高考 计数原理-打印版

合集下载

2019年高考理数考前核心考点解读冲刺攻略专题7: 计数原理 Word版含答案【7页】

2019年高考理数考前核心考点解读冲刺攻略专题7: 计数原理 Word版含答案【7页】

核心考点解读——计数原理两个计数原理(II )排列、组合(II ) 二项式定理(II )1.从考查题型来看,涉及本知识点的题目以选择题、填空题为主,考查计数原理及二项式展开式中特定项或其系数等问题,2.从考查内容来看,主要考查利用两个计数原理及排列数、组合数公式,结合分类讨论思想考查完成事情的方法总数;考查利用二项式定理,求解二项展开式中特定项或其系数或系数的最大或最小问题等.3.从考查热点来看,排列、组合、二项式定理是高考命题的热点,根据两个计数原理及排列数、组合数公式确定完成事情的方法总数,同时注意方法的选用.二项展开式中特定项的系数问题是主要的考查内容,着重考查学生运用公式计算的能力.1.两个计数原理(1)分类加法计数原理:完成一件事有n 类不同的方案,在第一类方案中有1m 种不同的方法,在第二类中有2m 种不同的方法,…,在第n 类方案中有n m 种不同的方法,则完成这件事的所有方法种数为12n N m m m =+++.(2)分步乘法计数原理:完成一件事需要n 个不同的步骤,在第一个步骤中有1m 种不同的方法,在第二个步骤中有2m 种不同的方法,…,在第n 个步骤中有n m 种不同的方法,则完成这件事的所有方法种数为12n N m m m =⨯⨯⨯.(3)两个计数原理的区别在于完成事情的方法是可以完成事情的所有,还是完成事情的某一个步骤.分类加法计数原理中的各种方法都是相互独立的,任何一种方法都能够完成这件事情;分步乘法计数原理中各个步骤的方法是相互联系的,只有各个步骤都完成,才能完成这件事情.要注意两个计数原理的综合应用. 2.排列、组合(1)排列与排列数:一般的,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示. 排列数公式:!A (1)(2)(1)()!mn n n n n n m n m =---+=-.个不同元素中取出2)21 m =-⋅1-1若n 为偶数,则第12n +项的二项式系数2C nn 最大;若n 为奇数,则第112n -+ 和112n ++项的二项式系数12C n n -和12C n n +最大. (3)利用二项展开式的通项求特定项的系数时,可以通过建立方程找到该项是展开式的哪一项,然后再求得该项的系数.(4)二项展开式的系数和或差问题的求解策略通常是采用赋值法,令1x =,则可以求得二项展开式中所有项的系数的和;令1x =-,则可以求得二项展开式中所有项的系数正、负相间的和;若上述两式相加或相减,则可以得到展开式中所有的奇数项系数的和与偶数项系数的和;令0x =,则可以求得展开式中常数项的系数.(5)求解两个二项式乘积中一些特定项或特定项的系数的问题可以根据多项式的乘法法则,弄清楚这些特定的项的构成规律,然后再进行具体的计算.1.(2017高考新课标I ,理6)621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .352.(2017高考新课标II ,理6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A .12种B .18种C .24种D .36种3.(2017高考新课标III ,理4)错误!未找到引用源。

高考数学试题分类汇编 计数原理.pdf

高考数学试题分类汇编 计数原理.pdf

十四、计数原理 1.(重庆理4)的展开式中的系数相等,则n=A.6 B.7 C.8 D.9 【答案】B 2.(天津理5)在的二项展开式中,的系数为 A. B. C. D. 【答案】C 3.(四川理12)在集合中任取一个偶数和一个奇数构成以原点为起点的向量.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过的平行四边形的个数为,则 A. B. C. D. 【答案】D 基本事件:其中面积为的平行四边形的个数其中面积为的平行四边形的个数为其中面积为的平行四边形的个数其中面积为的平行四边形的个数其中面积为的平行四边形的个数;其中面积为的平行四边形的个数其中面积为的平行四边形的个数其中面积为的平行四边形的个数 4.(陕西理4)(x∈R)展开式中的常数项是 A.-20 B.-15C.15 D.20 【答案】C 5.(全国新课标理8)的展开式中各项系数的和为2,则该展开式中常数项为 (A)—40 (B)—20 (C)20 (D)40 【答案】D 6.(全国大纲理7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A.4种 B.10种 C.18种 D.20种 【答案】B 7.(福建理6)(1+2x)3的展开式中,x2的系数等于 A.80 B.40 C.20 D.10 【答案】B 8.(安徽理8)设集合则满足且的集合为 (A)57 (B)56 (C)49 (D)8 【答案】B 9.(安徽理12)设,则 . 【答案】0 10.(北京理12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个。

(用数字作答) 【答案】14 11.(浙江理13)设二项式(x-)6(a>0)的展开式中X的系数为A,常数项为B, 若B=4A,则a的值是 。

【答案】2 12.(山东理14)若展开式的常数项为60,则常数的值为 . 【答案】4 13.(广东理10)的展开式中,的系数是 (用数字作答) 【答案】84 14.(湖北理11)的展开式中含的项的系数为 (结果用数值表示) 【答案】17 15.(湖北理15)给个自上而下相连的正方形着黑色或白色。

2025届高中数学一轮复习课件《计数原理》ppt

2025届高中数学一轮复习课件《计数原理》ppt

高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.

高考 计数原理

高考 计数原理

高考:计数原理(1)排列与组合的主要公式①排列数公式:(1)(1)()()mn n A n n n m m n n m ==--+≤-…!!,(1)(2)21n n A n n n n ==--…!.②组合数公式:()mn n C m n m =-!!!(1)(1)()(1)21n n n m m n m m --+=≤-…….③组合数性质:(i )()m n m n n C C m n -=≤,11m m m n n n C C C -+=+; (ii )0122n nn n n n C C C C ++++=…;(iii )02413512n n n n n n n C C C C C C -+++=++++=…….常见的解题策略有以下几种: ①特殊元素优先安排的策略; ②合理分类与准确分步的策略; ③排列、组合混合问题先选后排的策略; ④正难则反、等价转化的策略; ⑤相邻问题捆绑处理的策略; ⑥不相邻问题插空处理的策略; ⑦定序问题除法处理的策略; ⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略; ⑩构造模型的策略.主要的计数思想有分类与分步、模型处理思想、优限法思想、正难则反思想、先选后排思想等;常见问题的类型基本上是组合与排列问题、至多与至少问题、相邻与不相邻问题等.要点二:二项式定理 关于二项式定理的知识 (1)二项式定理011()n n n r n r r n nn n n n a b C a C a b C a b C b --+=+++++……,其中各二项式系数就是组合数r n C ,展开式共有(n+1)项,第r+1项是1r n r rr n T C a b -+=.(2)二项展开式的通项公式二项展开式的第r+1项1r n r rr n T C a b -+=(r =0,1,…,n )叫做二项展开式的通项公式.(3)二项式系数的性质①对称性:r n rn n C C -=(r =0,1,2,…,n ).②递推性:11r r rn n n C C C -+=+③增减性与最大值:逐渐增大,随后又逐渐减小若n 是偶数,则中间项12n ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭第项的二项式系数最大,其值为2nn C .若n 是奇数,则中间两项1322n n ⎛++⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭第项和第项的二项式系数相等,并且最大,其值为1122n n nnCC-+=.④所有二项式系数和等于2n,即012n n n n n C C C +++=….奇数项的二项式系数和等于偶数项的二项式系数和,即021312n n n n n C C C C -++=++=…….类型一:两个计数原理1. 某学习小组有8名同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中男、女同学各有多少人? 【解析】设男生有x 人,则女生有(8-x )人,依题意,得:21383180x x C C A -⋅⋅=(1)(8)61802x x x -∴-⋅=, 即3298600x x x -++=,解得123562x x x ===-,,(舍),故男生有5人,女生有3人;或男生有6人,女生有2人.2.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有 ( )A .504种B .960种C .1008种D .1108种 【解析】分两类:甲、乙排1、2号或6、7号,共有2×214244A A A 种方法;甲、乙排中间,丙排7号或不排7号,共有24113243334()A A A A A +种方法;故共有1008种不同的排法.3.同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有()A.6种B.9种C.11种D.23种【解析】解法1:设四人A,B,C,D写的贺年卡分别是a,b,c,d,当A拿贺年卡b,则B可拿a,c,d中的任何一个,即B拿a,C拿d,D拿c或B拿c,D拿a,C拿d或B拿d,C拿a,D拿c,所以A 拿b时有三种不同分配方法.同理,A拿c,d时也各有三种不同的分配方式.由分类计数原理,四张贺年卡共有3+3+3=9种分配方式.解法2:让四人A,B,C,D依次拿一张别人送出的贺年卡.如果A先拿有3种,此时写被A拿走的那张贺年卡的人也有3种不同的取法.接下来,剩下的两个人都各只有一种取法.由分步计数原理,四张贺年卡不同的分配方式有3×3×1×1=9种.∴应选B.4.现有6名同学同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.56B.65C.5654322⨯⨯⨯⨯⨯D.6×5×4×3×2【解析】因为每名同学有5个讲座可选,6位同学共有5×5×5×5×5×5=56种选法.5.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648【解析】利用分类计数原理,共分两类:(1)0作个位,共2972A=个偶数;(2)0不作个位,共111488256A A A=个偶数,共计72+256=328个偶数,故选B.类型二:排列与组合及分类、分布原理的应用6. 下表是高考第一批录取的一份志愿表. 如果有4所重点院校,每所院校有3个专业是你较为满意的选择. 若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?【解析】填表过程可分两步.第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有34A种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其顺序,其中又包含三小步,因此总的排列数有222333A A A ⋅⋅.综合以上两步,由分步计数原理得不同的填表方法有:322243335184A A A A ⋅⋅⋅=种.7.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_______种.(用数字作答)【解析】 两类:第一棒是丙有11412448C C A =种传递方案,第一棒是甲、乙中一人有11421448C C A =种传递方案.因此共有方案48+48=96种.8.现安排甲、乙、丙、丁、戌5 名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戌都能胜任四项工作,则不同安排方案的种数是( ) A .152 B .126 C .90 D .54【解析】 分类讨论:若有2人从事司机工作,则方案有233318C A ⨯=;若有1人从事司机工作,则方案有123343108C C A ⨯⨯=种,所以共有18+108=126种,故B 正确.9. 8个人分两排坐,每排4人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排方法? 【解析】解法一:由题意可分为“乙、丙坐前排,甲坐在前排的8人做法”和“乙、丙坐后,甲坐在前排的8人做法”两类情况. 在每类情况下,划分“乙、丙坐下”,“甲坐下”,“其他五人坐下”三个步骤,因此共有不同的排法有:2152154254458640A A A A A A ⋅⋅+⋅⋅=种.解法二:采取“总方法数减去不合题意的方法总数”. 把“甲坐在第一排的8人坐法数”看成“总方法数”,这个数目是1747A A ⋅. 在这种前提下,不合题意的方法是“甲坐第一排,且乙、丙坐两排的8人坐法”,这个数目是1111542345A C A A A ⋅⋅⋅⋅. 其中第一个因数14A 表示甲坐在第一排的方法数,12C 表示从乙、丙中任选一人的方法数,13A 表示把选出的这个人安排在第一排的方法数,下一个14A 则表示乙、丙中未安排的那个人坐在第二排的方法数,55A 就是其他五人的坐法数,于是总的方法数为:171111547423458640A A A C A A A ⋅-⋅⋅⋅⋅=种.10.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 ( ) A .18 B .24 C .30 D .36【解析】 用间接法解答:四名学生中有两名学生分到一个班的种数是24C ,顺序有33A 种,而甲、乙被分到同一个班有正种,所以种数是23343330C A A -=.11.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A .70种B .80种C .100种D .140种【解析】 直接法:一男两女,有12545630C C =⨯=种,两男一女,有215410440C C =⨯=种,共计70种. 间接法:任意选取3984C =种,其中都是男医生有3510C =种,都是女医生有344C =种,于是符合条件的有84-10-4=70种.类型三:求二项展开式特定项和有关二项展开式的系数问题12. 已知223(3)nx x +的展开式各项系数和比它的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.【思路点拨】先由条件列方程求出n. (1)需考虑二项式系数的性质;(2)需列不等式确定r. 【解析】令x=1得展开式的各项系数之和为2(13)2n n+=,而展开式的二项式系数的和为0122n n n n n n C C C C ++++=…,故有222992n n -=,所以n=5.(1)因n=5,故展开式共有6项,其中二项式系数最大的项为第三、第四两项. 故223226335()(3)90T C x x x =⋅=,22232233345()(3)270T C x x x =⋅=. (2)设展开式中第r+1项的系数最大,21045233155()(3)3r r rrr rr T C x x C x+-+=⋅=⋅⋅,故有1155115533,33.r rr r r r r r C C C C --++⎧⋅≥⋅⎪⎨⋅≥⋅⎪⎩即31,613.51r r r r ⎧≥⎪⎪-⎨⎪≥⎪-+⎩ 解得7922r ≤≤. ,4r N r ∈∴=,即展开式中第5项的系数最大.22641243355()(3)405T C x x x =⋅=.13.6⎛⎫展开式中,3x 系数等于________. 【解析】42435615T C x ⎛⎫⎛== ⎝,所以3x 系数等于15. 14.在20()x 的展开式中,系数为有理数的项共有_________项.【解析】二项展开式的通项公式为20120)r r r r T C x -+==2020)r r r r C x y -(0≤r ≤20),要使系数为有理数,则r 必为4的倍数,所以r 可为0、4、8、12、16、20共6种,故系数为有理数的项共有6项.15.(2017 南昌模拟)若()43218x ax ⎛- ⎝的展开式中含3x 项的系数是16,则a = . 【解析】42ax ⎛ ⎝的展开式的通项公式为:()4214rx r r T C ax -+⎛= ⎝=()584241,0,1,2,3,4r rrrC axr ---=.令5832r -=,得r =2; 令5822r -=-,得4r = . ∴依题设,有224816C a -= ,解得2a =±.故答案为:±2.。

高考数学计数原理

高考数学计数原理

回扣8 计数原理1.分类计数原理完成一件事,可以有n 类办法,在第一类办法中有m 1种方法,在第二类办法中有m 2种方法,……,在第n 类办法中有m n 种方法,那么完成这件事共有N =m 1+m 2+…+m n 种方法(也称加法原理). 2.分步计数原理完成一件事需要经过n 个步骤,缺一不可,做第一步有m 1种方法,做第二步有m 2种方法,……,做第n 步有m n 种方法,那么完成这件事共有N =m 1×m 2×…×m n 种方法(也称乘法原理). 3.排列(1)排列的定义:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,按照一定的顺序排成一列,叫做从叫做从n 个不同元素中取出m 个元素的一个排列.个元素的一个排列.(2)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用A m n 表示.表示. (3)排列数公式:A m n =n (n -1)(n -2)…(n -m +1).(4)全排列:n 个不同元素全部取出的一个排列,叫做n 个元素的一个全排列,A n n =n ·(n -1)·1)·((n -2)·…·2·2·11=n !排列数公式写成阶乘的形式为A mn =n !(n -m )!,这里规定0!=1.4.组合(1)组合的定义:从n 个不同元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.个元素的一个组合.(2)组合数的定义:组合数的定义:从从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,个元素的所有不同组合的个数,叫做从叫做从n 个不同元素中取出m 个元素的组合数,用C m n 表示.表示.(3)组合数的计算公式:C mn =A m n A m m =n !m !(n -m )!=n (n -1)(n -2)…(n -m +1)m !,由于0!=1,所以C 0n =1. (4)组合数的性质:①C m n =C n -m n ;②C m n +1=C mn +C m -1n . 5.二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C r n a n -r b r +…+C nn b n (n ∈N *).这个公式叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其中的系数C rn (r =0,1,2,…,n )叫做二项式系数.式中的C rn a n -r b r 叫做二项展开式的通项,用T r +1表示,即展开式的第r +1项:T r +1=C rn an -r b r.6.二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C nn .7.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C mn =C n -mn .(2)增减性与最大值:二项式系数C r n,当r <n +12时,二项式系数是递增的;当r >n +12时,二项式系数是递减的.项式系数是递减的.当n 是偶数时,那么其展开式中间一项112n T -+的二项式系数最大.的二项式系数最大.当n 是奇数时,那么其展开式中间两项112n T -+和112n T ++的二项式系数相等且最大.的二项式系数相等且最大.(3)各二项式系数的和各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C r n +…+C n n =2n. 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.1.关于两个计数原理应用的注意事项.关于两个计数原理应用的注意事项(1)分类和分步计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.事.(2)混合问题一般是先分类再分步.混合问题一般是先分类再分步. (3)分类时标准要明确,做到不重复不遗漏.分类时标准要明确,做到不重复不遗漏.(4)要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律. 2.对于有附加条件的排列、组合应用题,通常从三个途径考虑:.对于有附加条件的排列、组合应用题,通常从三个途径考虑: (1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素; (2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数. 3.排列、组合问题的求解方法与技巧.排列、组合问题的求解方法与技巧(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.正难则反,等价条件. 4.对于二项式定理应用时要注意:.对于二项式定理应用时要注意:(1)区别“项的系数”与“二项式系数”,审题时要仔细.区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a ,b 有关,可正可负,二项式系数只与n 有关,恒为正.有关,恒为正.(2)运用通项求展开的一些特殊项,通常都是由题意列方程求出r ,再求所需的某项;有时需先求n ,计算时要注意n 和r 的取值范围及它们之间的大小关系.的取值范围及它们之间的大小关系. (3)赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1. (4)在化简求值时,注意二项式定理的逆用,要用整体思想看待a 、b .1.用1,2,3三个数字组成一个四位数,三个数字组成一个四位数,规定这三个数必须全部使用,规定这三个数必须全部使用,规定这三个数必须全部使用,且同一数字不能相邻出且同一数字不能相邻出现,这样的四位数有________个.个. 答案 18解析 利用树状图考察四个数位上填充数字的情况,如:1îïïíïì2îïíïì 1îíì233îíì123îïíïì1îíì 232îíì 13,共可确定8个四位数,但其中不符合要求的有2个,所以所确定的四位数应有18个.2.某学习小组男女生共8人,现从男生中选2人,女生中选1人,分别去做3种不同的工作,共有90种不同的选法,则男、女生人数分别为________. 答案 3,5解析 设男生人数为n ,则女生人数为8-n ,由题意可知C 2n C 18-n A 33=90,即C 2n C 18-n =15,解得n =3,所以男、女生人数分别为3、5.3.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有________种.种. 答案 150解析 先将5个人分成三组,(3,1,1)或(1,2,2),分组方法有C 35+C 15C 24C 222=25(种),再将三组全排列有A 33=6(种),故总的方法有25×6=150(种).4.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有________种.种. 答案 420解析 因为要求3位班主任中男、女教师都要有,所以共有两种情况,1男2女或2男1女.若选出的3位教师是1男2女,则共有C 15C 24A 33=180(种)不同的选派方案,若选出的3位教师是2男1女,则共有C 25C 14A 33=240(种)不同的选派方案,所以共有180+240=420(种)不同的选派方案.5.若二项式(2x +a x )7的展开式中1x 3的系数是84,则实数a 等于________. 答案 1解析 二项式(2x +a x )7的通项公式为T r +1=C r 7(2x )7-r (a x)r=C r 727-r a r x 7-2r ,令7-2r =-3,得r =5.故展开式中1x3的系数是C 5722a 5=84,解得a =1.6.(x -1)4-4x (x -1)3+6x 2(x -1)2-4x 3(x -1)+x 4等于________. 答案 1解析 (x -1)4-4x (x -1)3+6x 2(x -1)2-4x 3(x -1)+x 4=((x -1)-x )4=1.7.某班准备从甲、乙等七人中选派四人发言,要求甲、乙两人中至少有一人参加,那么不同的发言顺序有________种.种. 答案 720解析 A 47-A 45=720(种).8.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种一种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为________.答案 420解析 若5个花池栽了5种颜色的花卉,方法有A 55种,若5个花池栽了4种颜色的花卉,则2,4两个花池栽同一种颜色的花,或3,5两个花池栽同一种颜色的花,方案有2A 45种;若5个花池栽了3种颜色的花卉,方案有A 35种,所以最多有A 55+2A 45+A 35=420(种)方案.9.若èçæø÷öx +a 3x 8的展开式中,x 4的系数为7,则实数a =________. 答案 12解析 T r +1=C r 8x8-rèçæø÷öa 3x r =a r C r 8x 8-43r ,由8-43r =4得r =3,由已知条件a 3C 38=7,则a 3=18,a =12.10.圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为________. 答案 120解析 圆上任意三点都不共线, 因此有三角形C 310=120(个).11.一排共有9个座位,现有3人就坐,若他们每两人都不能相邻,每人左右都有空座,而且至多有两个空座,则不同坐法共有________种.种.答案 36 解析 可先考虑3人已经就座,共有A 33=6(种),再考虑剩余的6个空位怎么排放,根据要求把6个空位分为1,1,2,2,放置在由已经坐定的3人产生的4个空中,共有C 24=6(种),所以不同的坐法共有6×6=36(种).12.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机(甲、乙、丙、丁、戊)准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法有________种.种. 答案 24解析 先把甲、先把甲、乙捆绑在一起有乙捆绑在一起有A 22种情况,种情况,然后对甲、然后对甲、乙整体和戊进行排列,乙整体和戊进行排列,有有A 22种情况,这样产生了三个空位,插入丙、丁,有A 23种情况,所以着舰方法共有A 22A 22A 23=2×2×6=24(种).13.实验员进行一项实验,先后要实施5个程序(A ,B ,C ,D ,E ),其中程序A 只能出现在第一步或最后一步,程序C 或D 在实施时必须相邻,则实验顺序的编排方法共有________种.种. 答案 24解析 依题意,当A 在第一步时,共有A 22A 33=12(种);当A 在最后一步时,共有A 22A 33=12(种),所以实验的编排方法共有24种.14.用1,2,3,4,5,6组成数字不重复的六位数,组成数字不重复的六位数,满足满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为________. 答案 288解析解析 从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有A 23=6(种),先排3个奇数,有A 33=6(种),形成了4个空,将“整体”和另一个偶数插在3个奇数形成的4个空中,方法有A 24=12(种).根据分步计数原理求得此时满足条件的六位数共有6×6×12=432(种).若1排在两端,1的排法有A 12A 22=4(种),形成了3个空,将“整体”和另一个偶数插在3个奇数形成的3个空中,方法有A 23=6(种),根据分步计数原理求得此时满足条件的六位数共有6×4×6=144(种),故满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为432-144=288.。

计数原理-高考数学复习

计数原理-高考数学复习

时,再选2名男生,有 C62 种方法;然后排队长、副队长位置,有A24
种方法.由分步乘法计数原理知,共有 C62 A24 =180(种)选法.所以
依据分类加法计数原理知,共有480+180=660(种)不同的选法.
目录
法二 不考虑限制条件,共有 A28 C62 种不同的选法,而没有
女生的选法有A26 C42 种,故至少有1名女生的选法有 A28 C62 -
=70(种).故选B.
4
4
4 4
目录
解题技法
定序问题的求解方法
n 个不同元素的全排列有 种排法, m 个特殊元素的全排列有



种排法.当这 m 个元素顺序确定时,共有
种排法.


提醒 对于定序问题,可先不考虑顺序限制,排列后,再除以定序元
素的全排列.
目录
考向3 分组、分配问题
(−1)!
(−1)!
−1
的阶乘形式,显然是正确的; −1 =

,所
[(−1)−(−1)]!
(−)!
·(−1)!
·(−1)!
!
−1
1
以③不正确; ·−1 =



[(−1)−(−1)]!
(−)! (−)!

,所以④正确.
目录
1. 分类相加,分步相乘,有序排列,无序组合,特殊元素(位置)优
间接法.
目录
2. 组合问题常见的两类题型
(1)“含有”或“不含有”问题:“含”,则先将这些元素取
出,再由另外元素补足;“不含”,则先将这些元素剔除,
再从剩下的元素中去选取;
(2)“至少”或“最多”问题:用直接法和间接法都可以求解,

第六章 计数原理(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第六章 计数原理(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第六章计数原理(公式、定理、结论图表)一、计数原理1.分类加法计数原理概念:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,…,在第n 类方案中有n m 种不同的方法,那么完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法(也称加法原理)特征:(1)任何一类方案都能完成这件事;(2)各类方案之间相互独立;(3)分类要做到“不重不漏”2.分步乘法计数原理概念:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么,完成这件事共有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法(也称乘法原理)特征:(1)任何一步都不能单独完成这件事;(2)各步之间相互依存;(3)分步要做到“步骤完整”3.两个原理的联系与区别⑴.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.⑵区别分类加法计数原理分步乘法计数原理区别一完成一件事共有n 类办法,关键词是“分类”完成一件事共有n 个步骤,关键词是“分步”区别二每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事区别三各类办法之间是互斥的、并列的、独立的各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复4、计数原理的解题步骤(1)指明要完成一件什么事,并依事件特点确定是“分n 类”还是“分n 步”;(2)求每“类”或每“步”中不同方法的种数;(3)利用“相加”或“相乘”得到完成事件的方法总数;(4)作答。

5、从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数n m m m m =⋅⋅⋅⋅。

第85讲、计数原理(学生版)2025高考数学一轮复习讲义

第85讲、计数原理(学生版)2025高考数学一轮复习讲义

第85讲计数原理知识梳理知识点1、分类加法计数原理完成一件事,有n 类办法,在第1类办法中有1m 种不同的办法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++ 种不同的方法.知识点2、分步乘法计数原理完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⋅⋅⋅ 种不同的方法.注意:两个原理及其区别分类加法计数原理和“分类”有关,如果完成某件事情有n 类办法,这n 类办法之间是互斥的,那么求完成这件事情的方法总数时,就用分类加法计数原理.分步乘法计数原理和“分步”有关,是针对“分步完成”的问题.如果完成某件事情有n 个步骤,而且这几个步骤缺一不可,且互不影响(独立),当且仅当依次完成这n 个步骤后,这件事情才算完成,那么求完成这件事情的方法总数时,就用分步乘法计数原理.当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法.知识点3、两个计数原理的综合应用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.必考题型全归纳题型一:分类加法计数原理的应用例1.(2024·全国·高三专题练习)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36例2.(2024·四川成都·双流中学校考模拟预测)如图,小黑圆表示网络的结点,结点之间的连线表示它们有网线相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息()A.26B.24C.20D.19例3.(2024·江苏镇江·高三扬中市第二高级中学校考阶段练习)定义:“各位数字之和为7的四位数叫好运数”,比如1006,2203,则所有好运数的个数为()A.82B.83C.84D.85变式1.(2024·全国·高三专题练习)从1,2,3,4,5,6中选取4个数字,组成各个数位上的数字既不全相同,也不两两互异的四位数,记四位数中各个数位上的数字从左往右依次≤≤≤,则满足条件的四位数的个数为.为a,b,c,d,且要求a b c d变式2.(2024·全国·高三专题练习)已知直线方程0Ax By +=,若从0、1、2、3、5、7这六个数中每次取两个不同的数分别作为A 、B 的值,则0Ax By +=可表示条不同的直线.变式3.(2024·辽宁·高三校联考开学考试)某迷宫隧道猫爬架如图所示,B ,C 为一个长方体的两个顶点,A ,B 是边长为3米的大正方形的两个顶点,且大正方形由完全相同的9小正方形拼成.若小猫从A 点沿着图中的线段爬到B 点,再从B 点沿着长方体的棱爬到C 点,则小猫从A 点爬到C 点可以选择的最短路径共有条.【解题方法总结】分类标准的选择(1)应抓住题目中的关键词、关键元素、关键位置.根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复,但也不能有遗漏.题型二:分步乘法计数原理的应用例4.(2024·广东深圳·高三校考阶段练习)甲、乙、丙3个公司承包6项不同的工程,甲承包1项,乙承包2项,丙承包3项,则共有种承包方式(用数字作答).例5.(2024·全国·高三专题练习)若一个三位数同时满足:①各数位的数字互不相同;②任意两个数位的数字之和不等于9,则这样的三位数共有个.(结果用数字作答)例6.(2024·安徽亳州·高三蒙城第一中学校考阶段练习)将3名男生,2名女生排成一排,要求男生甲必须站在中间,2名女生必须相邻的排法种数有()A .4种B .8种C .12种D .48种变式4.(2024·四川成都·高三统考开学考试)“数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相同,若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从小到大排列的,则不同的填法种数为()A.72B.108C.144D.196变式5.(2024·全国·高三专题练习)三棱柱各面所在平面将空间分成不同部分的个数为()A.18B.21C.24D.27变式6.(2024·河北石家庄·高三校联考期中)临近春节,某校书法爱好小组书写了若干副春联,准备赠送给四户孤寡老人.春联分为长联和短联两种,无论是长联或短联,内容均不相同.经过调查,四户老人各户需要1副长联,其中乙户老人需要1副短联,其余三户各要2副短联.书法爱好小组按要求选出11副春联,则不同的赠送方法种数为()A.15120B.7560C.12520D.12160变式7.(2024·北京东城·高三北京市广渠门中学校考开学考试)鱼缸里有8条热带鱼和2条冷水鱼,为避免热带鱼咬死冷水鱼,现在把鱼缸出孔打开,让鱼随机游出,每次只能游出1条,直至2条冷水鱼全部游出就关闭出孔,若恰好第3条鱼游出后就关闭了出孔,则不同游出方案的种数为()A.16B.32C.36D.48变式8.(2024·湖南·高三临澧县第一中学校联考开学考试)在如图所示的表格中填写1,2,3三个数字,要求每一行、每一列均有这3个数字,则不同的填法种数为().A.6B.9C.12D.18变式9.(2024·黑龙江佳木斯·高三校考开学考试)甲、乙分别从4门不同课程中选修1门,且2人选修的课程不同,则不同的选法有()种.A.6B.8C.12D.16变式10.(2024·陕西西安·西安市第三十八中学校考模拟预测)从六人(含甲)中选四人完成四项不同的工作(含翻译),则甲被选且甲不参加翻译工作的不同选法共有()A.120种B.150种C.180种D.210种变式11.(2024·贵州黔东南·凯里一中校考模拟预测)某足球比赛有A,B,C,D,E,F,G,H,J共9支球队,其中A,B,C为第一档球队,D,E,F为第二档球队,G,H,J为第三档球队,现将上述9支球队分成3个小组,每个小组3支球队,若同一档位的球队不能出现在同一个小组中,则不同的分组方法有()A.27种B.36种C.72种D.144种【解题方法总结】利用分步乘法计数原理解题的策略(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成.题型三:两个计数原理的综合应用例7.(2024·全国·高三专题练习)第31届世界大学生夏季运动会于6月26日至7月7日在成都举办,现在从6男4女共10名青年志愿者中,选出3男2女共5名志愿者,安排到编号为1、2、3、4、5的5个赛场,每个赛场只有一名志愿者,其中女志愿者甲不能安排在编号为1、2的赛场,编号为2的赛场必须安排女志愿者,那么不同安排方案有()A.1440种B.2352种C.2880种D.3960种例8.(2024·江苏南京·高三校联考阶段练习)从2位男生,3位女生中安排3人到三个场馆做志愿者,每个场馆各1人,且至少有1位男生入选,则不同安排方法有()种A.16B.36C.54D.96例9.(2024·上海黄浦·高三上海市敬业中学校考开学考试)三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则同一个项目最多只有2人参赛的情况共有种.变式12.(2024·广东·高三河源市河源中学校联考阶段练习)现有5名同学从北京、上海、深圳三个路线中选择一个路线进行研学活动,每个路线至少1人,至多2人,其中甲同学不选深圳路线,则不同的路线选择方法共有种.(用数字作答)变式13.(2024·浙江·高三舟山中学校联考开学考试)杭州亚运会举办在即,主办方开始对志愿者进行分配.已知射箭场馆共需要6名志愿者,其中3名会说韩语,3名会说日语.目前可供选择的志愿者中有4人只会韩语,5人只会日语,另外还有1人既会韩语又会日语,则不同的选人方案共有种.(用数字作答).变式14.(2024·江苏扬州·高三仪征中学校考阶段练习)已知如图所示的电路中,每个开关都有闭合、不闭合两种可能,因此5个开关共有52种可能,在这52种可能中,电路从P到Q接通的情况有种.变式15.(2024·湖北·高三校联考开学考试)从5男3女共8名学生中选出组长1人,副组长1人,普通组员3人组成5人志愿组,要求志愿组中至少有3名男生,且组长和副组长性别不同,则共有种不同的选法.(用数字作答)变式16.(2024·湖北·高三校联考阶段练习)有两个家庭共8人暑假到新疆结伴旅游(每个家庭包括一对夫妻和两个孩子),他们在乌鲁木齐租了两辆不同的汽车进行自驾游,每辆汽车乘坐4人,要求每对夫妻乘坐同一辆汽车,且该车上至少有一个该夫妻自己的孩子,则满足条件的不同乘车方案种数为.变式17.(2024·福建福州·高三统考开学考试)“二十四节气”是中国古代劳动人民伟大的智慧结晶,其划分如图所示.小明打算在网上搜集一些与二十四节气有关的古诗.他准备在春季的6个节气与夏季的6个节气中共选出3个节气,若春季的节气和夏季的节气各至少选出1个,则小明选取节气的不同情况的种数是()A.90B.180C.270D.360【解题方法总结】利用两个计数原理解题时的三个注意点(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事.(2)分类时,标准要明确,做到不重不漏,有时要恰当画出示意图或树状图.(3)对于复杂问题,一般是先分类再分步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考:计数原理
(1)排列与组合的主要公式 ①排列数公式:(1)(1)()()m n n A n n n m m n n m ==--+≤-…!!
, (1)(2)21n n A n n n n ==--…!. ②组合数公式:()m n n C m n m =-!!!(1)(1)()(1)21
n n n m m n m m --+=≤-……. ③组合数性质:(i )()m n m n n C C m n -=≤,11m m m n n n
C C C -+=+; (ii )0122n n n n n n C C C C ++++=…;
(iii )02413512n n n n n n n C C C C C C -+++=++++=…….
常见的解题策略有以下几种:
①特殊元素优先安排的策略;
②合理分类与准确分步的策略;
③排列、组合混合问题先选后排的策略;
④正难则反、等价转化的策略;
⑤相邻问题捆绑处理的策略;
⑥不相邻问题插空处理的策略;
⑦定序问题除法处理的策略;
⑧分排问题直排处理的策略;
⑨“小集团”排列问题中先整体后局部的策略;
⑩构造模型的策略.
主要的计数思想有分类与分步、模型处理思想、优限法思想、正难则反思想、先选后排思想等;常见 关于二项式定理的知识
(1)二项式定理
011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++……,其中各二项式系数就是组合数r n
C ,展开式共有(n+1)项,第r+1项是1r n r r r n T C a
b -+=.
(2)二项展开式的通项公式
二项展开式的第r+1项1r n r r r n T C a b -+=(r =0,1,…,n )叫做二项展开式的通项公式.
(3)二项式系数的性质
①对称性:r n r n n
C C -=(r =0,1,2,…,n ). ②递推性:11r r r n n n C C C -+=+
③增减性与最大值:逐渐增大,随后又逐渐减小
若n 是偶数,则中间项12n ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
第项的二项式系数最大,其值为2n n C . 若n 是奇数,则中间两项1322n n ⎛
++⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
第项和第项的二项式系数相等,并且最大,其值为1
1
22n n n n C C -+=.
④所有二项式系数和等于2n ,即012n n n n n C C C +++=….
奇数项的二项式系数和等于偶数项的二项式系数和,即021312n n n n n C C C C -++=++=…….
类型一:两个计数原理
1. 某学习小组有8名同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中男、女同学各有多少人?
2.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有 ( )
A .504种
B .960种
C .1008种
D .1108种
3. 同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有( )
A .6种
B .9种
C .11种
D .23种
4.现有6名同学同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是
( )
A .56
B .65
C .5654322
⨯⨯⨯⨯⨯ D .6×5×4×3×2 5.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 ( )
A .324
B .328
C .360
D .648
类型二:排列与组合及分类、分布原理的应用
6. 下表是高考第一批录取的一份志愿表. 如果有4所重点院校,每所院校有3个专业是你较为满意的选择. 若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?
7.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_______种.(用数字作答)
8.现安排甲、乙、丙、丁、戌5 名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戌都能胜任四项工作,则不同安排方案的种数是( )
A .152
B .126
C .90
D .54
9. 8个人分两排坐,每排4人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排方法?
10.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 ( )
A .18
B .24
C .30
D .36
11.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )
A .70种
B .80种
C .100种
D .140种
类型三:求二项展开式特定项和有关二项展开式的系数问题
12. 已知223(3)n
x x +的展开式各项系数和比它的二项式系数和大992.
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项. 13.
6
⎛⎫展开式中,3x 系数等于________. 14.
在20()x 的展开式中,系数为有理数的项共有_________项. 15.(2017 南昌模拟)若(
)43218x ax ⎛- ⎝的展开式中含3x 项的系数是16,则a = .。

相关文档
最新文档