统计学第五章 平均指标

合集下载

统计学原理简答题答案

统计学原理简答题答案

《统计学原理》简答题答案第一章总论1.统计一词有几种含义?它们之间的关系?答:三种。

统计工作、统计资料、统计学。

(1)统计工作:即统计实践活动,是指从事统计业务的机关、单位利用科学的统计方法,搜集、整理分析和提供有关客观现象的数据资料、研究数据的内在特征,并预测事物的发展方向等一系列工作过程的总称。

(2)统计资料:是统计实践过程的取得的各项数据资料以及和它相联系的其他资料的总称。

(3)统计学:统计工作和统计资料的关系是统计活动即过程和统计成果的关系,统计工作和统计学的关系是统计实践和统计理论的关系2.社会经济统计的特点有哪些?答:社会经济统计是社会现象的一种调查分析活动,它具有以下特点:a)数量性 b)总体性 c)变异性 d)社会性3.什么是统计总体、统计单位、标志、变异、变量和变量值?并举例说明。

答:(1)统计总体,简称总体,是指客观存在的在同一性质基础上结合起来的许多个别事物的整体。

例如,研究某班学生的情况时,该班全体学生就是一个统计总体。

(2)统计单位,是指构成统计总体的个别事物。

例如,以我国全部普通高等院校为总体,每一个普通高等院校就是总体单位。

(3)标志,是指总体单位所共同具有的某种属性或特征。

例如,工人作为总体单位,他们都具备性别、工种、文化程度、工会、工资等属性或特征。

(4)变异是变动的标志,具体表现在各个单位的差异,包括量(数值)的变异和质(性质、属性)的变异。

如:性别表现为男、女,这是属性变异;年龄表现为18岁、25岁、28岁等这是数值上的变异。

(5)变量,就是可变的数量标志。

例如,商业企业的职工人数、商品流转额、流动资金占用额等数量标志,在各个商业企业的具体表现都是不尽相同的,是一个变动的量,这些变动的数量标志就称作变量。

(6)变量值,就是变量的具体表现,也就是变动的数量标志的具体表现。

例如,企业的职工人数是一个变量,甲企业职工人数100人,乙企业职工人数150人,丙企业职工人数200人等等,100人、150人、200人都是职工人数这个变量的变量值(标志值)。

统计学(6)平均指标

统计学(6)平均指标

第一批 第二批 第三批
50 55 60
25000 44000 18000
例题5:计算加权调和平均数
• A制造厂本月购进甲种材料三批,每批采购价格和采购金额如下,求本月购进甲 种材料的平均价格。
价格(元/千克) 采购金额(元) 采购量(千克) Mi/Xi Xi Mi
第一批 第二批 第三批 合计 50 55 60 25000 44000 18000 87000 500 800 300 1600
人 数 f 组中值x 一店 1.0 1 0~2年 3.5 1 2 ~5年 7.5 1 5 ~10年 10 ~20年 15.0 1 — 4 合计 工龄 平均工龄 — 6.75 二店 7 7 7 7 28 6.75 三店 25 25 25 25 100 6.75 四店 1 3 6 10 20 10.325 五店 10 6 3 1 20 3.425
xf f
• 其中: X 代表算术平均数,Xn 代表各单位标志值(变量值),fn代表各组单 位数(项数)。
• (1)根据单项数列计算加权算术平均 • 例2:
零件数(件) 工人数(人) 产量=零件数*工人数
xi
30 32 34 35 36
fi
20 50 76 40 14
Xi*fi
600 1600 2584 1400 504
(2)调和平均数与算术平均数的比较
• 变量不同:算术平均数是x,调和平均数是 1/x。 • 权数不同:算术平均数是f或n,代表次数(单位数),调和平均数是xf或M,代表 标志总量。 • 联系:调和平均数作为算术平均数的变形使用:

f

x
xf f
xf x

xf xf x

统计学原理第五章

统计学原理第五章

第五章综合指标学习要点:了解各种指标的概念及作用,掌握相对指标、平均指标的特点及计算方法,变异指标的计算方法。

§1、总量指标§2、相对指标§3、平均指标§4、变异指标学习知识点:前言:1、总量指标是反映社会经济现象发展的总规模、总水平的综合指标。

将总体单位数相加或总体单位标志值相加,就可以得到说明在一定时间、空间条件下某种现象总体的总规模、总水平的指标,即总量指标。

如:2010年年年末为1339724852亿,反映是我国人口的总规模。

总量指标的作用:第一、总量指标可以用来反映一个国家的基本国情国力,反映一个地区、一个部门或一个单位的人力、物力和财力,是人们对客观事物认识的起点。

第二、总量指标可以用来作为制定政策、制定计划和实行科学管理的基本依据,也是检查政策、计划执行情况,反映社会经济活动绝对效果的重要指标。

第三、总量指标可以用来研究客观现象的数量表现及其发展的变化趋势。

第四、总量指标是计算相对指标和平均指标的基础。

一、总量指标的种类:1、按其反映现象总体内容的不同:• 总体单位总量(简称单位总量):指总体内所有单位的总数,表示总体本身规模的大小。

对于一个确定的统计总体,其总体单位总量是唯一确定的。

• 总体标志总量(简称标志总量):指总体中各单位标志值总和。

对于确定的统计总体,标志总量不是唯一的,而是随着标志的不同可计算不同的标志。

• 例:我们研究某市三级医院的基本情况,则全市三级医院的总数量是总体单位总量,而全部三级医院职工总人数、全部三级医院职工工资总额等就是总体指标总量。

2、按反映时间状况的不同,可分为时期指标和时点指标。

• 时期指标指反映某社会经济现象在一段时间活动结果的总量指标,它反映的是一段时间连续发生变化过程。

如产品总量、货物运输量、商品销售量、国内生产总量等。

• 时点指标是反映社会经济现象在某一时间(瞬间)状况上的总量指标。

如人口数、职工数、设备台数等。

统计学经典例题(暨南大学出版社)

统计学经典例题(暨南大学出版社)

例1:某公司下属各店职工按工龄分组情况(1)(年)(2)例2:水果甲级每元1公斤,乙级每元1.5公斤,丙级每元2公斤。

问:(1)若各买1公斤,平均每元可买多少公斤? (2)各买6.5公斤,平均每元可买多少公斤?(3)甲级3公斤,乙级2公斤,丙级1公斤,平均每元可买几公斤? (4)甲乙丙三级各买1元,每元可买几公斤? (1)(2)(3) (4)例3:自行车赛时速:甲30公里,乙28公里,丙20公里,全程200公里,问三人平均时速是多少?若甲乙丙三人各骑车2小时,平均时速是多少?例4:某牛群不同世代的规模分别为:0世代200头,1世代220头,2世代210头,3世代190头,4世代210头。

试求其平均规模。

例5:假定某地储蓄年利率(按复利计算):5%持续1.5年,3%持续2.5年,2.2%持续1年。

请问此5年内该地平均储蓄年利率。

75.64155.75.31=+++==∑nx一店平均工龄)(425.3205.681361011535.765.3101年五店平均工龄==+++⨯+⨯+⨯+⨯==∑∑fxf )/(38.11667.23215.111131元公斤==++==∑nnH )/(38.10833.145.195.6215.65.115.6115.65.65.61元公斤==⨯+⨯+⨯++==∑∑fxf H )/(24.183.4612125.113111231元公斤==⨯+⨯+⨯++==∑∑fxf H 元)(公斤/5.1325.11=++==∑nxx )/(2.2581.236002002012002812003012002002001小时公里==⨯+⨯+⨯++==∑∑fx f H )/(266156222220228230fxf x 小时公里==++⨯+⨯+⨯==∑∑11111152002202101902101205()()H ==++++头1.5 2.5(1)100%1)100% 3.43%G +=-⨯=-⨯=该地平均储蓄年利率例1:从10000盒火柴中,随机抽取50盒,算得样本平均数为49根,样本均方差为2根.求其抽样平均误差。

第五章 平均指标

第五章    平均指标

lg X G
f lg X 50.9002 2.0360 25 f

1、平均数与总体单位数的积等于标志总量
x X
n
Xn x

2、若每个变量值 X 加减一任意常数,则平均数也增减一个。 3、若每个变量值 X乘以一任意常数,则平均数也乘以一个。 4、若每个变量值 X除以一任意常数,则平均数也除以一个。 5、各个变量值X与算术平均数 X 的离差和为零。 6、各个变量值X与算术平均数 X 的离差平方和为最小值。
• 下面是一个小故事: 一个人到某公司求职,经过调查,得 出关于该公司工资的一些数据,如果是 你,应该如何选择?
挠头的数值
公司员工的月薪如下:
经理
员工
月薪 (元)
副经 理
4000
职员 A
1700
职员 B
1300
职员 C
1200
职员 D
1100
职员 E
1100
职员 F
1100
职员 G
500
6000
0.06
0.12 0.30
80 – 90
90 – 100 100 – 110 110 以上 合 计
85
95 105 115 -
36
27 14 8 164
0.22
0.16 0.09 0.05 1.00
f f 3.3 7.8 22.5 18.7 15.2 9.45 5.75 82.7

四、算术平均数的若干数学性质




2、加权算术平均法 计算公式:
x1f1 x 2f 2 ... x n f n xf X f1 f 2 ... f n f

统计学课后习题答案(全)

统计学课后习题答案(全)

<<统计学 >> 课后习题参考答案第四章1. 计划完成相对指标二一8% 100% =102.9%1+5%2. 计划完成相对指标二1一6% 100% =97.9%1—4%3.4.5.解:⑴计划完成相对指标=14防13 100%"5.56%(2)从第四年二季度开始连续四季的产量之和为:10+11 + 12+14=47该产品到第五年第一季 已提前完成任务,提前 完成的天数90•该产品总共提前10个月零15天完成任务。

6.解:计划完成相对指标10 11 12 14-45V 天 14 一10156 230 540 279 325 470 535200 1040.1% 100% =126.75%(2) 156+230+540+279+325+470=2000 (万吨)所以正好提前半年完成计划7.第五章平均指标与标志变异指标1 . X 甲= :.26 27 28 29 30 31 32 3334=309—20 25 28 30 32 34 36 38 40 '1.44X乙二9AD甲二26-30卩27 -30 28-30 29 -30 30-30 |31 -30 32 - 30 亠|33 - 30 叫34 - 309-2.22AD乙二20—31.44” 25—31.44 十2〔8—31.44 屮30—31.44 +|32|— 31.44 + 34卜31.44 + 網 + 31.44 + 38—|31.44 + 4Q — 9= 5.06R 甲=34-26=8R 乙=40-20=20(26一30)2 (27 一30)2 (28一30)2 (29一30)2 (30 一 30)2 ⑶ 一 30)2 (32 一 30)2 (33一 30)2 (34一33)2--------------------------------------------------------------------- 9=2.58(T 乙一(20 -31.44)2 - (25 -31.44)2 (28 —31.44)2 (30 -31.44)2 (32 -31.44)2 (34-31.44)2 (36 -31.44)2 • (38-31.44)2 • (40_31.44)2----------------------------------------------------------------------------------------- 9=6.06 2 58 V 甲二 100%=8.6% 30V 乙二100% =19.3%31.44 所以甲组的平均产量代表性大一些2. 解:计算过程如下表:3. 解:计算过程如下表:X 甲80 77600X 乙=80= 970(元)X 甲=9550 119.480 (件)X 乙二 9660120.8=80(件)V 甲二旦06100%=7.58%119.4V 乙二!08! 100% =8.94%120.8所以甲厂工人的平均产量的代表性要高些4. 解:55 3 65 7 75 18 85 12 95 5=11 =7010=76.4718-7 18-1245 “10=70 上 10 = 76.94185.解:(1)上期的平均计划完成程度为100% =99.67%CT 甲=6568.7580二 9.06 (件)9355'80-10.81(件)3 7 18 12 5 18 -780 110% 700 108% 1000 100% 1500 95%80 700 1000 1500(2)下期的平均计划完成程度为:96 810 1200 1400------------------------------------------ =103.37%96 810 1200 1400110% 107% 101% 103%6解:P =300 _28100% =90.67%300X P二P = 90.67%二P「90.67% 1 -90.67% =0.2910.291V P100% =32.1%0.9067432.604 321.255 506.943 1042884.3兀/t 432.604 321.255 506.943、 4----------- +------------- +------------ ix 102800 2900 2950 丿苗吾第八章1.= 8722.a =600 670 2 .670 840 2 . 840 1020 1 . 1020 900 2 • 900 980 3 980 4030 ?2 2 2 2 2 23.解:全年月平均计划完成程 度为: 303 306 324 310 350 368 410 412 485 463 350 385 303 306 ------ + -------- 101% 102% 435 如00% = 105.85%324 310 350 368 410 412 485 463 350 385 + ------- + -------- + -------- + ------- + -------- + -------- + ------- + ------- + --------- + --------- 110% 105% 106% 98% 112% 105% 120% 97% 102% 113%576 4500 462亠 100% =79.63% 580 620 580 600 - 2 25.解:⑴甲工区上半年建筑安装 工人的月平均工资为:680 620 620 680 680 720 720 690 690 700 700 710 /汇600+ 汇620+ 江640+ 汇645 + ^625+ 汉610 2 2 2 680 620 680 720 690 7002 22乙工区上半年建筑安装工人的月平均工资为:650 670 670 680 “c 680 730 730 655 655 710 一 710 690640 600 620 655 615600 =623.7(元)2 650 + 670 + 680+730 + 655 + 710 +2 2 二 621.6(元)6■解:平均增长速度=4黔1皿7% 2000年该县粮食产量为:500 1 4.67% 10 = 788.7(万吨) 7解:计算过程如下表a y=竺=45.44 n 9则直线趋势方程为:y = a bt1994年的地方财政支出额为:45.44, 4.3 5 =66.94(万元)二次曲线方程为:y = 0.0108x2 + 4.1918x + 24.143过程略)指数曲线方程为:y = 26.996e0.0978x8.解:计算过程如下表原数列趋势图日期9•解:(1)同季平均法求季节比率的过程如下表第一季第二季第三季度第四季合计1987 13 18 311988 5 8 14 18 451989 6 10 16 22 541990 8 12 19 25 641991 15 17 32平均8.5 11.75 15.5 20.75 14.125 季节比率60.2% 83.2% 109.7% 146.9% 100.0%⑵趋势剔除法测定的季节变动如下表第一季第二季第三季度第四季合计19871988 44.94 71.11 123.08 153.191989 48.98 76.92 116.36 154.391990 53.78 76.8 112.59 136.051991平均49.23 74.94 117.34 147.88 389.40校正系数 1.0272214 1.027221366 1.027221366 1.02722137季节比率50.57 76.98 120.54 151.90 400.00第七章统计指数' q i Z。

统计学课后知识题目解析第五章指数

统计学课后知识题目解析第五章指数

统计学课后知识题⽬解析第五章指数第五章指数⼀﹑单项选择题1.⼴义的指数是指反映A.价格变动的相对数B.物量变动的相对数C.总体数量变动的相对数D.各种动态相对数2.狭义的指数是反映哪⼀总体数量综合变动的相对数?A.有限总体B.⽆限总体C.简单总体D.复杂总体3.指数按其反映对象范围不同,可以分为A.个体指数和总指数B.数量指标指数和质量指标指数C.定基指数和环⽐指数D.平均指数和平均指标指数4.指数按其所表明的经济指标性质不同可以分为A.个体指数和总指数B.数量指标指数和质量指标指数C.定基指数和环⽐指数D.平均指数和平均指标指数5.按指数对⽐基期不同,指数可分为A.个体指数和总指数B.定基指数和环⽐指数C.简单指数和加权指数D.动态指数和静态指数6.下列指数中属于数量指标指数的是A.商品价格指数B.单位成本指数C.劳动⽣产率指数D.职⼯⼈数指数B.销售额指数C.职⼯⼈数指数D.劳动⽣产率指数8.由两个总量指标对⽐所形成的指数是A.个体指数B.综合指数C.总指数D.平均指数9.综合指数包括A.个体指数和总指数B.数量指标指数和质量指标指数C.定基指数和环⽐指数D.平均指数和平均指标指数10.总指数编制的两种基本形式是A.个体指数和综合指数B.综合指数和平均指数C.数量指标指数和质量指标指数D.固定构成指数和结构影响指数11.数量指标指数和质量指标指数的划分依据是A.指数化指标性质不同B.所反映的对象范围不同C.所⽐较的现象特征不同D.指数编制的⽅法不同12.编制综合指数最关键的问题是确定A.指数化指标的性质B.同度量因素及其时期C.指数体系D.个体指数和权数13.编制数量指标指数的⼀般原则是采⽤下列哪⼀指标作为同度量因素A.基期的质量指标B.报告期的质量指标C.报告期的数量指标D.基期的数量指标A.基期的质量指标B.报告期的质量指标C.报告期的数量指标D.基期的数量指标15.销售量指数中的指数化指标是A.销售量B.销售额C.销售价格D.数量指标16.单位产品成本指数中的同度量因素是A.单位产品成本B.总成本C.产量D.质量指标17.在由三个指数所组成的指数体系中,两个因素指数的同度量因素通常A.都固定在基期B.⼀个固定在基期,另⼀个固定在报告期C.都固定在报告期D.采⽤基期和报告期的平均18.拉⽒指数的同度量因素时期固定在A.基期B.报告期C.假定期D.任意时期19.派⽒指数的同度量因素时期固定在A.基期B.报告期C.假定期D.任意时期20.Σp1q1 ̄Σp0q1表明A.由于销售量的变化对销售额的影响B.由于价格的变化对销售额的影响C.由于销售量的变化对价格的影响A.由于价格的变化对销售额的影响B.由于销售量的变化对价格的影响C.由于销售量的变化对销售额的影响D.由于价格的变化对销售量的影响22. Σp0q1/Σp0q0表⽰A.价格⽔平不变的条件下,销售量综合变动的程度B.在报告期价格的条件下,销售量综合变动的程度C.综合反映多种商品物价变动程度D.综合反映商品销售额变动程度19.零售物价增长3%,零售商品销售量增长6%,则零售商品销售额增长A.9%B.9.18%C.18%D.2.91%24.若产量增加,⽽⽣产费⽤不变,则单位成本指数A.减少B.增加C.不变D.⽆法确定25.某企业⽣产费⽤报告期⽐基期增长了50%,产品产量增长了25%,则单位成本增长了A.25%B.2%C.75%D.20%26.若⼯资总额增长10%,平均⼯资下降5%,则职⼯⼈数A.增长15%B.增长5%C.增长15.8%D.下降5%27.假如播种⾯积报告期⽐基期下降5%,⽽平均亩产量却增长5%,则总产量报告期⽐基期A.增长B.下降28.平均指数是计算总指数的另⼀种形式,其计算基础A.数量指标指数B.质量指标指数C.综合指数D.个体指数29.综合指数和平均指数的联系表现在A.在⼀般条件下,两类指数间有变形关系B.在权数固定条件下,两类指数间有变形关系C.在⼀定权数条件下,两类指数间有变形关系D.在同度量因素固定条件下, 两类指数间有变形关系30.若将加权算术平均数指数变形为综合指数所⽤的特定权数是A.基期总额B.报告期总额C.假定期总额D.固定权数31.若将加权调和平均数指数变形为综合指数所⽤的特定权数是A.基期总额B.报告期总额C.假定期总额D.固定权数32.按个体价格指数和报告期销售额计算的价格指数是A.综合指数B.平均指标指数C.加权算术平均指数D.加权调和平均数指数33.按个体产量指数和基期总产值计算的产量指数是A.综合指数B.平均指标指数C.加权算术平均指数D.加权调和平均数指数34.因素分析法的⽅法论基础是A.指标体系B.指数体系35.我国现⾏的零售物价指数的编制主要采⽤A.个体指数的形式B.综合指数变形的平均指数形式C.综合指数形式主义D.固定权数的算术平均数指数形式36.某市1991年社会商品零售额为12000万元,1995年增加到15600万元.这四年中零售物价指数提⾼4%,则商品零售量指数为A.80%B.130%C.104%D.125%37.在指数体系中,总变动指数(对象指数)等于各因素指数A.之和B.之差C.之积D.之商38.在指数体系中,总变动绝对差额等于各因素变动绝对差额A.之和B.之差C.之积D.之商39.由两个平均指标对⽐所形成的指数是A.平均数指数B.个体指数C.综合指数D.平均指标指数40.固定构成指数反映A.总体结构变动对总体平均指标变动的影响B.总体各组⽔平变动对总体平均指标变动的影响C.总体平均指标的综合变动D.总体总量指标的综合变动41.结构影响指数的计算公式为42.已知劳动⽣产率可变构成指数为134.2%,职⼯⼈数结构影响指数为96.3%,则劳动⽣产率固定构成指数为A.139.36%D.39.36% 43.某⼚1997年单位产品成本⽐1996年提⾼了5.8%,产品产量结构影响指数为96%,则该⼚总平均单位成本A. 提⾼1.57%B.提⾼1.8%C.下降4%D.下降9.26% 44.两个不同时期的加权算术平均数对⽐所形成的指数称为 A.加权算术平均指数 B.加权调和平均指数 C.可变构成指数 D.综合指数⼆、多项选择题1.指数按照其所表明的指标性质不同可以分为A.个体指数B.总指数C.组指数D.数量指标指数E.质量指标指数 2.综合指数包括A.总指数B.平均指数C.数量指标指数D.质量指标指数E.平均指标指数111000000110110111000111....f f x f f x D f f x f f x C f f x f f x B f f x f f x A ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑3.下列指数中属于数量指标指数的有A.销售量指数B.职⼯⼈数指数E.单位成本指数4.下列指数中属于质量指标指数的有A.销售价格指数B.销售额指数C.单位成本指数D.劳动⽣产率指数E.可变构成指数5.同度量因素的作⽤有A.平衡作⽤B.权数作⽤C.媒介作⽤D.同度量作⽤E.⽐较作⽤6.编制综合指数的⼀般原则是A.数量指标指数以基期质量指标为同度量因素B.数量指标指数以报告期质量指标为同度量因素C.质量指标指数以基期数量指标为同度量因素D.质量指标指数以报告期数量指标为同度量因素A.质量指标指数和数量指标指数都采⽤基期的对应指标为同度量因素7.编制综合指数要掌握的两个要点是A.引进同度量因素对复杂经济现象总体进⾏综合B.确定指数化因素C.将同度量因素固定,消除同度量因素变动的影响D.选择编制指数的⽅法E.明确指数的经济意义8.已知某商业企业基期销售额为100万元,报告期销售额⽐基* * 期增长14%,⼜知道以基期价格计算的报告期假定销售额为112万元,则通过计算可以知道A.销售量增长12%B.价格增长12%C.由于价格变化使销售额增加2万元D.由于销售量变化使销售额增加12万元E.由于销售量变化使销售额增加20万元B.综合反映价格变动的绝对额C.综合反映销售量变动的绝对额D.综合反映价格和销售量共同变动的绝对额E.综合反映由于多种价格变动⽽增减的销售额10.下列公式中属于拉⽒指数的有A.∑p1q0 ∑p0q0B.∑q1p1 ∑q0p1C.∑p1q1 ∑p0q1D.∑q1p0 ∑q0p0E.∑q1p1 ∑q0p011.下列公式中属于派⽒指数的有A.∑p1q0 ∑p0q0B.∑q1p1 ∑q0p1C.∑p1q1 ∑p0q1D.∑q1p0 ∑q0p0E.∑q1p1 ∑q0p012.加权算术平均数指数是⼀种A.总指数B.综合指数C.平均数指数D.平均指标指数E.个体指数加权平均数13.平均指数和综合指数的联系和区别表现为A.在解决复杂总体不能直接同度量问题的思想不同B.在运⽤资料的条件上不同C.综合指数是先综合后对⽐,⽽平均指数是先对⽐后综合D.在经济分析中的具体作⽤也有区别E.在⼀定的权数条件下,两类指数间有变形关系14.作为综合指数变形的平均指数应⽤的⼀般法则为A.数量指标指数必须采⽤基期总量指标为权数的加权算术平均指数的形式B.数量指标指数必须采⽤报告期总量指标为权数的加权算术平均指数的形式D.质量指标指数必须采⽤报告期总量指标为权数的加权调和平均指数的形式E.数量指标指数和质量指标指数所采⽤权数的时期可以采⽤不同时期15.在指数体系中,指数之间的数量对等关系表现在A.总量指数(对象指数)等于其因素指数的连乘积B.总量指数(对象指数)等于其因素指数的代数和C.总量指数(对象指数)等于其因素指数的⽐值D.总量指数的绝对增减额等于其因素指数绝对增减额的连乘积E.总量指数的绝对增减额等于其因素指数绝对增减额的代数和16.平均指标指数体系包括哪些指数?A.数量指标指数B.质量指标指数C.可变构成指数D.固定结构指数E.结构影响指数17.在指数体系中,同度量因素的选择标准是A.经济含义合理B.数学等式成⽴C.计算⽅法简便D.计算资料易取E.对⽐基期固定18.可变构成指数可以分解为A.数量指标指数B.质量指标指数C.固定结构指数D.结构影响指数E.平均指标指数19.可变构成指数体系的关系表现为A.可变构成指数等于结构影响指数乘以固定结构指数B.固定结构指数等于结构影响指数乘以可变构成指数C.固定结构指数等于可变构成指数除以结构影响指数20.运⽤指数体系进⾏因素分析时可以A.对总量指标进⾏因素分析B.对平均指标进⾏因素分析C.对相对指标进⾏因素分析D.从相对数⽅⾯进⾏因素分析E.从绝对数⽅⾯进⾏因素分析21.指数因素分析按指标表现形式不同可分为A.总量指标变动因素分析B.相对指标变动因素分析C.平均指标变动因素分析D.简单现象因素分析E.复杂现象因素分析22.适⽤于⾮全⾯资料编制的总指数是A.数量指标综合指数B.质量指标综合指数C.算术平均数指数D.调和平均数指数E.平均指标指数23.设表⽰产量;P表⽰价格,则在实际⼯作中下列式⼦哪些是正确的?A.∑p1q1 ∑p0q0B.∑q1p1 ∑q1p0C.∑p0q1 ∑p0q0D.∑q0p1 ∑q0p0E.∑q1p1 ∑q0p1三、填空题1.从狭义上讲,指数是表明数量综合变动的相对数。

2015年《统计学》第五章 平均指标习题及满分答案

2015年《统计学》第五章 平均指标习题及满分答案

2015年《统计学》第五章平均指标习题及满分答案(一)填空题1.平均数可以反映总体各单位标志值分布的(集中趋势)。

2.社会经济统计中,常用的平均指标有(算术平均指标)、(调和平均指标)、(几何平均指标)、(中位数)和(众数)。

3.算术平均数不仅受(标志值)大小的影响,而且也受(权数)多少的影响。

4.各变量值与其算术平均数离差之和等于(零),各变量值与其算术平均数离差平方和为(最小)。

5.调和平均数是平均数的一种,它是(标志值倒数)的算术平均数的(倒数),又称(倒数)平均数。

6.几何平均数是计算平均比率和平均速度最适用的一种方法,凡是变量值的连乘积等于(总比率)或(总速度)的现象,都可以使用几何平均数计算平均比率或平均速度。

7.众数决定于(分配次数)最多的变量值,因此不受(极端值)的影响,中位数只受极端值的(位置)影响,不受其(大小)的影响。

(二)单项选择题1.平均数反映了(A)。

A、总体分布的集中趋势B、总体中总体单位的集中趋势C、总体分布的离中趋势D、总体变动的趋势2.加权算术平均数的大小(D)。

A、受各组标志值的影响最大B、受各组次数的影响最大C、受各组权数系数的影响最大D、受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数(B)。

A、接近于变量值大的一方B、接近于变量值小的一方C、不受权数的影响D、无法判断4.权数对于算术平均数的影响,决定于(D)。

A、权数的经济意义B、权数本身数值的大小C、标志值的大小D、权数对应的各组单位数占总体单位数的比重5.各总体单位的标志值都不相同时(A)。

A、众数不存在B、众数就是最小的变量值C、众数是最大的变量值D、众数是处于中间位置的变量值6.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( C )。

A、算术平均法B、调和平均法C、几何平均法D、中位数法7.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数(D)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 平均指标
第二节 算数平均数
三、算数平均数的数学性质
⒈变量值与其算术平均数的离差之和衡等于零,即:
Σ(x x) 0
( x x ) f 0
⒉如果对每个标志值加或减一个任意数A,则算术平均数 也要增加或减少那个A值 ( x A) x nA x A n n n ( x A) x A n
1 1 1 1 4 2 4 6 8 1 1 1 1 4 2 4 6 8
第五章 平均指标
第三节 调和平均数
一、简单调和平均数 ——适用于总体资料未经分组整理、尚为原始 资料的情况
m XH 1 1 1 1 X1 X 2 Xm X
调和平均数的应用
m 1 Xm
解:
XH
9710 700 1400 10 14
9710 件 12.1375 800
即该企业该日全部工人的平均日产量为 12.1375 件。
第五章 平均指标
第三节 调和平均数
三、由相对数计算平均数
mi 比值 X i fi
X
m f
※ 注意区分算术平均数与强度相对数
第五章 平均指标
第二节 算数平均数
二、算数平均数的计算方法
(一)简单算术平均数 ——适用于总体资料未经分组 整理、尚为原始资料的情况
X 1 X 2 X N X N
X
i 1
N
i
N
式中: X 为算术平均数; N 为总体单位总数; X i 为第 i个 单位的标志值。
H
X
第五章 平均指标
第三节 调和平均数
调和平均数的应用
【例】 某企业某日工人的日产量资料如下: 日产量(件) 各组工人日总产量(件)
X
10 11 12 13 14 合计
m
700 1 100 4 560 1 950 1 400 9 710
计算该企业该日全部工人的平均日产量。
第五章 平均指标
第三节 调和平均数
X
i 1 m i 1
m
i
fi
i
f
10 70 14 100 70 100
9710 12.1375 (件) 800
若上述资料为组距数列,则应取各组的组 说 中值作为该组的代表值用于计算;此时求 明 得的算术平均数只是其真值的近似值。
第五章 平均指标
分析:
式中: X H 为调和平均数; m为变量值 X i 为第 i 个变量值。 的个数;
m
第五章 平均指标
第三节 调和平均数
二、加权调和平均数 ——适用于总体资料经过分组整理形成变量数 列的情况
XH
m m1 m2 mm mm 1 m1 m2 m X X1 X 2 Xm
四、算数平均数的特殊应用
(三)是非标志平均数 是非标志 指总体中全部单位只具有“是”或“否”、 “有”或“无”两种表现形式的标志,又叫交 为研究是非标志总体的数量特征,令 分组 具有某一属性 不具有某一属性 合计 单位数
N1 N0
N
替标志。
变量值 1 0 —
第五章 平均指标
第二节 算数平均数
四、算数平均数的特殊应用
第五章 平均指标
第二节 算数平均数
三、算数平均数的数学性质
3. 如对每个标志值乘以或除以一个任意值A,则平均数也 要乘以或除以那个A值。 乘以A:简单算术平均数:
Ax x /A n
x A A 除以A:简单算术平均数: x n
4. 变量值与其算术平均数的离差平方和为最小,即:
计算该公司该季度的平均计划完成程度。
第五章 平均指标计划完成 实际产值m X 分析: 第三节 调和平均数 计划产值 f 程度 三、由相对数计算平均数
【例A】某季度某工业公司18个工业企业产值计划完成情况如下:
计划完成程度 组中值 企业数 计划产值 (﹪) (﹪) X (个) (万元) f 85 2 800 90以下 Xf 0.85 95 8003 2 500 90~100 1.15 4400 100~110 105 10 17 200 f 8003 4400 115 4 400 110以上 18 24 900 合计 26175 —
第五章 平均指标
第二节 算数平均数
二、算数平均数的计算方法
(二)加权算术平均数 —经过分组整理形成的变量数列
X 1 f1 X 2 f 2 X m f m X f1 f 2 f m
X Xf
X
i 1 m i 1
m
i
fi
i
f

f X
f
f
式中: X 为算术平均数; f i 为第 i 组的次数;m 为组数;
2005年 1800 750 450 3000
2006年 2400 640 160 3200
2005年 1800 1500 1350 4650
2006年 2400 1280 480 4160
第五章 平均指标
第二节 算数平均数
Xf 解: 2005 年产品平均等级 f Xf 2006 年产品平均等级 f 4650 1.55 3000 4160 1.3 3200
(三)是非标志平均数 【例】某厂某月份生产了400件产品,其中合格品380件, 不合格品20件。求产品质量分布的集中趋势。
己知N 400件,N1 380件,N 0 20件, N0 N1 380 20 则P 95 ﹪,Q 5﹪, N 400 N 400 所以有: X P P 0.95
X
【例2】
X
i 1 m
m
i
fi
决定平均数 的变动范围

i 1
fi
起到权衡轻 重的作用
成绩(分)
人数(人) 甲班 乙班 丙班
60
100
39
1
1
39
50
50
平均成绩
61
99
80
第五章 平均指标
第二节 算数平均数
【例3】某班统计学成绩资料如下,计算平均成绩:
各组学 生人数 fi 8 20 24 各组总成绩 组中值xi fi*xi 55 65 75 440 1300 1800
X i 为第i 组的标志值或组中值。
第五章 平均指标
第二节 算数平均数
【例1】某企业某日工人的日产量资料如下:
日产量(件)
X
工人人数(人)
f
10 11 12 13 14 合计
70 100 380 150 100 800
计算该企业该日全部工人的平均日产量。
第五章 平均指标
第二节 算数平均数
解:
X
第一节 平均指标的基本理论
四、平均指标的种类
㈠ ㈡ ㈢ ㈣ ㈤
算术平均数 调和平均数 几何平均数 中位数 众数
数值平均数
位置平均数
第五章 平均指标
第二节 算数平均数
一、算数平均数的基本形式
总体标志总量 平均数 总体单位总数
例:
算术
直 接 承 担 者
工资总额 平均工资 职工人数 总成本 平均成本 总产量
第五章 平均指标
第一节 平均指标的基本理论
二、作用
1、利用平均指标可以将同类现象的一般水平在不同 的空间和时间上进行比较。
2、利用平均指标可以分析现象之间的依存关系以及 估计、推算其他有关指标。 3、利用平均指标可以反映现象总体的客观规定性。
三、特点
1、总体同质性 2、数量抽象性 3、一般代表性
第五章 平均指标
第五章 平均指标
第二节 算数平均数
二、算数平均数的计算方法
【例】 某售货小组5个人,某天的销售额分别为520元、600元、
480元、750元、440元,求平均每人日销售额。 解:平均每人日销售额为:
X X N
520 600 480 750 440 5 2790 558元 5
2 ( x x ) 最小值
第五章 平均指标
第二节 算数平均数
三、算数平均数的数学性质 5. 两个独立的同性质变量代数和的平均数等于各 变量平均数的代数和。
(X Y) X Y
6. 两个独立的同性质变量乘积的平均数等于各变 量平均数的乘积
x y x y
第五章 平均指标
合计


100
450
420
第五章 平均指标
第二节 算数平均数
解:
Xf 甲企业平均分 f Xf 乙企业平均分 f 450 4.5(分) 100 420 4.2(分) 100
计算结果表明,两企业产品综合质量评判,平均说来 甲企业略高于乙企业。
第五章 平均指标
第二节 算数平均数
高等学校应用型特色规划教材
统计学
statistics清Leabharlann 大学出版社第五章 平均指标
【学习目标】通过本章的学习和习题演算,掌握平均指标 的概念、特点和作用;算术平均数、调和平均数、几何平均数、 中位数与众数的计算方法和应用。了解平均指标的计算原则和 分布特征。 第一节 平均指标的基本理论 第二节 算术平均数 第三节 调和平均数 第四节 几何平均数 第五节 位置平均数 第六节 平均指标的应用

Xf f

m 1 Xm
己知 X、m, 采用加权调和 平均数公式
己知 m、f ,采用基本 平均数公式
己知 X、f , 采用加权算术 平均数公式
第五章 平均指标
第三节 调和平均数
三、由相对数计算平均数
【例A】某季度某工业公司18个工业企业产值计划完成情况如下:
相关文档
最新文档