线,并测量各线段的边长和转折角。

再根据起始数据确定各点平面位置的测量方法。

主要用于带状地区、隐蔽地区、城建区、地下工程、公路、铁路等控制点的测量。

导线的布设形式:附合导线、闭合导线、支导线,导线网。

附合导线网自由导线网钢尺量距各级导线的主要技术要求:注:表中n为测站数,M为测图比例尺的分母表 6J-1 图根电磁波测距附合导线的技术要求二、导线测量的外业工作1.踏勘选点及建立标志2.导线边长测量光电测距(测距仪、全站仪)、钢尺量距当导线跨越河流或其它障碍时,可采用作辅助点间接求距离法。

(α+β+γ)-180o改正内角,再计算FG边的边长:FG=bsinα/sinγ3.导线转折角测量一般采用经纬仪、全站仪用测回法测量,两个以上方向组成的角也可用方向法。

导线转折角有左角和右角之分。

当与高级控制点连测时,需进行连接测量。

三、导线测量的内业计算思路:①由水平角观测值β,计算方位角α;②由方位角α及边长D, 计算坐标增量ΔX 、ΔY;③由坐标增量ΔX 、ΔY,计算X、Y。

(计算前认真检查外业记录,满足规范限差要求后,才能进行内业计算)坐标正算(由α、D,求 X、Y)已知A(xA ,yA),DAB,αAB,求B点坐标 xB,yB。

坐标增量:待求点的坐标:(1)闭合导线计算图6-10是实测图根闭合导线示意图,图中各项数据是从外业观测手簿中获得的。

已知数据:12边的坐标方位角:12 =125°30′00″;1点的坐标:x 1=500.00, y1=500.00现结合本例说明闭合导线计算步骤如下:准备工作:填表,如表6-5 中填入已知数据和观测数据.1、角度闭合差的计算与调整:n边形闭合导线内角和理论值:(1) 角度闭合差的计算:例: fβ=Σβ测-(n-2)×180o=359o59'10"-360o= -50"1闭合导线坐标计算表 (6-5)(2)角度容许闭合差的计算(公式可查规范)(图根导线)若:f测≤ fβ容,则:角度测量符合要求,否则角度测量不合格,则1)对计算进行全面检查,若计算没有问题,2)对角度进行重测本例: fβ= -50″根据表6-5可知,=±120″则 fβ<fβ容,角度测量符合要求3) 角度闭合差 fβ的调整:假定调整前提是:假定所有角的观测误差是相等的,角度改正数:(n—测角个数)角度改正数计算,按角度闭合差反号平均分配,余数分给短边构成的角。

检核:改正后的角度值:检核:2、推算导线各边的坐标方位角推算导线各边坐标方位角公式:根据已知边坐标方位角和改正后的角值推算,式中,α前、α后表示导线前进方向的前一条边的坐标方位角和与之相连的后一条边的坐标方位角。

β左为前后两条边所夹的左角,β右为前后两条边所夹的右角,据此,由第一式求得:填入表 6-5中相应的列中。

3、计算导线各边的坐标增量ΔX、ΔY:ΔX i=D i cosαiΔY i==D i sinαi如图:ΔX12=D12cosα12ΔY12==D12sinα12坐标增量的符号取决于12边的坐标方位角的大小4、坐标增量闭合差的计算见表6-5根据闭合导线本身的特点:理论上:坐标增量闭合差实际上:坐标增量闭合差可以认为是由导线边长测量误差引起的;5、导线边长精度的评定(见表6-5)由于f x f y 的存在,使导线不能闭合,产生了导线全长闭合差11' ,即f D :导线全长相对闭合差:限差:用 K 容 表示,当 K≤K 容时,导线边长丈量符合要求 。

K 容 的大小见表6-2 表6J-1K1/4000 6、坐标增量闭合差的调整: 见表6-5调整: 将坐标增量闭合差反号按边长成正比例进行调整。

坐标增量改正数: 检核条件:【例】1-2边增量改正数填入表6-5中相应的位置。

7、计算改正后的坐标增量:见表6-5检核条件:8、计算各导线点的坐标值:见表6-5依次计算各导线点坐标,最后推算出的终点1的坐标,应和1点已知坐标相同。

(二)、附合导线的计算附合导线的计算方法和计算步骤与闭合导线计算基本相同,只是由于已知条件的不同,有以下几点不同之处:如图A.B.C.D是已知点,起始边的方位角αAB(α始)和终止边的方位角αAB (α终)为已知。

外业观测资料为导线边距离和各转折角。

(1)计算角度闭合差:fβ=α'终–α终其中: α'终为终边用观测的水平角推算的方位角;α终为终边已知的方位角终边α推算的一般公式:如图:为以右转折角为例用观测的水平角推算的终边方位角。

(2)测角精度的评定:即:检核:(各级导线的限差见规范)(3)闭合差分配(计算角度改正数):式中:n —包括连接角在内的导线转折角数(4)计算坐标增量闭合差:其中:如图始点是B点; 终点是C点.由于fx ,fy的存在,使导线不能和CD连接,存在导线全长闭合差fD:导线全长相对闭合差:(5)计算改正后的坐标增量的检核条件:检核条件:(6)计算各导线点的坐标值:依次计算各导线点坐标,最后推算出的终点C的坐标,应和C点已知坐标相同。

如图,A、B、C、D是已知点,外业观测资料为导线边距离和各转折角见图中标注。

(2) 坐标反算(由X 、Y ,求α、D , ) 已知A (x A ,y A )、B (x B ,y B )求D AB ,αAB 。

注:计算出的 αAB ,应根据ΔX 、 ΔY 的正负,判断其所在的象限。

计算器的使用 a.角度加减计算例: 求26°45'36"+125°30'18"的值。

①输入26.4536后按 →DEG ,接着按 + , 再输入125.3018后按 →DEG ;②按 = 得152.265, 再按 2ndF 和 →DEG 。

此时该键功能是“→D.MSD”),得结果152.1554(152°15'54")。

b.坐标正算例:已知αAB =60°36'48",d AB =1523m,求Δx AB 、Δy AB 。

①输入边长125.36后按 a,接着输入方位角60.3648,再按 →DEG 和 b;②按 2ndF ,再按 b,显示数值61.52(约数,ΔxAB),再按 b,显示数值109.23(约数,ΔyAB)。

c.坐标反算例:已知ΔxAB =45.68,ΔyAB=69.35 求 DAB、αAB。

①输入ΔxAB 的值45.68后按 a,接着输入ΔyAB的值69.35,再按 b;②按 2ndF ,再按 a ,显示数值83.04(约数,DAB);③再按 b显示数值56.6275906,接着按 2ndF 和→DEG (此时该键功能“→D.MSD”),屏幕显示56.373932(即56°37′39")对所得角值的处理原则是:若显示值>0,则该值即为所求的αAB。

相关文档
最新文档