因动点产生的相似三角形问题 - 专题

合集下载

完整版相似三角形的动点问题题型整理

完整版相似三角形的动点问题题型整理

相似三角形的动点问题一、动点型例1如图,已知等边三角形ABC中,点D, E, F分别为边AB , AC, BC的中点,M为直线BC上一动点,△ DMN为等边三角形(点M的位置改变时,△ DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE 上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1 )的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例2、如图,在矩形ABCD中,AB=12cm , BC=8cm .点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动. 点E、G的速度均为2cm/s,点F的速度为4cm/s, 当点F追上点G (即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△ EFG的面积为S ( cm2)(1 )当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、为顶点的三角形与以点F、C、G 为顶点的三角形相似?请说明理由.圜②图③迁移应用1如图,已知△ ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C 时,P、Q两点都停止运动,设运动时间为t( s),(1 )当t= 2时,判断△ BPQ的形状,并说明理由;(2 )设厶BPQ的面积为S (cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△ APR s^ PRQ?2、如图,在直角梯形ABCD 中,AB // DC,/ D=90o, AC丄BC, AB=10cm,BC=6cm, F 点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0<t<5).1) 求证:△ ACD BAC;2) 求:DC的长;3) 试探究:△ BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.3、如图,在直角梯形ABCD 中,AD // BC,/ B=90° , AD=6 , BC=8 , AB=3 . 3,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P, Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P, Q运动的时间是t秒(t > 0)(1 )设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式 (不必写t 的取值范围);(2)当BP=1时,求△ EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△ EPQ覆盖, 刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.、动点加动线例1、如图,在Rt△ABC中,/ C=90 ° , AC=3 , AB=5 .点P从点C出发沿CA以每秒1 个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t> 0).(1 )当t=2时,AP= __________ ,点Q到AC的距离是 ___________________ ;(2)在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t 的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;迁移应用1、如图,已知矩形ABCD的边长AB=3cm , BC=6cm .某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三角形与△ ACD相似?若存在,求t的值. (4)当DE经过点C时,请直接写出t的值.2、如图,正方形 ABCD 的边长为4, E 是BC 边的中点,点 P 在射线AD 上,过P 作PF 丄 AE 于 F .(1) 求证:△ PFAABE ;(2) 当点P 在射线AD 上运动时,设PA=x ,是否存在实数x ,使以P , F , E 为顶点的三角 3、如图,已知 A (8, 0), B (0, 6),两个动点 P 、Q 同时在△ OAB 的边上按逆时针方 向(T O f A T B T O f)运动,开始时点 P 在点B 位置,点Q 在点O 位置,点P 的运动速 度为每秒2个单位,点Q 的运动速度为每秒1个单位.(1) 在前3秒内,求△ OPQ 的面积S 与时间t 之间的关系式;并求出△ OPQ 的最大面积;(2) 在前10秒内,秋P 、Q 两点之间的最小距离,并求此时点 P 、Q 的坐标;(3) 在前15秒内,探究PQ 平行于△ OAB —边的情况,并求平行时点 P 、Q 的坐标.4、已知:如图,在平面直角坐标系中,△ ABC 是直角三角形,/ ACB ,点A 、C 的坐标分 (1) 求过点A 、B 的直线的函数表达式;(2) 在X 轴上找一点D,连接DB ,使得△ ADB 与厶ABC 相似(不包括全等),并求点形也与△ ABE 相似?若存在,请求出x 的值;若不存在,说明理由.SEC别为 A(-3,0) , C(1,O), BC 3AC 4x的坐标;(3)在(2)的条件下,如P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△ APQ与厶ADB相似,如存在,请求出m的值;如不存在,请说明理由.OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点BC折叠,使点B落在边OA的点D处.已知折叠CE= 5 5,且-EA5、如图,四边形在Y轴上,将边DA (1) 判断OCD与厶ADE是否相似?请说明理由;(2) 求直线CE与x轴交点P的坐标;(3) 是否存在过点D的直线L ,使直线L、直线CE与x轴所围成的三角形和△ CDE相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.6、A ABC中,AB=AC=5 , BC=6,点P从点B开始沿BC边以每秒1的速度向点C运动,点Q从点C开始沿CA边以每秒2的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P, Q分别从B, C两点同时出发,当点Q运动到点A时,点Q、p停止运动,设它们运动的时间为x.1) ____________ 当x= 秒时,射线DE经过点C;2) 当点Q运动时,设四边形ABPQ的面积为y,求y与x的函数关系式;3) 当点Q运动时,是否存在以的P、Q、C为顶点的三角形与△ PDE相似?若存在,求出值;若不存在,请说明理由.7、如图,梯形ABCD 中,AD // BC, AB=CD=20cm , AD=40cm,/ D=120 °,点P、Q 同时从C点出发,分别以2cm/s和1cm/s的速度沿着线段CB和线段CD运动,当Q到达点D, 点P也随之停止运动.设运动时间为t (s)(1 )当t为何值时,△ CPQ与厶ABP相似;(2)设厶APQ与梯形ABCD重合的面积为S,求S与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD 中,AB // DC,/ DAB=90 ° , AD=2DC=4 , AB=6 .动点M 以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动. 过点M作直线I // AD , 与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t (秒)(1 )当t=0.5时,求线段QM的长;(2)当O v t V2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;CQ(3) 当t>2时,连接PQ交线段AC于点R.请探究—Q是否为定值,若是,试求这个定RQ值;若不是,请说明理由.DE PC卫眩B9、如图1,直角梯形ABCD 中,/ A= / B=90° , AD=AB=6cm , BC=8cm,点E 从点A 出发沿AD方向以1cm/s的速度向中点D运动;点F从点C出发沿CA方向以2cm/s的速度11向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.(1 )当t为何值时,△ AEF和厶ACD相似?(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;(3)当t为何值时,△ AFE的面积最大?最大值是多少?11, 4),动点P在线段OA上从点O出发以每秒1 10、如图,在平面直角坐标系中.四边形OABC是平行四边形•直线I经过0、C两点.点A的坐标为(8, 0),点B的坐标为(12个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A T C的方向向点C运动,过点P作PM垂直于x轴,与折线0 —C-B相交于点M .当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t> 0).^MPQ的面积为S.(1 )点C的坐标为__________________ ,直线l的解析式为________________________ 。

专题4.2 相似三角形中的动点问题(强化)(解析版)

专题4.2 相似三角形中的动点问题(强化)(解析版)

专题4.2 相似三角形中的动点问题【例题精讲】【例1】如图,ABC D 中,8AB =厘米,16AC =厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t .(1)用含t 的代数式表示:AP = 2t ,AQ = .(2)当以A ,P ,Q 为顶点的三角形与ABC D 相似时,求运动时间是多少?【解答】解:(1)2AP t =,163AQ t =-.(2)PAQ BAC Ð=ÐQ ,\当AP AQ AB AC =时,APQ ABC D D ∽,即2163816t t -=,解得167t =;当AP AQ AC AB =时,APQ ACB D D ∽,即2163168t t -=,解得4t =.\运动时间为167秒或4秒.【例2】如图,在矩形ABCD 中,12AB cm =,8BC cm =.点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2/cm s ,点F 的速度为4/cm s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,EFG D 的面积为2()S cm (1)当1t =秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.【解答】解:(1)如图1,当1t =秒时,2AE =,10EB =,4BF =,4FC =,2CG =,由EBF FCG GCBE S S S S D D =--梯形,111()222EB CG BC EB BF FC CG =´+--g g g 111(102)810442222=´+´-´´-´´224()cm =;(2)①如图1,当02t ……时,点E 、F 、G 分别在边AB 、BC 、CD 上移动,此时2AE t =,122EB t =-,4BF t =,84FC t =-,2CG t =,EBF FCGGCBE S S S S D D =--梯形111()222EB CG BC EB BF FC CG =´+--g g g 1118(1222)4(122)2(84)222t t t t t t =´´-+-´--´-283248(02)t t t =-+…….②如图2,当点F 追上点G 时,428t t =+,解得4t =,当24t <<时,点E 在边AB 上移动,点F 、G 都在边CD 上移动,此时48CF t =-,2CG t =,2(48)82FG CG CF t t t =-=--=-,11(82)883222S FG BC t t ==-=-+g g .即832(24)S t t =-+<<.(3)如图1,当点F 在矩形的边BC 上的边移动时,在EBF D 和FCG D 中,90B C Ð=Ð=°,①若EB BF FC CG =,即1224842t t t t-=-,解得23t =.所以当23t =时,EBF FCG D D ∽,②若EB BF GC CF =即1224284t t t t -=-,解得32t =.所以当32t =时,EBF GCF D D ∽.综上所述,当23t =或32t =时,以点E 、B 、F 为顶点的三角形与以F 、C 、G 为顶点的三角形相似.【题组训练】2.如图,在Rt ABC D 中,90C Ð=°,8AC cm =,6BC cm =.现在有动点P 从点B 出发,沿线段BA 向终点A 运动,动点Q 从点A 出发,沿折线AC —CB 向终点运动.如果点P 的速度是1/cm s ,点Q 的速度是1/cm s .它们同时出发,当有一点到达终点时,另一点也停止运动.设运动的时间为t 秒.(1)如图1,Q 在AC 上,当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC D 相似?(2)如图2,Q 在CB 上,是否存着某时刻,使得以点B 、P 、Q 为顶点的三角形与ABC D 相似?若存在,求出t 的值;若不存在,请说明理由.【解答】解:(1)如图1,当90AQPÐ=°时,AQP ACBD D∽,\AQ AP AC AB=.在Rt ABCD中,由勾股定理,得10() AB cm ===.BP t=Q,AQ t=,10PA t\=-,\10810t t-=,409t\=,如图2,当90APQÐ=°时,APQ ACBD D∽,\AQ AP AB AC=,\10108t t-=,509t=.综上所述,409t =或509时,以点A 、P 、Q 为顶点的三角形与ABC D 相似;(2)如图3,当BPQ BAC D D ∽时,BP BQ AB BC=.14BQ t =-Q ,BP t =,\14106t t -=,354t \=,当BQP BAC D D ∽时,\BQ BP BA BC=,214t \=(舍去),354t \=时,Q 在CB 上,以点B 、P 、Q 为顶点的三角形与ABC D 相似.3.如图,在ABC D 中,20BA BC cm ==,30AC cm =,点P 从点A 出发,沿AB 以4/cm s 的速度向点B 运动,同时点Q 从点C 出发,沿CA 以3/cm s 的速度向点A 运动,当其中一点到达终点时,另一点也停止运动,设运动时间为x s .(1)当//PQ BC 时,求x 的值.(2)APQ D 与CQB D 能否相似?若能,求出AP 的长;若不能,请说明理由.【解答】解:(1)当//PQ BC 时,::AP AB AQ AC =,4AP x =Q ,303AQ x =-,\4303 2030x x-=,解得:103x=;即当103x=,//PQ BC;(2)能,①当APQ CQBD D∽时,有AP AQ CQ BC=,即:4303 320x xx-=,解得:109x=,404()9AP x cm\==,②当APQ CBQD D∽时,有AP QA BC CQ=,即:4303 203x xx-=,解得:5x=或10x=-(舍去),420()PA x cm\==,综上所述,当409AP cm=或20cm时,APQD与CQBD相似.4.在Rt ABCD中,90CÐ=°,20AC cm=,15BC cm=,现有动点P从点A出发,沿AC 向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4/cm s,点Q的速度是2/cm s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当3t=时,这时,P,Q两点之间的距离是多少?(2)若CPQD的面积为S,求S关于t的函数关系式.(3)当t为多少时,以点C,P,Q为顶点的三角形与ABCD相似?【解答】解:由题意得4AP t =,2CQ t =,则204CP t =-,(1)当3t =时,2048CP t cm =-=,26CQ t cm ==,由勾股定理得10PQ cm ===;(2)由题意得4AP t =,2CQ t =,则204CP t =-,因此Rt CPQ D 的面积为221(204)2(204)2S t t t t cm =´-´=-;(3)分两种情况:①当Rt CPQ Rt CAB D D ∽时,CP CQ CA CB =,即20422015t t -=,解得3t =;②当Rt CPQ Rt CBA D D ∽时,CP CQ CB CA =,即20421520t t -=,解得4011t =.因此3t =或4011t =时,以点C 、P 、Q 为顶点的三角形与ABC D 相似.5.如图,在ABC D 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么何时QBP D 与ABC D 相似?【解答】解:设经过t 秒时,以QBP D 与ABC D 相似,则2AP t =厘米,(82)BP t =-厘米,4BQ t =厘米,PBQ ABC Ð=ÐQ ,\当BP BQ BA BC =时,BPQ BAC D D ∽,即824816t t -=,解得2()t s =;当BP BQ BC BA =时,BPQ BCA D D ∽,即824168t t -=,解得0.8()t s =;即经过2秒或0.8秒时,QBP D 与ABC D 相似.6.如图,在等腰ABC D 中,10AB AC cm ==,16BC cm =.点D 由点A 出发沿AB 方向向点B 匀速运动,同时点E 由点B 出发沿BC 方向向点C 匀速运动,它们的速度均为1/cm s .连接DE ,设运动时间为()(010)t s t <<,解答下列问题:(1)当t 为何值时,BDE D 的面积为27.5cm ;(2)在点D ,E 的运动中,是否存在时间t ,使得BDE D 与ABC D 相似?若存在,请求出对应的时间t ;若不存在,请说明理由.【解答】解:(1)分别过点D 、A 作DF BC ^、AG BC ^,垂足为F 、G 如图//DF AG \,DF BD AG AB=10AB AC ==Q ,168BC BG =\=,6AG \=.AD BE t ==Q ,10BD t \=-,\10610DF t -=解得3(10)5DF t =-17.52BDE S BE DF D =×=Q \3(10)155t t -×=解得5t =.答:t 为5秒时,BDE D 的面积为27.5cm .(2)存在.理由如下:①当BE DE =时,BDE BCA D D ∽,\BE BD AB BC =即101016t t -=,解得5013t =,②当BD DE =时,BDE BAC D D ∽,BE BD BC AB =即101610t t -=,解得8013t =.答:存在时间t 为5013或8013秒时,使得BDE D 与ABC D 相似.7.如图,Rt ABC D ,90C Ð=°,10AC cm =,8BC cm =.点P 从点C 出发,以2/cm s 的速度沿CA 向点A 匀速运动,同时点Q 从点B 出发,以1/cm s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一个点随之停止.(1)求经过几秒后,PCQ D 的面积等于ABC D 面积的25?(2)经过几秒,PCQ D 与ABC D 相似?【解答】解:(1)设经过x 秒,PCQ D 的面积等于ABC D 面积的25,1122(8)108225x x -=´´´g g ,解得:124x x ==,答:经过4秒后,PCQ D 的面积等于ABC D 面积的25;(2)设经过t 秒,PCQ D 与ABC D 相似,因为C C Ð=Ð,所以分为两种情况:①PC CQ BC AC=,28810t t -=,解得:167t =;②PC CQ AC BC=,28108t t -=,解得:4013t =;答:经过167秒或4013秒时,PCQ D 与ABC D 相似.8.如图,在Rt ABC D 中,90ACB Ð=°,8AC =,6BC =,CD AB ^于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动.两点同时出发.速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)设CPQ D 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得:9:100CPQ ABC S S D D =?若存在,求出t 的值;若不存在,说明理由.【解答】解:(1)90ACB Ð=°Q ,8AC =,6BC =,10AB \===,Q1122AC BC AB CD =g g ,\11861022CD ´´=´,解得: 4.8CD =;(2) 6.4AD ===,过点Q 作QH CD ^于H ,如图所示:CD AB ^Q ,//QH AD \,CHQ CDA \D D ∽,\QH CQ AD AC =,即6.48QH t =,0.8QH t \=,2110.8(4.8)0.4 1.9222S QH CP t t t t \==´´-=-+g ;11862422ABC S AC BC D ==´´=Q g ,:9:100CPQ ABC S S D D =,即:20.4 1.92924100t t -+=,整理得:2524270t t -+=,解得:13t =,2 1.8t =,\在运动过程中存在某一时刻t ,使得:9:100CPQ ABC S S D D =,t 的值为:3或1.8.9.如图,16AB cm =,12AC cm =,动点P 、Q 分别以每秒2cm 和1cm 的速度同时开始运动,其中点P 从点A 出发,沿AC 边一直移到点C 为止,点Q 从点B 出发沿BA 边一直移到点A 为止,(点P 到达点C 后,点Q 继续运动)(1)请直接用含t 的代数式表示AP 的长和AQ 的长,并写出自变量的取值范围.(2)当t 等于何值时,APQ D 与ABC D 相似?【解答】解:(1)由题意得:12(06)y t t =……,216(016)y t t =-……;(2)当06t ……时,①若//QP BC ,则有AQP ABC D D ∽,\AQ AP AB AC=,16AB cm =Q ,12AC cm =,2AP tcm =,(16)AQ t cm =-,\1621612t t -=,解得:4811t =,②当A A Ð=Ð,若AQP C Ð=Ð,则有AQP ACB D D ∽,所以AQ AP AC AB =,即1621216t t -=,解得: 6.4t =(不符合题意,舍去);当616t ……时,点P 与C 重合,A A Ð=ÐQ ,只有当AQC ACB Ð=Ð时,有AQC ACBD D ∽,\AQ AC AC AB =,\16121216t -=,解得:7t =,综上所述:在06t ……中,当4811t =时,AQP ABC D D ∽,在616t ……中,当7t =时,AQC ACB D D ∽.10.如图所示,在矩形ABCD 中,12AB cm =,6BC cm =.点P 沿AB 边从点A 开始向点B 以2/cm 秒的速度移动,点Q 沿DA 边从点D 开始向点A 以1/cm 秒的速度移动,如果P 、Q 同时出发,用t (秒)表示移动的时间(06)t ……,那么:(1)点Q 运动多少秒时,APQ D 的面积为25cm ;(2)当t 为何值时,QAP D 与ABC D 相似?【解答】解:(1)当运动时间为t s 时,2AP t =cm ,(6)AQ t cm =-,依题意得:12(6)52t t ´-=,整理得:2650t t -+=,解得:11t =,25t =.答:当t 为1或5时,QAP D 的面积等于25cm ;(2)2AP t =Q cm ,DQ t =cm ,12AB cm =,6AD cm =,(6)AQ t cm \=-,A A Ð=ÐQ ,\①当AQ AP BC AB =时,AQP BCA D D ∽,\62612t t -=,解得:3t =;②当AQ AP AB BC =时,AQP BAC D D ∽,\62126t t -=,解得: 1.2t =.\当3t =或1.2时,APQ D 与ABC D 相似.11.如图,在ACB D 中,30AC cm =,25BC cm =.动点P 从点C 出发,沿CA 向终点A 匀速运动,速度是2/cm s ;同时,动点Q 从点B 出发,沿BC 向终点C 匀速运动,速度是1/cm s .当CPQ D 与CAB D 相似时,求运动的时间.【解答】解:设运动的时间为t s ,①当CPQ CAB D D ∽时,CP CQ CA CB =,即2253025t t -=.解得758t =;②当CPQ CBA D D ∽时,CP CQ CB CA =,即2252530t t -=.解得12517t =.综上所述,运动时间为758s 或12517s .12.如图,在Rt ABC D 中,90ACB Ð=°,5AC cm =,60BAC Ð=°,动点M 从点B 出发,在BA 边上以每秒2cm 的速度向点A 匀速运动,同时动点N 从点C 出发,在CB 边上以每秒的速度向点B 匀速运动,设运动时间为t 秒(05)t ……,连接MN .(1)若BM BN =,求t 的值;(2)若MBN D 与ABC D 相似,求t 的值.【解答】解:(1)Q 在Rt ABC D 中,90ACB Ð=°,5AC =,60BAC Ð=°,30B \Ð=°,210AB AC \==,BC =.由题意知:2BM t =,CN =,BN \=,BM BN =Q ,2t \=,解得:15t ==.(2)分两种情况:①当MBN ABC D D ∽时,则MB BN AB BC =,即210t =解得:52t =.②当NBM ABC D D ∽时,则BN BM AB BC ==,解得:157t =.综上所述:当52t =或157t =时,MBN D 与ABC D 相似.13.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图①,在ABC D 中,CD 为角平分线,40A Ð=°,60B Ð=°,求证:CD 是ABC D 的完美分割线;(2)如图②,在ABC D 中,2AC =,BC =CD 是ABC D 的完美分割线,且ACD D 是以CD 为底边的等腰三角形,求完美分割线CD 的长.【解答】解:(1)40A Ð=°Q ,60B Ð=°,80ACB \Ð=°,ABC \D 不是等腰三角形,CD Q 平分ACB Ð,1402ACD BCD ACB \Ð=Ð=Ð=°,40ACD A \Ð=Ð=°,ACD \D 是等腰三角形,40BCD A Ð=Ð=°Q ,CBD ABCÐ=ÐBCD BAC \D D ∽,CD \是BAC D 的完美分割线;(2)BCD BAC D D Q ∽,\BC BD BA BC=,2AC AD ==Q ,BC =,设BD x =,则2AB x =+,\=解得1x =-±0x >Q ,1BD x \==-+,BCD BAC D D Q ∽,\CD BD AC BC=,2AC =Q ,BC =1BD =-2CD \==14.如图,在平面直角坐标系中,已知12OA =厘米,6OB =厘米,点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动.点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(06)t ……,那么,当t 为何值时,POQ D 与AOB D 相似?【解答】解:①若POQ AOB D D ∽时,OQ OP OB OA =,即6612t t -=,整理得:122t t -=,解得:4t =.②若POQ BOA D D ∽时,OQ OP OA OB =,即6126t t -=,整理得:62t t -=,解得:2t =.06t Q ……,4t \=和2t =均符合题意,\当4t =或2t =时,POQ D 与AOB D 相似.15.如图,矩形ABCD 中,20AB =,10BC =,点P 为AB 边上一动点,DP 交AC 于点Q .(1)求证:APQ CDQ D D ∽;(2)P 点从A 点出发沿AB 边以每秒1个单位长度的速度向B 点移动,移动时间为t 秒,t 为何值时,DP AC ^.【解答】(1)证明:Q 四边形ABCD 是矩形,//CD AB \,DCQ QAP \Ð=Ð,PDC QPA Ð=Ð,APQ CDQ \D D ∽;(2)解:当5t=时,DP AC^;90ADCÐ=°Q,DP AC^,90AQD AQP ABC\Ð=Ð=Ð=°,90 CAB APQ CAB ACB\Ð+Ð=Ð+Ð=°,APQ ACB\Ð=Ð,DAP ABC\D D∽,\DA AP AB BC=,\10 2010t=解得:5t=,即当5t=时,DP AC^.16.如图,在AOBD中,90AOBÐ=°,12OA cm=,AB=,点P从O开始沿OA边向点A以2/cm s(厘米/秒)的速度移动;点Q从点B开始沿BO边向点O以1/cm s的速度移动,如果P,Q同时出发,用x(秒)表示时间(06)x……,那么:(1)点Q运动多少秒时,OPQD的面积为25cm;(2)当x为何值时,以P、O、Q为顶点的三角形与AOBD相似?【解答】解:(1)90AOBÐ=°Q,222BO AB AO\=-,6BO\=,在Rt OPQ D 中,6OQ x =-,2OP x =,OPQ D Q 的面积为25cm ;\152OQ OP =g ,即1(6)252x x -=g ,解得11x =,25x =;(2)当OPQ OAB D D ∽时,OP OQ OA OB =,即26126x x -=,解得3x =秒;当OPQ OBA D D ∽,OP OQ OB OA =,即26612x x -=,解得65x =秒.综上所述,当3x =秒或65秒时,以P 、O 、Q 为顶点的三角形与AOB D 相似.17.如图、在ABC D 中,90ACB Ð=°,4AC =,3BC =,点P 在线段AB 上以每秒1个单位的速度从点B 向点A 运动,同时点Q 在线段AC 上以同样的速度从点A 向点C 运动,运动的时间用t (单位:秒)表示.(1)求线段AB 的长;(2)求当t 为何值时,APQ D 与ABC D 相似?【解答】解:(1)90ACB Ð=°Q ,4AC =,3BC =,5AB \==;(2)Q 点P 在线段AB 上以每秒1个单位的速度从点B 向点A 运动,同时点Q 在线段AC 上以同样的速度从点A 向点C 运动,5AP AB BP t \=-=-,AQ t =,当90APQ Ð=°时,APQ ABC D D ∽,则::AQ AB AP AC =,:55:4t t \=-,259t \=;当90PQA Ð=°时,APQ ABC D D ∽,::AQ AC AP AB \=,:45:5t t \=-209t \=,当259t =或209时,经检验,它们都符合题意,此时AQP ABC D D ∽相似.18.如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF AE ^于F .(1)求证:PFA ABE D D ∽;(2)当点P 在射线AD 上运动时,设PA x =,是否存在实数x ,使以P ,F ,E 为顶点的三角形也与ABE D 相似?若存在,请求出x 的值;若不存在,说明理由.【解答】(1)证明://AD BC Q ,PAF AEB \Ð=Ð.90PFA ABE Ð=Ð=°Q ,PFA ABE \D D ∽.(2)解:若EFP ABE D D ∽,则PEF EAB Ð=Ð.//PE AB \.\四边形ABEP 为矩形.2PA EB \==,即2x =.若PFE ABE D D ∽,则PEF AEB Ð=Ð.PAF AEB Ð=ÐQ ,PEF PAF \Ð=Ð.PE PA \=.PF AE ^Q ,\点F 为AE 的中点.AE ==Q12EF AE \==.Q PE EFAE EB ==5PE \=,即5x =.\满足条件的x 的值为2或5.20.如图,在ABC D 中,90ACB Ð=°,CD AB ^,(1)图1中共有 3 对相似三角形,写出来分别为 (不需证明);(2)已知10AB =,8AC =,请你求出CD 的长;(3)在(2)的情况下,如果以AB 为x 轴,CD 为y 轴,点D 为坐标原点O ,建立直角坐标系(如图2),若点P 从C 点出发,以每秒1个单位的速度沿线段CB 运动,点Q 出B 点出发,以每秒1个单位的速度沿线段BA 运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t 秒,是否存在点P ,使以点B 、P 、Q 为顶点的三角形与ABC D 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)图1中共有3对相似三角形,分别为:ABC ACD D D ∽,ABC CBD D D ∽,ACD CBD D D ∽.故答案为3,ABC ACD D D ∽,ABC CBD D D ∽,ACD CBD D D ∽;(2)如图1,在ABC D 中,90ACB Ð=°Q ,10AB =,8AC =,6BC \==.ABC D Q 的面积1122AB CD AC BC ==g g ,68 4.810AC BC CD AB ´\===g ;(3)存在点P ,使以点B 、P 、Q 为顶点的三角形与ABC D 相似,理由如下:在BOC D 中,90COB Ð=°Q ,6BC =, 4.8OC =,3.6OB \==.分两种情况:①当90BQP Ð=°时,如图2①,此时PQB ACB D D ∽,\BP BQ AB BC =,\6106t t -=,解得 2.25t =,即 2.25BQ CP ==,6 2.25 3.75BP BC CP \=-=-=.在BPQ D 中,由勾股定理,得3PQ ===,\点P 的坐标为(1.35,3);②当90BPQ Ð=°时,如图2②,此时QPB ACB D D ∽,\BP BQ BC AB=,\6610t t -=,解得 3.75t =,即 3.75BQ CP ==,6 3.75 2.25BP BC CP =-=-=.过点P 作PE x ^轴于点E .QPB ACB D D Q ∽,\PE BQ CO AB =,即 3.754.810PE =,1.8PE \=.在BPE D 中, 1.35BE ===,3.6 1.35 2.25OE OB BE \=-=-=,\点P 的坐标为(2.25,1.8).综上可得,点P 的坐标为(1.35,3)或(2.25,1.8).。

因动点产生的相似三角形问题---专题

因动点产生的相似三角形问题---专题

因动点产生的相似三角形问题关键词:动点、相似三角形动点:运动的点或者说是不确定的点,有时题目中会明确指出动点,有时题目中相关点的坐标含有参数,换言之就是在不同的条件下会有不同的位置,或者满足条件的位置有多个。

相似三角形:对应角相等,对应边成比例的两个或多个三角形,两个三角形相似的判定定理一般说来有3个,定理1:两个角对应相等,两三角形相似 ‘AA ” 定理2:两边对应成比例且夹角相等 “SAS ” 定理3:三边对应成比例。

“SSS ”相似三角形的判定这3个定理,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A =∠D ,探求△ABC 与△DEF 相似,只要把夹∠A 和∠D 的两边表示出来,按照对应边成比例,分AB DE AC DF =和AB DFAC DE=两种情况列方程. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 两个直角三角形相似的判定方法(1)有一个锐角对应相等的两个直角三角形相似. (2)两条直角边对应成比例的两个直角三角形相似. (3)斜边和一条直角边对应成比例的两个直角三角形相似.如果要讨论相似的两个三角形中有一个是直角三角形:如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.由动点产生的相似三角形问题一般在函数和几何图中出现,其中以函数表现居多。

题型一般有是否存在点P,使得:①△PDE∽△ABC②以P、D、E为顶点的三角形与△ABC相似或者通过动点产生相似解决有关问题一般以大题为主,也有出现在填空后两题。

函数中因动点产生的相似三角形问题一般有三个解题过程:①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

中考数学压轴题---因动点产生的相似三角形问题[含答案]

中考数学压轴题---因动点产生的相似三角形问题[含答案]

因动点产生的相似三角形问题例1(2011年上海市闸北区中考模拟第25题)直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.图1满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°. 因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±.Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3B Q B A =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13B Q B A=时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是22(3)10BQ x x x =+=±.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,1sin 110∠=,3cos 110∠=.①当3B Q B A=时,310B Q =.在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=. 当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --. ②当13B Q B A=时,1103B Q =.同理得到31(,2)3Q ,41(,0)3Q -.例2(2011年上海市杨浦区中考模拟第24题)Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x =≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系; (2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x =的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1).已知△BDE 的面积为2,所以11(1)2222B D E H m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x=的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F(0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当E A EF A O F P =时,2552FP =.解得FP =1.此时点P 的坐标为(1,1).②如图4,当E A F P A OE F=时,2525F P =.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x=-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图5例3(2010年义乌市中考第24题)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4G A F ∠=,tan 5DQ t PQD QPt∠==-,所以345t t=-.解得207t =.图3 图4考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4(2010年上海市宝山区中考模拟第24题)如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =.(2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=45. 如图2,由AM //CN ,可得''''B N B C B MB A=,即2'845B C =.解得'5B C =.所以35AC =.根据菱形的性质,在△ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''A B B C A C B D =时,55'35B D=,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''A B B D A CB C=时,5'355B D =,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△ABB ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.例5(2009年临沂市中考第26题)如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.图1满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==COAO PMAM ,那么214)4)(1(21=----xx x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xx x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y .设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m mm ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m mDE m m2212+-=.因此4)221(212⨯+-=∆m mS DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S .由于225212-+-=m mn ,所以m m S 42+-=.例6(2009年上海市闸北区中考模拟第25题)如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;(2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图备用图满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310A HA B=,所以AH=32=12AC.所以BH垂直平分AC,△ABC 为等腰三角形,AB=CB=5.因为DE//BC,所以A B A CD BE C=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以D E A EB C A C=,M N A NB C A C=,即|3|53D E x-=,1|3|253xM N-=.因此5|3|3xD E-=,圆心距5|6|6xM N-=.图2 图3 图4在⊙M中,115226Mr B D y x===,在⊙N中,1122Nr C E x==.①当两圆外切时,5162x x+5|6|6x-=.解得3013x=或者10x=-.如图5,符合题意的解为3013x=,此时5(3)15313xD E-==.②当两圆内切时,5162x x-5|6|6x-=.当x<6时,解得307x=,如图6,此时E在CA的延长线上,5(3)1537xD E-==;当x>6时,解得10x=,如图7,此时E在CA的延长线上,5(3)3533xD E-==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534B F =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例7(2008年杭州市中考第24题)如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB tb ,+=t OC tb .所以-=⋅t OC OB (|||||tb )( +t tb )|-=2|t22|OA ttb ==.即22b t t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x . ①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x+2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2O A A B O O B∠==,得23O B O A =.①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).。

1.因动点产生的相似三角形问题-教师版

1.因动点产生的相似三角形问题-教师版

第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1思路点拨1.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小.2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM . 3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似.满分解答(1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-.因为抛物线与x 轴交于O 、B (2,0)两点, 设y =ax (x -2),代入点A (1,3)-,可得33a =. 图2 所以抛物线的表达式为23323(2)333y x x x x =-=-. (2)由2232333(1)3333y x x x =-=--, 得抛物线的顶点M 的坐标为3(1,)3-.所以3tan 3BOM ∠=. 所以∠BOM =30°.所以∠AOM =150°. (3)由A (1,3)-、B (2,0)、M 3(1,)3-, 得3tan 3ABO ∠=,23AB =,233OM =. 所以∠ABO =30°,3OAOM=.因此当点C 在点B 右侧时,∠ABC =∠AOM =150°. △ABC 与△AOM 相似,存在两种情况: ①如图3,当3BA OA BC OM ==时,23233BA BC ===.此时C (4,0). ②如图4,当3BC OABA OM==时,33236BC BA ==⨯=.此时C (8,0).图3 图4考点伸展在本题情境下,如果△ABC 与△BOM 相似,求点C 的坐标.如图5,因为△BOM 是30°底角的等腰三角形,∠ABO =30°,因此△ABC 也是底角为30°的等腰三角形,AB =AC ,根据对称性,点C 的坐标为(-4,0).图5例2如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3 (3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA .当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±.所以符合题意的点Q 为(1,23+).②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。

中考复习 因动点产生相似三角形

中考复习  因动点产生相似三角形
图5
例2如图1,已知抛物线 (b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.
(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
在Rt△BFF′中,由FF′=BF′,得 .
解得x=2m.所以F′ .所以BF′=2m+2, .
由 ,得 .解得 .
综合①、②,符合题意的m为 .
考点伸展
第(4)题也可以这样求BF的长:在求得点F′、F的坐标后,根据两点间的距离公式求BF的长.
例4如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
解方程 ,得 .此时点P的坐标为 .
解方程 ,得 .此时点P与点O重合,不合题意.
综上所述,符合条件的点P的坐标为(2,1)或 或 .
图2图3图4
(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为 .
设点D的横坐标为m ,那么点D的坐标为 ,点E的坐标为 .所以 .
因此 .
当 时,△DCA的面积最大,此时点D的坐标为(2,1).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;

因动点产生的相似三角形问题(类型一)

因动点产生的相似三角形问题(类型一)

因动点产生的相似三角形问题(类型一)原理:相似定理SAS(两边对应成比例且夹角相等,两个三角形相似.)方法:1观察两三角形是否为特殊三角形,找出两三角形相等的角2、设所求点的坐标进而用函数解析式来表示各边的长度,之后运用相似对应边成比例来列方程求解。

题型一:直角三角形相似的问题例题11、如图,抛物线经过(40)(10)(02),,,,,三点.A B C-(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM x⊥轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标答案:练习.如图所示,已知抛物线21=-与x轴交于A、B两点,与y轴交于点C.y x(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与∆PCA相似.若存在,请求出M点的坐标;否则,请说明理由.题型二存在公共角的两三角形相似问题例题如图,在平面指教坐标系内,已知A(0,6),B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向O移动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向A移动,设点P、Q移动的时间为t秒。

(1)求直线AB的解析式;(2)当t为何值时,△APQ于△AOB相似?(3)当t为何值时,△APQ的面积为24/5个平方单位?答案:(1)设直线AB的解析式为y=k x+b由题意,得解得所以,直线AB的解析式为y=-x+6.(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10-2t1)当∠APQ=∠AOB时,△APQ∽△AOB.所以=解得t=(秒)2)当∠AQP =∠AOB 时,△AQP ∽△AOB .所以= 解得 t =(秒)(3)过点Q 作QE 垂直AO 于点E .在Rt △AOB 中,Sin ∠BAO =ABBO =在Rt △AEQ 中,QE =AQ ・Sin ∠BAO =(10-2t )・=8-t( 2分)S △APQ =21AP ・QE =t ・(8-t )=-+4t =524 解得t =2(秒)或t =3(秒).练习:已知:如图,在平面直角坐标系中,A B C △是直角三角形,90ACB ∠= ,点A C ,的坐标分别为(30)A -,,(10)C ,,3tan 4BAC ∠=.(1)求过点A B ,的直线的函数表达式;点(30)A -,,(10)C ,,B (13),,3944y x =+(2)在x 轴上找一点D ,连接D B ,使得A D B △与A B C △相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P Q ,分别是A B 和A D 上的动点,连接PQ ,设A P D Q m ==,问是否存在这样的m 使得APQ △与AD B △相似,如存在,请求出m 的值;如不存在,请说明理由.题型三由平行得出角相等的三角形相似问题A COBxy例题:Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.答案:(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x =的图像上,所以4,2.m k n k =⎧⎨=⎩整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1).已知△BDE 的面积为2,所以11(1)2222B D E H m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x=的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b=+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x=+与y轴交于点F(0,1),点D的坐标为(4,1),所以FD// x轴,∠EFP=∠EAO.因此△AEO与△EFP相似存在两种情况:①如图3,当E A E FA O F P=时,2552FP=.解得FP=1.此时点P的坐标为(1,1).②如图4,当E A F PA O E F=时,2525F P=.解得FP=5.此时点P的坐标为(5,1).练习、设抛物线22y ax bx=+-与x轴交与两个不同的点A(-1,0)、B(m,0),与y轴交与点C,且∠ACB=90°(1)求m的值和抛物线的解析式(2)已知点D(1,n)在抛物线上,过点A的直线1y x=+交抛物线于另一点E。

专题3因动点产生的相似三角形问题

专题3因动点产生的相似三角形问题

专题3:因动点产生的相似三角形问题例1 如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.例2如图1,已知抛物线的方程C1:1(2)()=-+-(m>0)与x轴交于y x x mm点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.例3 如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t 秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.例4如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因动点产生的相似三角形问题关键词:动点、相似三角形动点:运动的点或者说是不确定的点,有时题目中会明确指出动点,有时题目中相关点的坐标含有参数,换言之就是在不同的条件下会有不同的位置,或者满足条件的位置有多个。

相似三角形:对应角相等,对应边成比例的两个或多个三角形,两个三角形相似的判定定理一般说来有3个,定理1:两个角对应相等,两三角形相似‘AA”定理2:两边对应成比例且夹角相等“SAS”定理3:三边对应成比例。

“SSS”相似三角形的判定这3个定理,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).两个直角三角形相似的判定方法(1)有一个锐角对应相等的两个直角三角形相似.(2)两条直角边对应成比例的两个直角三角形相似.(3)斜边和一条直角边对应成比例的两个直角三角形相似.如果要讨论相似的两个三角形中有一个是直角三角形:如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.由动点产生的相似三角形问题一般在函数和几何图中出现,其中以函数表现居多。

题型一般有是否存在点P,使得:①△PDE∽△ABC②以P、D、E为顶点的三角形与△ABC相似或者通过动点产生相似解决有关问题一般以大题为主,也有出现在填空后两题。

函数中因动点产生的相似三角形问题一般有三个解题过程:①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

涉及知识点:全等相似的性质及判定,一元二次方程解法,直角三角形中锐角三角函数,勾股定理,求线段的长,要用到两点间的距离公式。

例1、(2014·浙江湖州,24,12分)已知在平面直角坐标系xOy 中,O 是坐标原点,以P (1,1)为圆心的⊙P 与x 轴、y 轴分别相切于点M 和点N .点F 从点M 出发,沿x 轴正方向以每秒1个单位长度的速度运动,连结PF ,过点P 作PE ⊥PF 交y 轴于点E .设点F 运动的时间是t 秒(t >0).(1)若点E 在y 轴的负半轴上(如图所示),求证:PE =PF ;(3)作点F 关于点M 的对称点F ′.经过M ,E ,F ′三点的抛物线的对称轴交x 轴于点Q ,连结QE .在点F 运动过程中,是否存在某一时刻,使得以点Q ,O ,E 为顶点的三角形与以点P ,M ,F 为顶点的三角形相似,若存在,请直接写出t 的值;若不存在,请说明理由. (1)证明 连结PM ,PN .∵⊙P 与x 轴、y 轴分别相切于点M 和点N , ∴PM ⊥MF ,PN ⊥ON 且PM =PN , ∴∠PMF =∠PNE =90°且∠NPM =90°. ∵PE ⊥PF ,∴∠1=∠2=90°-∠3.在△PMF 和△PNE 中,⎩⎨⎧∠1=∠2,PM =PN ,∠PMF =∠PNE .∴△PMF ≌△PNE ,∴PE =PF . (2)解 分两种情况:①当t >1时,点E 在y 轴的负半轴上,如图1,由(1)得△PMF ≌△PNE , ∴NE =MF =t ,PN =PM =1,∴b =OF =OM +MF =1+t ,a =NE -ON =t -1.∴b -a =1+t -(t -1)=2, ∴b =2+a .②当0<t ≤1时,如图2,点E 在y 轴的正半轴上或原点,同理可证△PMF ≌△PNE ,图1图2∴b=OF=OM+MF=1+t,a=OE=ON-NE=1-t,∴b+a=1+t+1-t=2,∴b=2-a.综上所述,当t>1时,b=2+a;当0<t≤1时,b=2-a.(3)解存在,t的值是t =1+174,t=2,t=2±2.如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1-t,0).∵经过M,E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1-12t,0)∴OQ=1-12t,由(1)得△PMF≌△PNE,∴NE=MF=t,∴OE=t-1. 当△OEQ∽△MPF时,∴OEMP=OQMF,∴t-11=1-12tt,解得,t=1+174或t=1-174(舍去),当△OEQ∽△MFP时,OEMF=OQ MP,∴t-1t=1-12t1,解得,t=2或t=-2(舍去).(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1-t,0).∵经过M,E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1-12t,0).∴OQ=12t-1.由(1)得△PMF≌△PNE 图3 图4∴NE =MF =t , ∴OE =t -1.当△OEQ ∽△MPF ,OE MP =OQMF .∴t -11=12t -1t ,无解.当△OEQ ∽△MFP 时,OE MF =OQMP ,∴t -1t =12t -11, 解得,t =2+2或t =2-2<2舍去. (Ⅲ)如图5,当0<t ≤1时,∵F (1+t ,0),F 和F ′关于点M 对称, ∴F ′(1-t ,0).∵经过M ,E ,F ′三点的抛物线的对称轴交x 轴于点Q , ∴Q ⎝ ⎛⎭⎪⎫1-12t ,0,∴OQ =1-12t .由(1)得△PMF ≌△PNE , ∴NE =MF =t , ∴OE =1-t .当△QOE ∽△FMP 时,OQ MF =OEMP ,∴1-12tt =1-t 1, 即2t 2-3t +2=0, 此方程无解.当△QOE ∽△PMF 时,OQ MP =OEMF , ∴1-12t1=1-tt , 即t 2-4t +2=0, 解得t 1=2-2,t 2=2+2>1(舍去). 所以当t =1+174,t =2,t =2±2时,使得以点Q ,O ,E 为顶点的三角形与以点P ,M ,F 为顶点的三角形相似.图5例 2 (2014年衡阳28)(隐含动点)二次函数y =a x 2+b x +c (a ≠0)的图象与x 轴交于A (-3, 0)、B (1, 0)两点,与y 轴交于点C (0,-3m )(m >0),顶点为D .(1)求该二次函数的解析式(系数用含m 的代数式表示);(3)如图2,当m 取何值时,以A 、D 、C 三点为顶点的三角形与△OBC 相似?图1 图23.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.(1)因为抛物线与x 轴交于A (-3, 0)、B (1, 0)两点,设y =a (x +3)(x -1). 代入点C (0,-3m ),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m (x +3)(x -1)=mx 2+2mx -3m .图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F . 由y =m (x +3)(x -1)=m (x +1)2-4m ,得D (-1,-4m ). 在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,OA OC EC ED =.所以331mm =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB=.所以△CDA ∽△OBC .②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得m =.此时2DA FD DC EC m===32OC m OB ==.因此△DCA 与△OBC 不相似. 综上所述,当m =1时,△CDA ∽△OBC .例3(2014益阳市21)(几何动点)如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P 沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;思路点拨1.第(2)题先确定△PCB是直角三角形,再验证两个三角形是否相似.图文解析(1)如图2,作CH⊥AB于H,那么AD=CH.在Rt△BCH中,∠B=60°,BC=4,所以BH=2,CH=23.所以AD=23.(2)因为△APD是直角三角形,如果△APD与△PCB相似,那么△PCB一定是直角三角形.①如图3,当∠CPB=90°时,AP=10-2=8.所以APAD=823=433,而PCPB=3.此时△APD与△PCB不相似.图2 图3 图4②如图4,当∠BCP=90°时,BP=2BC=8.所以AP=2.所以APAD=223=33.所以∠APD=60°.此时△APD∽△CBP.综上所述,当x=2时,△APD∽△CBP.例4 (2015湘西市26)如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒2个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1思路点拨3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得930,3.b cc-++=⎧⎨=⎩解得2,3.bc=⎧⎨=⎩所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠P AQ=45°,AP=3-t,AQ=2t.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP=2AQ.解方程3-t=2t,得t=1(如图2).②当∠QP A=90°时,AQ=2AP.解方程2t=2(3-t),得t=1.5(如图3).图4 图5(4)由y=-x2+2x+3=-(x-1)2+4,得M(1, 4).由A (3, 0)、B (0, 3),可知A 、B 两点间的水平距离、竖直距离相等,AB =.由B (0, 3)、M (1, 4),可知B 、M 两点间的水平距离、竖直距离相等,BM 所以∠MBQ =∠BOP =90°.因此△MBQ 与△BOP 相似存在两种可能:①当BM OBBQ OP =3t=.解得94t =(如图5).②当BM OP BQ OB =3t=.整理,得t 2-3t +3=0.此方程无实根.(2016•湖州)如图,已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).【分析】(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.【解答】解:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,解得∴二次函数解析式为y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴点M的坐标为(1,5);(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点①若有△PCM∽△BDC,则有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,则有∴CP==3∴PH=3÷=3,若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).(2017怀化24.)如图1,在平面直角坐标系中,已知抛物线25y ax bx与x轴交于A,5,0B两点,与y轴交于点C.1,0(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以,,B C D为顶点的三角形与ABC△相似,求点D的坐标;。

相关文档
最新文档