轴流通风机的工程设计方法

合集下载

轴流通风机安装施工工艺标准

轴流通风机安装施工工艺标准

轴流通风机安装施工工艺标准(标准编号)1. 适用范围本工艺标准适用于高、中、低压的各类轴流式通风机的安装工程,包括一般通风换气用轴流式通风机、锅炉轴流式通风机、矿井轴流式通风机、隧道轴流式通风机及其他用途轴流式通风机(如冷却塔用轴流式通风机)等。

2. 施工准备2.1 技术准备2.1.1 安装前,应掌握有关设备安装的技术资料,包括设备参数表,施工图纸,供货商提供的安装或装备详图,安装运行和维护手册,基础要求、载荷、紧固件有关资料等;2.1.2 有关施工标准规范(1)《压缩机、风机、泵安装工程施工及验收规范》GB50275-98(2)《化工机器安装工程施工及验收通用规范》HG20203-2000(3)《化工设备安装工程质量检验评定标准》HG20236-93(4)《一般用途轴流式通风机技术条件》GB/T13274-912.2 作业人员2.2.1 参加轴流式通风机安装作业人员主要包括设备安装工程师、钳工、电工、电焊工、气焊工、起重工、架子工等,人员数量根据工程量大小和工期要求配置。

2.2.2 上述各作业工种人员必须经过技术培训并经考试合格,持相关作业的上岗操作证。

2.3 设备、材料2.3.2 施工用的辅助材料如型钢、电焊条、垫铁、地脚螺栓等,应使用厂家要求的型号和规格,非指定产品必须要求材料供应商提供材料的材质证明及合格保证。

2.3.3 风机润滑油(脂)等应按风机说明书要求选用,一般由建设单位供应。

2.3.4 风机备品备件应按原设备装配图型号选用,并应对材质外观质量、尺寸等进行测量检查。

2.4 主要机具2.4.1 施工机具:吊机,卷扬机、倒链(根据风机重量、安装位置等选用)、电焊机、电气焊工具、千斤顶、各类扳手、拉马、铁锤、铜棒等。

2.4.2 测量器具:水准仪、框式水平仪、游标卡尺、塞尺、钢板尺、百分表、线坠、连通管等。

以上测量器具必须具有相关单位检验合格证,并在有效期内。

2.5 作业条件2.5.1 图纸会审、技术交底已进行,安装方案已经批准。

矿井通风机的选型设计说明

矿井通风机的选型设计说明

第三章矿井通风设备选型设计第一节矿井通风设备选型设计概要一、矿井通风设备选型设计根本原则矿井通风机选型设计的主要任务是合理选择通风机的型式、型号(叶轮直径),确定电动机的容量、型号及传动方式,确定通风机的运转工况点。

矿井通风设备能否连续正常运转,关系着煤矿的安全生产,运转效率的凹凸影响着矿井的电力消耗及生产本钱。

因此,矿井通风机选型设计中的根本原则,就是保证通风机运转的牢靠性及经济技术合理性。

依据这个原则,在矿井通风机选型设计中,应充分考虑以下问题:1保证安全运转矿井通风机的安设地点、配置方式、备用台数,必需符合《煤矿安全规程》规定,优先考虑选择运行牢靠,便于维护检修的产品做为矿井通风机,以保证其能不连续地向井下供给足够数量的颖空气,满足安全、生产的需要.2设备性能符合矿井的需要通常状况,矿井投产初期产量较低,巷道较短,因之需要的风量较小,通风的阻力较小,随着矿井生产的进展,其需要的风量及通风的阻力也将渐渐增加。

为了保证通风机的经济运转,在选型设计时,既要考虑到初期的需要,也要考虑到矿井的进展,使其整个效劳期间风量、负(正)压均能满足矿井通风的需要,在比较高效的工作区运转。

3经济合理选择通风机时,不但要考虑其设备、安装及土建工程费用,而且要考虑其运转、维护费用,要把初期的建设投资和投入使用后的运转、维护费用结合一起进展比照选择,以保证通风机在整个效劳期间的经济合理性。

4噪声符合规定选择通风机时,应使其噪声符合环境保护的规定。

假设达不到规定要求时,应考虑消声措施。

二、矿井通风设备选型设计的根本要求1应满足第一水平各个时期的负压变化,并适当照看下一水平的通风要求,当负压变化较大时,可考虑分期选择电动机,但初装电动机的使用年限不宜少于10 年;2应留有肯定的余量,轴流式通风机在最大设计负压和风量时,轮叶安装角度一般至少比允许围小 50;离心式通风机的设计转速,一般不大于允许最大转速的90%,3通风设备(包括风道,风门)的漏风损失,当风井不作提升用时,按风量的 10~15%计算,当为箕斗井时,按15~20%计算,罐笼井时,按25~30%计算,但罐笼井一般不应作为出风井。

船用轴流通风机cb标准-概述说明以及解释

船用轴流通风机cb标准-概述说明以及解释

船用轴流通风机cb标准-概述说明以及解释1.引言1.1 概述船用轴流通风机CB标准的概述部分旨在简要介绍本文的主题和内容。

本部分将从船用轴流通风机的定义、应用范围以及CB标准的背景等方面进行说明。

在船舶行业中,为了保持船舱内良好的通风环境,提供船员和乘客的健康与安全,船用轴流通风机被广泛应用。

船用轴流通风机是一种根据离心力原理运作的通风设备,通过其特有的轴流设计,可以有效地排除船舱内的污浊空气,并引入新鲜空气。

本文将重点关注船用轴流通风机的CB标准。

CB标准是由船舶行业相关机构制定的一项指导性准则,旨在规范船用轴流通风机的设计、制造和使用要求。

CB标准的制定和应用对于确保船舶通风系统的可靠性、高效性以及安全性具有重要意义。

文章将详细介绍CB标准的制定过程和背景。

制定CB标准的目的是为了促进船用轴流通风机的技术进步和标准化,以及提升通风系统的整体性能和质量。

CB标准的制定凝聚了行业内专家和学者的智慧和经验,对于推动船用轴流通风机的发展具有重要意义。

通过本文的研究,读者将了解CB标准在船舶通风系统中的重要性以及其在保障船舶安全和船员健康方面的作用。

除此之外,本文还将介绍CB 标准的应用案例,展示CB标准在实际船舶工程中的应用效果。

在接下来的章节中,我们将详细探讨船用轴流通风机的基本原理和特点,以及CB标准的制定和应用。

通过深入研究和分析,我们希望能够提高人们对于船用轴流通风机CB标准的认知和理解,为船舶通风系统的发展和应用提供有益的借鉴和指导。

1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将按照以下顺序对船用轴流通风机CB标准进行详细介绍和分析:第一部分为引言部分,主要包括概述、文章结构和目的。

在概述中,将对船用轴流通风机CB标准的重要性和背景进行简要介绍,引出本文的研究内容。

接着,会详细说明文章的结构,给读者展示全文的组织框架和内容安排。

最后,说明本文的研究目的,明确本文的主要研究目标和意义。

轴流通风机的优化气动设计理论及方法

轴流通风机的优化气动设计理论及方法

轴流通风机的优化气动设计理论及方法
在轴流通风机的空气动力设计中日益趋向采用优化设计方法,即在满足轴流通风机设计参数及各种工程约束条件下,合理选择计算通风机的气动参数和结构参数,从而使通风机的效率提高、噪声降低、尺寸小及重量轻。

我们多年来一直致力于轴流通风机的优化气动设计理论研究及其气动设计软件的开发。

研究内容主要包括:轴流通风机的最优流型设计、轴流通风机结构参数的优化选择计算以及轴流通风机的多目标优化设计理论;气动设计软件主要包括其核心的优化气动设计部分、有关参数输入界面、风机结构参数输出界面以及与CAD的接口,以期达到输入设计性能参数后,能实现轴流通风机的自动气动优化设计,自动输出满足用户所需风机性能和要求,诸如高效率、低噪声、重量轻、安全可靠等单一指标或多指标设计要求的风机结构参数,并能自动输出叶片、叶轮、导流器、机壳等主要设计图纸。

目前该设计软件已经完成其核心的优化气动设计部分,输入与输出界面等还有待解决。

该轴流通风机优化气动设计软件经过多种轴流通风机的设计实践检验,例如,消防排烟轴流风机、地铁单向运转排烟轴流通风机(专利号:Z1.9)、地铁隧道双向可逆运转排烟轴流通风机(专利号:Z1.9。

该产品获得2004年上海国际流体机械展览会金奖)、高效率低噪声纺织轴流通风机(专利号:Z1.7)、大风量高压力喷雾轴流通风机(专利号:Z1.Oo2005年12月通过江苏省科技厅组织的新产品鉴定。

鉴定委员会专家一致认为,该产品主要技术性能指标达到国内领先水平,适合纺织行业等空调系统的需求。

该项目于2006年获得江苏省科技进步三等奖)等,已经充分证明了该轴流通风机优化气动设计软件的实用性和可匏性。

轴流通风机安装

轴流通风机安装

(四)轴流通风机安装1、安装流程编写施工方案、施工准备开箱检验及保管基础验收吊装就位初找正、找平地脚螺栓灌浆与养护精找正找平二次灌浆与养护联轴器精对中试运条件确认单机试车交工基础合格证、工序交接记录安装记录及隐蔽工程记录风道安装风机对中记录试运记录交接验收证书电机通电、试验开箱检验记录找正找平复验2、风机安装工艺要求(1)施工准备A、编写施工方案,上报监理单位批准后实施;B、对施工人员进行技术交底,准备各种安装用机具,施工现场进行清理;(2)开箱检验A、开箱检验时必须由业主代表、监理单位代表、供货单位代表及施工单位代表共同参与进行,开箱检验前应具备下列技术资料:a、风机的出厂合格证、质量证明书、操作使用说明书;b、供货单位提供的装箱清单。

B、风机的开箱检验应符合下列规定:a、核查随机资料是否齐全;b、检查风机表面是否锈蚀、是否有严重的碰撞痕迹和损坏现象;c、检查风机的附件、内件、零部件是否齐全完好。

d、开箱检验完毕后,对于暂不安装的零件、易损件等应设专人、专库妥善保管。

e、开箱检验完毕后及时填写开箱检验记录。

(3)基础验收A、风机安装前由基础施工单位向安装单位进行基础验交,同时提交质量证明书、强度试验报告、测量记录等施工技术资料,并办理交接手续。

B、基础检查验收要求:a、基础外观不应有裂纹、蜂窝、孔洞及露筋等缺陷;强度达到设计要求,预埋螺栓的螺纹部分应无损坏,预留螺栓孔应清理干净;b、核实基础螺栓中心是否与设备螺栓孔距相符;c、基础尺寸及位置应严格符合设计和规范的规定,基础上应明显标出纵横中心线、标高基准线;d、基础尺寸及位置允许偏差应符合下表要求:基础尺寸及位置允许偏差表项次偏差名称允许偏差(mm)1 基础坐标位置(纵横轴线)±202 基础各不同平面标高-203基础上平面外形尺寸凸台上平面外形尺寸凹穴尺寸±20-20+204 基础上平面的不水平度:每米全长5105竖向偏差:每米全长5206 预埋地脚螺栓的:标高(顶端)中心距(在根部和顶部预埋)+20±27 预埋地脚螺栓的:中心位置深度孔壁铅垂度±10+20108 预埋活动地脚螺栓的:标高中心位置+20±5(4)风机的安装1)垫铁安装安装垫铁前,应将基础表面铲好麻面,麻点深度一般不小于10mm,密度以每平方分米内有3~5点为宜。

通风系统工程方案设计

通风系统工程方案设计

通风系统工程方案设计一、前言通风系统是现代建筑中必不可少的一部分,它可以改善室内空气质量,保持室内舒适度,并且对于建筑物的长期使用寿命也有着重要的影响。

因此,通风系统的设计方案至关重要。

本文将针对通风系统工程的方案设计进行探讨与讨论,以期提供对通风系统设计方案有所了解、应用。

二、通风系统工程的基本原理通风系统工程的基本原理是通过通风设备将新鲜空气引入室内,同时将污浊空气排出室外,以实现室内空气的循环更新。

通风系统包括通风机、风口、排风口、风管以及相关的控制系统等。

1. 通风机通风机是通风系统的核心设备,它通过驱动空气进行循环流动,可以分为离心式通风机、轴流式通风机等。

2. 风口风口是通风系统中用于引入新鲜空气的设备,它通常安装在室内的墙壁或天花板上。

风口的大小、位置和数量需要根据建筑物的使用需求和空间布局来确定。

3. 排风口排风口用于排出室内的污浊空气,通常安装在厨房、卫生间等易产生污染的区域。

4. 风管风管是连接通风机、风口和排风口的管路,主要用于空气的传输。

风管的设计需要考虑通风系统的风量、阻力等因素。

5. 控制系统通风系统的控制系统可以分为手动控制和自动控制两种。

手动控制需要人工干预,而自动控制可以根据室内空气质量和温度等参数实现自动调节。

三、通风系统的设计方案通风系统的设计方案需要根据建筑物的使用性质、结构特点和环境条件进行合理的规划与设计。

以下是通风系统设计方案的具体内容:1. 建筑物的使用性质建筑物的使用性质是通风系统设计的重要依据,不同性质的建筑物需要采用不同的通风方案。

例如,居住建筑需要考虑到居民的舒适度和健康状况,而办公建筑则需要考虑到办公人员的工作效率和舒适度。

2. 建筑物的结构特点建筑物的结构特点包括建筑物的体量、高度、采光条件等因素。

这些因素将直接影响通风系统的设计方案,需要根据实际情况进行合理的规划。

3. 建筑物的环境条件建筑物的环境条件包括周围环境的气候、气温等因素。

轴流通风机安装

轴流通风机安装

轴流通风机安装 Document number:BGCG-0857-BTDO-0089-2022(四)轴流通风机安装1、安装流程2、风机安装工艺要求(1)施工准备A、编写施工方案,上报监理单位批准后实施;B、对施工人员进行技术交底,准备各种安装用机具,施工现场进行清理;(2)开箱检验A、开箱检验时必须由业主代表、监理单位代表、供货单位代表及施工单位代表共同参与进行,开箱检验前应具备下列技术资料:a、风机的出厂合格证、质量证明书、操作使用说明书;b、供货单位提供的装箱清单。

B、风机的开箱检验应符合下列规定:a、核查随机资料是否齐全;b、检查风机表面是否锈蚀、是否有严重的碰撞痕迹和损坏现象;c、检查风机的附件、内件、零部件是否齐全完好。

d、开箱检验完毕后,对于暂不安装的零件、易损件等应设专人、专库妥善保管。

e、开箱检验完毕后及时填写开箱检验记录。

(3)基础验收A、风机安装前由基础施工单位向安装单位进行基础验交,同时提交质量证明书、强度试验报告、测量记录等施工技术资料,并办理交接手续。

B、基础检查验收要求:a、基础外观不应有裂纹、蜂窝、孔洞及露筋等缺陷;强度达到设计要求,预埋螺栓的螺纹部分应无损坏,预留螺栓孔应清理干净;b、核实基础螺栓中心是否与设备螺栓孔距相符;c、基础尺寸及位置应严格符合设计和规范的规定,基础上应明显标出纵横中心线、标高基准线;d、基础尺寸及位置允许偏差应符合下表要求:基础尺寸及位置允许偏差表1)垫铁安装安装垫铁前,应将基础表面铲好麻面,麻点深度一般不小于10mm,密度以每平方分米内有3~5点为宜。

放置垫铁处(至周边50mm)应铲平,铲平部位水平度允许偏差为2mm/m。

A、垫铁布置时,以地脚螺栓两侧各放置一组为原则,并尽量靠近地脚螺栓,相邻两垫铁组的间距一般为500mm为宜;B、每组垫铁由两斜一平组成,应放置平稳,接触良好,将垫铁表面油污清理干净,层间应压紧,设备垫铁高度为30~60mm,C、风机找正,平垫铁应露出设备支座底板外缘10~20mm。

《轴流通风机的工程设计方法》

《轴流通风机的工程设计方法》

轴流通风机的工程设计方法信息来源:中国风机网 -风机常识发布时间: 2006-8-2风机是量大面广的通用机械产品;风机是利用一个或多个装有叶片的叶轮的旋转和气体或空气的相互作用来压缩和输送气体或空气的流体机械;风机是透平压缩机、透平鼓风机和通风机的总称。

通风机:在进口压力和温度分别为 101.3kPa 和 20 ℃、相对湿度为 50% 的标准空气条件下,全压小于等于 30kPa 的风机称为通风机。

通风机主要有离心式和轴流式两大类。

在轴向剖面上,在叶轮中气流沿着半径方向流动的通风机为离心通风机;离心通风机为轴向进气径向排气。

在轴向剖面上,气流在旋转叶片的流道中沿着轴线方向流动的通风机为轴流通风机;轴流通风机为轴向进气和排气。

相比较而言,离心通风机压力大、流量小;轴流通风机压力小、流量大。

轴流通风机的分类如下:1)按压力分类GB/T 19075-2003/ISO 1334.9:1999《工业通风机词汇及种类定义》中指出:低压通风机的压比低于 1.02 ,参考马赫数小于 0.15 。

当处理标准空气时,其压升小于 2kPa 。

中压通风机的压比大于 1.02 而小于 1.1 ,参考马赫数小于 0.15 ,对应压升为2kPa 至 10kPa 。

高压通风机的压比和压升大于上述值。

标准进一步指出:通风机叶轮依据其圆周速度将产生或高或降的压力,并定义了各种“通风机类型”的压力范围,即各类通风机在最高效率和最高转速时,通风机的压力不低于下表 1-1 中给定的值。

在任何情况下,被定义的通风机压力应不超出通风机在最高转速时所产生的最大压力的 95 %通风单位质量功 y最大压力 pmax机名代码kJ/kg 分类称(用于标准空气 )kPa0< y≤ 0.60≤ pmax≤0.700.6 <y≤ 0.83低压L0.7 <pmax ≤1.00.83 < 1.0< pmax ≤1.61y≤ 1.33说明忽略通风机内空气密度的变化1.33 <21.6< pmax ≤2.0 y≤ 1.6731.67 <y≤30.7 <pmax ≤1.04空气密度的变化是否忽略,中压M3<y≤ 5.25 3.6 <pmax ≤6.35取决于5.25 <y≤ 8.336.3< pmax ≤106所要求的精度8.33 <y≤ 13.337不可忽略10<pmax ≤1613.33 <通风机内高压16 <pmax ≤22.48H空气密度的变y≤ 18.6722.4 <pmax ≤ 3018.67 <y≤ 259化透平压缩>25>30机2)按轮毂比分类按照轮毂直径和叶轮外径之比即轮毂比,轴流通风机有低压、中压和高压型式之分,这表示在给定的流量下,轴流通风机所产生的压力是低的、中等的或高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 轴流通风机的主要特性为便于对轴流通风机进行气动设计,首先了解其主要特性是必要的。

轴流通风机的主要特性可归纳为几何特性、运动特性和动力特性三个方面。

2.1几何特性确定或表征轴流通风机尺寸和形状的参数称作轴流通风机的几何特性,并以叶轮的几何特性作为表征参数。

2.1.1 直径轴流通风机直径系指叶片尖部所划圆的直径,是轴流通风机最重要的几何特性参数。

直径大小可选定亦可计算得到;通常与流量、全压、叶片数、转速、输送介质密度等有关。

直径大小直接影响风机的气动性能和结构尺寸。

文献 [21] 对轴流通风机直径的确定原则作了规定,是轴流通风机产品系列(群)化设计应遵循的基本原则。

2.1.2 轮毂比轮毂直径与风机直径之比称作轮毂比,亦是轴流通风机的一个重要几何参数。

轮毂比对风机的流量、全压、轴功率和效率都有影响。

在直径、转速、流量和全压一定的情况下,有一个最佳的轮毂比相匹配,使其效率最高。

理论分析和实验结果表明,轮毂比与全压成正比与效率成反比。

轴流通风机的轮毂比一般在 0.3~0.7 或更大的范围内选定,低压轴流通风机的轮毂比较小,高压轴流通风机的轮毂比较大。

文献 [21] 对等轮毂比轴流通风机的轮毂比与轮毂直径应遵循的优先数原则同样作了规定。

2.1.3 叶片数对于轮毂比一定的轴流通风机,叶片数的配置应该是最佳的。

当叶片实度一定时,叶片数增多则叶片变窄。

窄叶片对结构强度有利,但会减小雷诺数值。

过小的雷诺数对风机气动性能将产生不利影响。

叶片数增多对降低风机噪声亦不利。

相反,叶片数减少则叶片变宽。

宽叶片有利于降低噪声,但会使每个叶片质量增加,离心力增大,叶片根部受力加剧。

叶片数的多少应从气动性能、噪声特性以及结构受力等方面综合考虑,这个问题将在后面的章节中讨论。

2.1.4 叶片剖面形状叶片剖面形状取决于所选用的翼型。

现代轴流通风机大都选用航空翼型。

有关翼型的几何特性、气动特性以及如何选用等问题将在第 3 章作较详尽地介绍。

2.1.5 叶片平面形状叶片平面形状不仅取决于气动设计计算;亦取决于叶片强度、刚度、振动等的设计计算;有时还会受到结构和制造工艺等条件的限制。

例如,玻璃钢叶片由模具成型,可以制做成任何复杂的形状;而某些金属叶片,为制造方便,宁可牺牲些气动性能而采用经简化的平面形状。

叶片平面形状大致有二次曲线形、梯形和等宽度的长方形等。

2.1.6 叶片扭曲度从图 2.1 看到,轴向速度 V a沿径向不变时,流经叶片的气流合速度 V m与旋转平面的夹角ψ是从叶根到叶尖逐渐减小的;于是,当叶片安装角φ一定时,气流攻角α= φ-ψ则从叶根到叶尖逐渐增大。

为使各个叶片剖面均在最有利的攻角下工作,必须对叶片进行扭曲,使其在叶根处扭曲最大并向叶尖逐渐减小。

叶片根部扭曲角度与尖部扭曲角度之差称作叶片的扭曲度,它是实现叶轮高效运行的必然要求,是轴流通风机重要的几何特性参数。

扭曲度由气动设计计算获得并通过试验加以修正。

2.2运动特性确定轴流通风机气流轴向运动和旋转运动的参数称作轴流通风机的运动特性。

轴流通风机气动设计计算的基本内容之一就是确定流经风机级的气流速度大小和方向。

分析研究运动特性主要是剖析基元级(叶剖面)的速度三角形。

为了研究不同半径流面上的气体流动,从流经风机级的通道内取一微元环形通道,其半径为 r,圆环宽度为 dr。

假定不存在径向流动;于是叶剖面及其前后方的气流速大小与方向如图 2-1 所示。

图 2-1 动叶片剖面的相对速度矢量图气流经过前导叶之后 , 在叶剖面之前产生一个与叶轮旋转方向相反的预旋转 , 其旋流速度为 Vθ p。

在叶剖面处,叶片转动角速度为Ω,因而气流的相对旋转速度为Ω·r。

在叶剖面之后,叶片旋转所诱导的旋流速度为 Vθ s。

于是,在叶轮的旋转平面内,气流的相对切向速度应取为气流合速度 V m与弦线间的夹角α称为气流攻角; V m与旋转平面的夹角Ψ称为入流角;弦线与旋转平面的夹角Φ称为安装角,弦线与旋转轴之间的夹角ξ为摆差角或前伸角。

各角度之间的关系为:式( 2­-1 )~式( 2-5 )为速度三角形各速度之间和各角度之间的关系。

从中可进一步看到,叶轮的旋转角速度Ω与叶轮的工作转速 n成正比,转速不仅影响速度三角形的大小,而且决定合速度 V m方向。

转速是轴流通风机重要的运动特性,对风机的气动性能和噪声特性产生重大影响。

轴流通风机工程设计风机是量大面广的通用机械产品;风机是利用一个或多个装有叶片的叶轮的旋转与气体或空气的相互作用来压缩和输送气体或空气的流体机械;风机是透平压缩机、透平鼓风机和通风机的总称。

在进口压力和温度分别为101.3kPa和20℃、相对湿度为50%的标准空气条件下,全压小于等于30kPa的风机称为通风机。

通风机主要有离心式和轴流式两大类。

在轴向剖面上,在叶轮中气流沿着半径方向流动的通风机为离心通风机;离心通风机为轴向进气径向排气。

在轴向剖面上,气流在旋转叶片的流道中沿着轴线方向流动的通风机为轴流通风机;轴流通风机为轴向进气和排气。

通风机名称代码单位质量功ykJ/kg最大压力pmax(用于标准空气) kPa分类说明低压L 0<y≤0.60.6<y≤0.830.83<y≤1.331.33<y≤1.670≤pmax≤0.70.7<pmax≤1.01.0<pmax≤1.61.6<pmax≤2.00 1 23忽略通风机内空气密度的变化中压M 1.67<y≤33<y≤5.255.25<y≤8.330.7<pmax≤1.03.6<pmax≤6.36.3<pmax≤104 5 6空气密度的变化是否忽略,取决于所要求的精度高压H 8.33<y≤13.3313.33<y≤18.6718.67<y≤2510<pmax≤1616<pmax≤22.422.4<pmax≤307 8 9不可忽略通风机内空气密度的变化轴流通风机的分类如下:1)按压力分类GB/T 19075-2003/ISO 1334.9:1999《工业通风机词汇及种类定义》中指出:低压通风机的压比低于1.02,参考马赫数小于0.15。

当处理标准空气时,其压升小于2kPa。

中压通风机的压比大于1.02而小于1.1,参考马赫数小于0.15,对应压升为2kPa至10kPa。

高压通风机的压比和压升大于上述值。

马赫数(Mach number)用于超音速或可压流动计算,以航天航空领域最为常用常写作Mach数,它是高速流的一个相似参数。

我们平时所说的飞机的Mach数是指飞机的飞行速度与当地大气(即一定的高度、温度和大气密度)中的音速之比。

比如Ma1.6表示飞机的速度为当地音速的1.6倍。

马赫数以奥地利物理学家马赫(1836-1916)命名,简称M数,表示为:M=V/a,M数是衡量空气压缩性的最重要的参数(见马赫波)。

定义为物体速度与音速的比值,即音速的倍数。

其中又有细分多种马赫数,如飞行器在空中飞行使用的飞行马赫数、气流速度的气流马赫数、复杂流场中某点流速的局部马赫数等等。

由于马赫数是速度与音速[1]之比值,而音速在不同高度、温度等状态下又有不同数值,因此无法将Ma2.8 的数值换算为固定的km/hr 或mph 等单位。

马赫数如果作为速度单位来使用,则必须同时给出高度和大气条件(一般缺省为国际标准大气条件)。

在考虑空气压缩性影响时(一般在Ma0.3以上),经常使用马赫数作为速度单位;不考虑压缩性影响,则应该使用km/h、mph、m/s等单位。

飞行器速度在Ma0.3以下可以认为是低速(可以不考虑空气压缩性影响);速度在Ma0.8以下的为亚音速;在Ma0.8~1.2上下为的跨音速;Ma1.2~5 的为超音速、Ma5.0以上的为高超音速。

一般民用飞机飞行速度多为亚音速或高亚音速,军用战斗机可以达到Ma3.0或更高,美国最新高超音速飞机已达到Ma7.0,航天飞机再入大气层可以达到Ma25以上。

标准进一步指出:通风机叶轮依据其圆周速度将产生或高或降的压力,并定义了各种“通风机类型”的压力范围,即各类通风机在最高效率和最高转速时,通风机的压力不低于下表1-1中给定的值。

在任何情况下,被定义的通风机压力应不超出通风机在最高转速时所产生的最大压力的95%2)按轮毂比分类按照轮毂直径与叶轮外径之比即轮毂比,轴流通风机有低压、中压和高压型式之分,这表示在给定的流量下,轴流通风机所产生的压力是低的、中等的或高。

若轮毂比低于0.4则认为是低压(或低轮毂比)型轴流通风机,轮毂比大于0.71时,则认为是高压(或大轮毂比)型轴流通风机,轮毂比介于0.4~0.71之间的则被认为是中压(或中轮毂比)型轴流通风机。

3)按用途分类轴流通风机应用广泛,按用途分主要有:矿井轴流通风机:用于矿井主卷道通风的为矿井主轴流通风机(主扇);用于矿井采掘工作面等局部区域通风的为矿井局部轴流通风机(局扇).电站轴流通风机:用于火力发电厂为锅炉配套的轴流通风机,有送风机、引风机等。

纺织轴流通风机:用于纺织车间通风换气.隧道轴流通风机:用于隧道通风换气。

消防排烟轴流通风机:高层建筑消防排烟之用。

冷却塔轴流通风机:与机力通风冷却塔相配套使用。

空冷器轴流通风机:与石油化工行业大量使用的空气冷却器相配套;是空气冷却器重要组成部分。

一般用途轴流通风机:用于工厂和建筑物通风换气或采暖通风。

特殊需用的轴流通风机:如舰艇、气垫船、内燃机车等使用的轴流通风机。

还有其它用途的轴流通风机,这里不再一一叙述。

4)按材质分类可分为金属和玻璃纤维增强塑料(俗称玻璃钢)轴流通风机。

1.2.1风机本体轴流通风机本体由叶轮和导叶组成;其中导叶可以是前导叶,亦可以是后导叶,还可以是前、后导叶。

轴流通风机本体亦称作轴流通风机的级,还可称作轴流通风机的空气动力略图,简称气动略图。

轴流通风机的气动略图有多种型式。

对于普通轴流通风机(与子午加速轴流通风机相比较而言),主要有:单级:单叶轮(R) 叶轮+后导叶(R+S) 前导叶+叶轮(P+R) 前导叶+叶轮+后导叶(P+R+S) 双级:叶轮+中导叶+叶轮+后导叶(R+C+R+S) 前导叶+叶轮+中导叶+叶轮+后导叶(P+R+C+R+S)Ⅰ级叶轮+Ⅱ级叶轮,对旋(RⅠ+RⅡ)上述略图如图1.1(a)~(g)所示。

图1.1普通轴流通风机常见的气动略图1.2.2风机装置轴流通风机装置是风机本体、电动机和辅助设备的总称。

辅助设备包括进气箱、集流器、头罩、扩压器、扩散塔、消声器等,并按需要配置。

典型的轴流通风机装置如图1.2所示。

图1.2轴流通风机装置示意图各组成部件的功能简述如下:——叶轮吸收电动机提供的能量并对气流做功,是轴流通风机的“心脏”。

对于管道轴流通风机,由于叶轮前后的管道截面不变,气流的轴向速度不发生变化,叶轮的作用是使气流的压力提高。

相关文档
最新文档