§3.5 直线与平面的相关位置

合集下载

直线和平面的位置关系

直线和平面的位置关系
(3) 在正方体AC1中,求证:A1C⊥B1D1,A1C⊥BC1
P
P
D1
C1
A
D
O
A
B
C
(1)
(2)
A1 C
D
B1 C
MA
B
B
(3)
(1) PA⊥正方形ABCD所在平 面,O为对角线BD的中点, 求证:PO⊥BD,PC⊥BD
直线和平面
在日常生活中,我们可以观察到直线与平面 的位置关系共有三种。
即:平行、相交、在平面内。 其中直线在平面内,由基本性质1决定。 对于直线和平面的前两种位置关系,分别给
出下面的定义。
定义1 如果一条直线和一个平面没有公共点,那 么称这条直线和这个平面平行。
直线l与平面平行, 记作l //,即l
∴PC是平面ABC的斜线
∴AC是PC在平面ABC上的射影A
∵BC平面ABC 且AC ⊥ BC
∴由三垂线定理得
PC ⊥ BC
B C
例2 直接利用三垂线定理证明下列各题:
(1) PA⊥正方形ABCD所在平面,O为对角线BD的中点 求证:PO⊥BD,PC⊥BD (2) 已知:PA⊥平面PBC,PB=PC,M是BC的中点, 求证:BC⊥AM
在PAO中,
P
sin PAO PO 8 1 PAO 30
PA 16 2
A
同理 : sin PBO PO 8 PB 10
O
B
PBO 538
三垂线定理及逆定理
P oa
A α
预习:
三垂线定理
什么叫平面的斜线、垂线、射影?
P
oa
α
A
PO是平面α的斜线,
O为斜足; PA是平面α 的垂线, A为垂足; AO

解析几何-吕林根-课后习题解答一到五

解析几何-吕林根-课后习题解答一到五

第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.解:2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:图1-13. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.解:§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件? (1=+ (2+=+ (3-=+ (4+=- (5= 解:§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解:2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF . 解:3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 解:4 在四边形ABCD中,→→→+=baAB2,→→→--=baBC4,→→→--=baCD35,证明ABCD为梯形.解:6. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量AL, BM, CN可以构成一个三角形.7. 设L、M、N是△ABC的三边的中点,O是任意一点,证明OBOA++OC=OL+OM+ON.解:8. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明OA+OB+OC+OD=4OM.解:9在平行六面体ABCDEFGH(参看第一节第4题图)中,证明→→→→=++AGAHAFAC2.证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11. 用矢量法证明,平行四边行的对角线互相平分.解12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0.解,13.在12题的条件下,设P 是任意点,证明 证明:§1.4 矢量的线性关系与矢量的分解1.在平行四边形ABCD 中,(1)设对角线,,b BD a AZ ==求.,,,DA CD BC AB 解(2)设边BC 和CD 的中点M 和N ,且q AN P AM ==,求CD BC ,。

第三章 平面与直线 平面与平面面的位置关系

第三章 平面与直线  平面与平面面的位置关系

n
b b m
n
a
c n b ● m(n) c
32
a
四、两平面的相对位置
⒈ 两平面平行
⑴ 若一平面上的两相交 直线分别平行于另一 平面上的两相交直线, 则这两平面相互平行。
⑵ 若两投影面垂直面相 互平行,则它们具有 积聚性的那组投影必 相互平行。
a
c a d f e f b c d e f
用线上 取点法
● ●
② 判别可见性 n 由水平投影可知, KN段在平面前,故正 还可通过重影点判别可见性。 面投影上kn为可见。12
k 1 b
⑵ 直线为特殊位置
b k a b k● 2 m(n ) ●
● ●
m
空间及投影分析
c

直线MN为铅垂线,其水 平投影积聚成一个点,故交点 K的水平投影也积聚在该点上。
b 如何判别?
可通过正面投影 直观地进行判别。
例:求两平面的交线 MN并判别可见性。
⑴ a
d
a d

b m(n)

e
f
c d
a
b m(n) e ●
f c

n
e c d
f
a

e n c f
m

m
b
b
同面的异侧,异面的同侧可见性相反。
16

d′ a′
b′
n′

e′
a
b
b
e e
f
c
a d b d′ b′ e′ a
c
f a′ h′
c′
f′
h(f) b d(e) c 34
3.一般位置直线与一般位置平面相交

解析几何课件(吕林根许子道第四版)(精)

解析几何课件(吕林根许子道第四版)(精)
上一页 下一页
返回
第一章 向量与坐标
§1.3 数乘向量
表示与非零向量 设ea a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | ea
a . ea |a |
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页下一页ຫໍສະໝຸດ §1.2 向量的加法定 义1.2.1 设 已 知 矢 量 a、 b ,以空间任意一点 O为 始 点 接连作矢量 OA a, AB b得 一 折 线 OAB, 从 折 线 的 端 点 O到 另 一 端 点 B的 矢 量 OB c , 叫 做 两 矢 量 a与b的 和 , 记 做 cab
(2)结合律: a b c (a b ) c a (b c ). (3) a ( a ) 0.
上一页
下一页
返回
第一章 向量与坐标
§1.2 向量的加法
有限个矢量 a1 , a2 ,an 相 加 可 由 矢 量 的 三 角 求 形和 法则推广
解析几何课件(第四版)
吕林根 许子道等编
解析几何的基本思想是用代数的方法来研究 几何,为将代数运算引导几何中,采用的最根本最 有效的做法----有系统的把空间的几何结构代数 化,数量化.
第一章 第二章 第三章 第四章 向量与坐标 轨迹与方程 平面与空间直线 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
下一页
返回
第一章 向量与坐标
§1.4向量的线性关系与向量的分解
定理1.4.2 如果向量 e1 , e 2 不共线,那么向量 r与 e1 , e2 共面的充要条件是 r可以用向量 e1 , e2线性表示, 或者说向量 r可以分解成 e1 , e2的线性组合,即 r x e1 y e2 并且系数 x , y被 e1 , e2 , r唯一确定 . 这时 e1 , e 2叫做平面上向量的基底 . 定理1.4.3 如果向量 e1 , e 2 , e 3 不共面,那么空间 任意向量 r可以由向量 e1 , e 2 , e 3线性表示,或说空间 ( ) 1.4-2

第三章平面与空间直线

第三章平面与空间直线

第三章平⾯与空间直线第三章平⾯与空间直线本章以⽮量为⼯具推导平⾯和空间直线各种形式的⽅程,讨论两平⾯,直线与平⾯,两直线的相互位置关系,并以⽮量为⼯具推导两平⾯,直线与平⾯,两直线间的夹⾓公式以及点到平⾯,点到直线,两异⾯直线间的距离公式,最后⼜讨论了平⾯束⽅程及其应⽤。

本章的基本要求如下:A.掌握1.基本概念:平⾯的⽅位⽮量和法⽮量,量,⽅向⾓,⽅向余弦,⽅向数。

有轴平⾯束和平⾏⾯束。

点与平⾯间的离差,直线的⽅向⽮量2.平⾯⽅程⽮量形式的⽅程:点位式,⼀般式,参数式,点法式。

坐标形式的⽅程:点位式,三点式,截距式,⼀般式,参数式,点法式,法线式。

根据平⾯的⽅程画出平⾯的图形。

3.直线⽅程⽮量形式的⽅程:点向式,参数式。

坐标形式的⽅程:对称式,两点式,参数式,⼀般式,射影式。

4.点,直线,平⾯的相关位置①⽤⽮量⽅法讨论两平⾯的位置关系(相交,平⾏,重合),并求两平⾯间的夹⾓。

②点和平⾯的位置关系(点在或点不在平⾯上),利⽤平⾯的法线式⽅程求点与平⾯的离差和距离。

③⽤⽮量⽅法讨论直线和平⾯的位置关系(相交,平⾏,直线在平⾯上),并求直线和平⾯间的夹⾓。

④点和直线的位置关系(点在直线上或点不在直线上),利⽤⽮量⽅法求点到直线的距离。

⑤⽤⽮量⽅法讨论两直线的位置关系(异⾯,相交,平⾏,重合)并求两直线间的夹⾓。

⑥平⾯束⽅程,利⽤平⾯束⽅程求空间直线在任⼀平⾯上的射影。

⑦空间圆的⽅程,圆⼼和半经的求法。

5.基本理论平⾯基本定理及其证明(定理3,1,1)有轴平⾯束⽅程及其证明(定理3,8,1)B.理解利⽤⽮量⽅法求两异⾯直线的公垂线和两异⾯直线间的距离。

知识要求:1.知道决定平⾯的⼏何条件及⽮量条件,会根据⼏何条件求出平⾯⽅程;2.掌握平⾯的参数⽅程、⼀般⽅程、法式⽅程、截距式⽅程;3.会求点到平⾯的距离;4.会⽤⽮量条件判断平⾯与平⾯的位置关系;5.知道决定空间直线的⼏何条件及⽮量条件,会根据⼏何条件求出直线⽅程;6.掌握空间直线的参数⽅程、两点式⽅程、⼀般⽅程、标准⽅程,会将参数⽅程、⼀般⽅程转化成标准⽅程;7.会⽤⽮量条件判断直线与直线、平⾯与直线的的位置关系;8.会求两直线之间的夹⾓;9.会求两异⾯直线之间的距离与公垂线⽅程;10.了解平⾯束的概念。

解析几何全册课件(吕林根版)精选全文完整版

解析几何全册课件(吕林根版)精选全文完整版
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
(2)结合律:
(3)
上一页
下一页
返回
O
A1
A2
A3
A4
An-1
An
这种求和的方法叫做多边形法则
上一页
下一页
返回
向量减法
上一页
下一页
返回
A
B
C
上一页
返回
例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.

上一页
下一页
返回


为直线上的点,
6、线段的定比分点坐标
上一页
下一页
返回
由题意知:
上一页
下一页
返回
定理1.5.4 已知两个非零向量
7、其它相关定理

共线的充要条件是
定理1.5.6 已知三个非零向量
,则
共面的充要条件是
上一页
返回
空间一点在轴上的投影(Projection)
§1.6 向量在轴上的射影

根据题意有
所求方程为
上一页
下一页
返回
根据题意有
化简得所求方程

上一页
下一页
返回
例4 方程 的图形是怎样的?
根据题意有
图形上不封顶,下封底.

以上方法称为截痕法.
上一页
下一页
返回
以上几例表明研究空间曲面有两个基本问题:
线为
的连
的中点
对边
一组
设四面体

e
e
e
AP
e
AD
e
AC
e

解析几何第三章知识点

解析几何第三章知识点

第三章 平面与空间直线版权所有,侵权必究§3.1 平面的方程1.平面的点位式方程在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面π 的方位向量.取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x ,平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成M M 0= u a +v b而M M 0= r -r 0,所以上式可写成r = r 0+u a +v b(3.1-1)此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数.若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得⎪⎩⎪⎨⎧++=++=++=vZ u Z z z v Y u Y y y vX u X x x 210210210 (3.1-2)此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数.(3.1-1)式两边与a ×b 作内积,消去参数u ,v 得(r -r 0,a ,b ) = 0(3.1-3)此即222111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)这是π 的点位式普通方程.已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x ,i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为r = 1r +u(2r -1r )+v(3r -r 1)(3.1-5) ⎪⎩⎪⎨⎧-+-+=-+-+=-+-+=)()()()()()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x(3.1-6)131313121212111z z y y x x z z y y x x z z y y x x ---------= 0(3.1-7)(3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是caba z y a x 00---=0 (3.1-8)即1=++czb y a x (3.1-9)此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距.2.平面的一般方程在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成Ax +By +Cz +D = 0(3.1-10)其中A =2211Z Y Z Y ,B =2211X Z X Z ,C =2211Y X Y X由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示.反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成02=++⎪⎭⎫ ⎝⎛+ACz ABy A D x A即000=--+ACA B zy AD x 它显然表示由点M 0 (-D / A ,0,0)和两个不共线的向量{B ,-A ,0}和{C ,0,-A }所决定的平面. 于是有定理3.1.1 空间中任一平面的方程都可表为一个关于变数x ,y ,z 的三元一次方程;反过来,任一关于变数x ,y ,z 的三元一次方程都表示一个平面.方程(3.1-10) 称为平面π 的一般方程. 3.平面的法式方程若给定一点M 0和一个非零向量n ,则过M 0且与n 垂直的平面π也被惟一地确定. 称n 为π的法向量. 在空间坐标系{O ;i ,j ,k }下,设0r = 0OM ={x 0,y 0,z 0},n = {A ,B ,C },且平面上任一点M 的向径r =OM ={x ,y ,z },则因总有M M 0⊥n ,有n (r -r 0) = 0(3.1-11) 也就是A (x -x 0)+B (y -y 0)+C (z -z 0) = 0(3.1-12)方程(3.1-11)和(3.1-12)叫平面π 的点法式方程. (3.1-12)中的系数A ,B ,C 有简明的几何意义,它们就是平面π 的一个法向量的分量.特别地,取M 0为自O 向π 所作垂线的垂足,而n 为单位向量. 当平面不过原点时,取n 为与OP 同向的单位向量n 0,当平面过原点时取n 0的正向为垂直与平面的两个方向中的任一个.设|OP | = p ,则OP = p n 0,由点P 和n 0确定的平面的方程为 n 0(r -p n 0) = 0式中r 是平面的动向径. 由于1)(20=n ,上式可写成n 0r -p = 0(3.1-13)此方程叫平面的向量式法式方程.若设r = {x ,y ,z },n 0 = {cos α,cos β,cos γ},则由(3.1-13)得x cos α+y cos β+z cos γ-p = 0(3.1-14)此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征:1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p ≤0(意味着p ≥ 0). 3°p 是原点到平面的距离. 4.化一般方程为法式方程在直角坐标系下,若已知π的一般方程为Ax +By +Cz +D = 0,则n = {A ,B ,C }是π的法向量,Ax +By +Cz +D = 0可写为nr +D = 0(3.1-15)与(3.1-13)比较可知,只要以2221||1CB A ++±=±=n λ 去乘(3.1-15)就可得法式方程λAx +λBy +λCz +λD = 0 (3.1-16)其中正负号的选取,当D ≠0时应使(3.1-16)的常数项为负,D =0时可任意选.以上过程称为平面方程的法式化,而将2221CB A ++±=λ叫做法化因子.§3.2 平面与点的相关位置平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上. 前者的条件是点的坐标满足平面方程. 点不在平面上时,一般要求点到平面的距离,并用离差反映点在曲面的哪一侧.1.点与平面间的距离定义3.2.1 自点M 0向平面π 引垂线,垂足为Q . 向量0QM 在平面π的单位法向量n 0上的射影叫做M 0与平面π之间的离差,记作δ = 射影n 00QM(3.2-1)显然δ = 射影n 00QM = 0QM ·n 0 =∣0QM ∣cos ∠(0QM ,n 0) =±∣0QM ∣当0QM 与n 0同向时,离差δ > 0;当0QM 与n 0反向时,离差δ < 0. 当且仅当M 0在平面上时,离差δ = 0.显然,离差的绝对值|δ |就是点M 0到平面π 的距离. 定理3.2.1 点M 0与平面(3.1-13)之间的离差为δ = n 0r 0-p (3.2-2)推论1 若平面π 的法式方程为 0cos cos cos =-++p z y x γβα,则),,(0000z y x M 与π间的离差=δp z y x -++γβαcos cos cos 000(3.2-3)推论2 点),,(0000z y x M 与平面Ax +By +Cz +D = 0间的距离为()2220000,CB A DCz By Ax M d +++++=π (3.2-4)2.平面划分空间问题,三元一次不等式的几何意义 设平面π的一般方程为Ax +By +Cz +D = 0那么,空间任何一点M (x ,y ,z )与平面间的离差为=δp z y x -++γβαcos cos cos = λ (Ax +By +Cz +D )式中λ为平面π的法化因子,由此有Ax +By +Cz +D =δλ1(3.2-5)对于平面π同侧的点,δ 的符号相同;对于在平面π的异侧的点,δ 有不同的符号,而λ一经取定,符号就是固定的. 因此,平面π:Ax +By +Cz +D = 0把空间划分为两部分,对于某一部分的点M (x ,y ,z ) Ax +By +Cz +D > 0;而对于另一部分的点,则有Ax +By +Cz +D < 0,在平面π上的点有Ax +By +Cz +D = 0.§3.3 两平面的相关位置空间两平面的相关位置有3种情形,即相交、平行和重合. 设两平面π1与π2的方程分别是π1: 11110A x B y C z D +++=(1)π2: 22220A x B y C z D +++=(2)则两平面π1与π2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1 两平面(1)与(2)相交的充要条件是111222::::A B C A B C ≠(3.3-1)平行的充要条件是11112222A B C D A B C D ==≠(3.3-2)重合的充要条件是11112222A B C D A B C D ===(3.3-3)由于两平面π1与π2的法向量分别为11112222{,,},{,,}n A B C n A B C ==,当且仅当n 1不平行于n 2时π1与π2相交,当且仅当n 1∥n 2时π1与π2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为θ,称π1与π2的二面角∠(π1,π2) =θ 或π-θ为两平面间的夹角.显然有12cos (,)ππ∠=±cos θ =(3.3-4)定理3.3.2 两平面(1)与(2)垂直的充要条件是0212121=++C C B B A A(3.3-5)例 一平面过两点 1(1,1,1)M 和2(0,1,1)M -且垂直于平面x +y +z = 0,求它的方程.解 设所求平面的法向量为n = {A ,B ,C },由于12{01,11,11}{1,0,2}M M =----=--在所求平面上,有12M M n ⊥, 120M M n ⋅=,即20A C --= .又n 垂直于平面x +y +z = 0的法线向量{1,1,1},故有 A +B +C = 0 解方程组20,0,A C A B C --=⎧⎨++=⎩得2,,A CBC =-⎧⎨=⎩ 所求平面的方程为2(1)(1)(1)0C x C y C z --+-+-=,约去非零因子C 得2(1)(1)(1)0x y z --+-+-=,即2x -y -z =0§3.4 空间直线的方程1.由直线上一点与直线的方向所决定的直线方程在空间给定了一点0000(,,)M x y z 与一个非零向量v = {X ,Y ,Z },则过点M 0且平行于向量v 的直线l 就惟一地被确定. 向量v 叫直线l 的方向向量. 显然,任一与直线l 上平行的飞零向量均可作为直线l 的方向向量.下面建立直线l 的方程.如图,设M (x ,y ,z ) 是直线l 上任意一点,其对应的向径是r = { x ,y ,z },而0000(,,)M x y z 对应的向径是r 0,则因M M 0//v ,有t ∈R ,M M 0= t v . 即有r -r 0= t v所以得直线l 的点向式向量参数方程r = r 0+t v (3.4-1)以诸相关向量的分量代入上式,得⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛Z Y X t z y x z y x 000根据向量加法的性质就得直线l 的点向式坐标参数方程为⎪⎩⎪⎨⎧+=+=+=Ztz z Yt y y Xtx x 000 (3.4-2)消去参数t ,就得直线l 的点向式对称方程为Zz z Y y y X x x 000-=-=- (3.4-3)此方程也叫直线l 的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L 通过空间两点M 1(x 1,y 1,z 1)和M 2(x 2,y 2,z 2),则取M 1为定点,21M M 为方位向量,就得到直线的两点式方程为121121121z z z z y y y y x x x x --=--=-- (3.4-4)根据前面的分析和直线的方程(3.4-1),可得到||||||||||00v M M v t =-=r r 这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t 的绝对值等于定点M 0到动点M 之间的距离与方向向量的模的比值,表明线段M 0M 的长度是方向向量v 的长度的 |t | 倍.特别地,若取方向向量为单位向量v 0 = {cos α,cos β,cos γ}则(3.4-1)、(3.4-2)和(3.4-3)就依次变为r = r 0+t v 0(3.4-5)⎪⎩⎪⎨⎧+=+=+=γβαcos cos cos 000t z z t y y t x x (3.4-6)和γβαcos cos cos 000z z y y x x -=-=- (3.4-7)此时因 |v | = 1,t 的绝对值恰好等于l 上两点M 0与M 之间的距离.直线l 的方向向量的方向角α,β,γ cos α,cos β,cos γ 分别叫做直线l 的方向角和方向余弦.由于任意一个与v 平行的非零向量v'都可作为直线l 的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z 为直线l 的方向数,用来表示直线l 的方向.2.直线的一般方程空间直线l 可看成两平面π1和π2的交线. 事实上,若两个相交的平面π1和π2的方程分别为π1: 11110A x B y C z D +++= π2: 22220A x B y C z D +++=那么空间直线l 上的任何一点的坐标同时满足这两个平面方程,即应满足方程组111122220,0.A x B y C z D A x B y C z D +++=⎧⎨+++=⎩ (3.4-8)反过来,如果点不在直线l 上,那么它不可能同时在平面π1和π2上,所以它的坐标不满足方程组(3.4-8).因此,l 可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式. 将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例1将直线的一般方程10,2340.x y z x y z +++=⎧⎨-++=⎩ 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为a = {1,1,1},b = {2,-1,3}因a ×b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为12413x y z -+==--令t z y x =-+=-=-32141,则得所求的参数方程为 14,,23.x t y t z t =+⎧⎪=-⎨⎪=--⎩§3.5 直线与平面的相关位置直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形. 设直线l 与平面π 的方程分别为L :000x x y y z z X Y Z ---== (1) π :Ax +By +Cz +D = 0(2)将直线l 的方程改写为参数式⎪⎩⎪⎨⎧+=+=+=tZz z tY y y tX x x 000. (3)将(3)代入(2),整理可得(AX +BY +CZ )t = -(Ax 0+By 0+Cz 0+D )(4)当且仅当AX +BY +CZ ≠0时,(4)有惟一解CZBY AX DCz By t +++++-=000Ax这时直线l 与平面π 有惟一公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠0时,方程(4)无解,直线l 与平面π 没有公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0时,(4)有无数多解,直线l 在平面π 上. 于是有定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX +BY +CZ ≠02)平行:AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠03)直线在平面上: AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0以上条件的几何解释:就是直线l 的方向向量v 与平面π 的法向量n 之间关系. 1)表示v 与n 不垂直;2)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)不在平面π 上; 3)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)在平面π 上. 当直线l 与平面π 相交时,可求它们的交角. 当直线不与平面垂直时,直线与平面的交角ϕ 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X ,Y ,Z }是直线l 的方向向量,n = {A ,B ,C }是平面π 的法向量,则令∠(l ,π ) =ϕ,∠(v ,n ) = θ ,就有ϕ=-2πθ 或 ϕ= θ-2π(θ 为锐角) 因而sin ϕ =∣cos θ∣=vn v n ⋅⋅=222222ZY X CB A CZ BY AX ++++++ (3.5-1)§3.6 空间直线与点的相关位置任给一条直线l 的方程和一点M 0,则l 和M 0的位置关系只有两种:点在直线上和点不在直线上。

第五章 直线、平面的相对位置

第五章  直线、平面的相对位置

本章讨论直线与平面、平面与平面的相对位置关系及其投影,包括以下内容:1)平行关系:直线与平面平行,两平面平行;2)相交关系:直线与平面相交,两平面相交;3)垂直关系:直线与平面垂直,两一般位置直线垂直和两平面垂直。

§1 平行关系1.1 直线与平面平行直线与平面平行的几何条件是:如果平面外的一直线和这个平面上的一直线平行,则此直线平行于该平面。

由于EF∥BD,且BD 是ABC 平面上的一直线,所以,直线EF平行于ABC 平面。

[例1]试过K点作一水平线,使之平行于△ABC。

先在△ABC上作一水平线AD;再过点K,作kl∥ad,k′l′∥a′d′,则直线KL为所求。

[例2]试过K 点作一正平线,使之平行于P 平面。

因P V 是P 平面上特殊的正平线,所以过点K 作KL ∥P V ,即作k ′l ′∥PV ,kl ∥X 轴,则直线KL 为所求。

[例3]试过K 点作一铅垂面P (用迹线表示),使之平行于AB 直线。

由于铅垂面的H 投影为一直线,故若作铅垂面平行于AB 直线,则P H必平行于ab 。

因此,过k 作P H ∥ab ;过P X 作P V ⊥X 轴,则P 平面为所求。

1.2 平面与平面平行两平面相平行的条件是:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。

两平行平面和第三个平面相交,其交线一定互相平行。

因此,两平行平面的同面迹线一定平行。

如果两平面的两对同面迹线分别互相平行,则不能肯定两平面是互相平行的。

如果平面的两条迹线是平行直线时,则一般要看第三个投影才能确定。

P 平面平行于Q 平面P 平面不平行于Q 平面[例1]过点K 作一平面,使之与AB、CD两平行直线表示的平面平行1:在AB、CD 平面上,作一条和AB、CD 不平行的辅助线,如AC ;2:过K 作KL∥AB ;3:过K 作KM∥AC ,则平面LKM即为所求。

[例2]过K 点作Q 平面(用迹线表示),使之平行于P 平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.5 直线与平面的相关位置
一、位置关系
1. 设直线l: ==和平面π:Ax+By+Cz+D=0,
则l与π的相互位置关系有下面的充要条件:
(1) 相交:AX+BY+CZ≠0;
(2) 平行:AX+BY+CZ=0, Ax0+By0+Cz0+D≠0;
(3) 直线在平面上:AX+BY+CZ=0, Ax0+By0+Cz0+D=0.
2. 在直角坐标系下, 平面π的法矢量为={A, B, C}, 直线l的方向矢量= {X, Y, Z}. 从几何上看:l与π相交的条件AX+BY+CZ≠0 就是不垂直于; l与π平行的条件AX+BY+CZ=0, Ax0+By0+Cz0+D≠0就是⊥且直线l上的点(x0, y0, z0)不在平面π上;
l在π上的条件AX+BY+CZ=0, Ax0+By0+Cz0+D=0 就是⊥且l上的点(x0, y0, z0)在平面π上.
二、夹角
1.如图4-8, 当直线和平面不垂直时,直线和平面间的夹角ϕ是指这直线和它在平面上的射影所构成的锐角. 当直线和平面垂直时,规定直线与平面间的夹角ϕ为直角.
2.在{O;,,}下,l:==和平面π:Ax+By+Cz+D=0间的夹角由下式确定
sinϕ=.
进而由此式直接得到l//π或l⊂π的充要条件是
AX+BY+CZ=0.
l⊥π的充要条件是==.
例1. 证明直线l:==与平面π:2x+y-z+3=0相交,并求出它们的交点和夹角.
解:因为⋅={-1, 1, 2}⋅{2, 1, -1}=-3≠0, 所以l与π相交.
将直线l的方程化为参数式
代入平面方程解得t=1,从而得交点为 (-1, 2, 3).
因为 sinϕ==,
所以直线l与平面π间的夹角为ϕ=.
例2. 决定直线l:和平面π:(A1+A2)x+(B1+B2)y
+(C1+C2) z=0的相互位置.
解:因为l的方向矢量
={X, Y, Z}=,
平面π的法矢量={A1+A2, B1+B2, C1+C2}, 又
⋅=(A1+A2)+(B1+B2)+(C1+C2)
=+=0.
且显然l上有一点(0, 0, 0)在π上,故l在平面π上.
例3. 设直线与三坐标平面的夹角为λ, μ, ν,试证
cos2λ+cos2μ+cos2ν=2.
证明:如图4-9, 设直线的方向矢量为, 它与xOy平面的夹角为λ, 则它与z轴的夹角为γ=-λ,同理与x, y轴夹角为α=-μ,β=-ν. 从而
sinα=cosμ, sinβ=cosν, sinγ=cosλ.
所以 cos2λ+cos2μ+cos2ν=sin2γ+sin2α+sin2β=2.
例4. 求下列球面的方程:
(1) 与平面x+2y+2z+3=0相切于点M(1, 1,-3)且半径r=3的球面;
(2) 与两平行平面π1:6x-3y-2z-35=0和π2:6x-3y-2z+63=0都相切且与其中之一相切于点M(5, -1, -1)的球面.
解: (1) 显然M在已知平面上,故只要求出球心即可. 设球心为P(x0, y0, z0),则P, M所在直线为
==,
则有且 (x0-1)2+(y0-1)2+(z0+3)2=32,
即t2+(2t)2+(2t)2=9, t=±1,
故球心有二个P1(2, 3, -1),P2(0, -1, -5),
从而所求球面方程有二个 (x-2)2+(y-3)2+(z+1)2=9,
x2+(y+1)2+(z+5)2=9.
(2)显然M∈π1,设球心为P (x0, y0, z0),则P, M所在直线方程为
l:==,

代入π2方程求交点
6(6t+5)-3(-3t-1)-2(-2t-1)+63=0,
t=-2.
故l与π2交点的坐标为M'(-7, 5, 3),从而P为M, M'之中点
x0==-1, y0==2, z0==1,
球面半径r==7.
故所求球面方程为 (x+1)2+(y-2)2+(z-1)2=49.
作业题:
1. 判别下列直线与平面的相关位置:
(1) ==与 2x+7y-3z+1=0;
(2) ==与 2x-y-z-9=0;
(3) 与 5x-3y+2z-5=0.
2. 求直线==与平面x+y+z-2=0的交点到(3, 4, 5)的距离.
3. 直线与平面间的夹角ϕ的取值范围是什么?
4. l⊥π时,如何从
sinϕ=
推出
==?。

相关文档
最新文档