三角变换与解三角形

合集下载

三角恒等变换与解三角形

三角恒等变换与解三角形
π 0, 2
上的最大
值,求A,b和△ABC的面积.
数学
首页
上一页
下一页
末页
第二讲
三角恒等变换与解三角形
结束
[解]
3 1+cos 2x (1)f(x)=(m+n)· m=cos x+ 3sin xcos x+ = 2 2
2
π 3 3 1 3 + sin 2x+ = cos 2x+ sin 2x+2=sin2x+6 +2. 2 2 2 2
1.三角求值“三大类型” “给角求值”“给值求值”“给值求角”.
2.三角函数恒等变换“四大策略”
(1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45° 等;
数学
首页
上一页
下一页
末页
第二讲
三角恒等变换与解三角形
结束
(2)项的分拆与角的配凑:如sin2α+2cos2α=(sin2α+cos2α) +cos2α,α=(α-β)+β等;
=-
10 . 10
5 4 2 5 (2)由(1)知sin 2α=2sin αcos α=2× ×- =- , 5 5 5
cos 2α=1-2sin
2
α=1-2×
5 2 3 = , 5 5
5π 5π 所以cos 6 -2α=cos cos 6 = -
数学
首页
上一页
下一页
末页
第二讲
三角恒等变换与解三角形
结束
[典例]
(2014· 四川高考)如图,从气球A上测得正前方的
河流的两岸B,C的俯角分别为67° ,30° ,此时气球的高是46 m,则河流的宽度BC约等于________m.(用四舍五入法将结 果精确到个位.参考数据:sin 67° ≈0.92,cos 67° ≈0.39,sin 37° ≈0.60,cos 37° ≈0.80, 3≈1.73)

三角恒等变换与解三角形

三角恒等变换与解三角形

三角恒等变换与解三角形三角恒等变换是解三角形问题中经常用到的重要工具。

在解三角形问题中,我们常常需要求解三角函数的值,而三角恒等变换则可以帮助我们将一个三角函数的值转换为其他三角函数的值,从而简化计算过程。

本文将介绍三角恒等变换的概念和常见的恒等变换公式,并结合实例讲解如何利用三角恒等变换解决实际问题。

一、三角恒等变换的概念三角恒等变换是指将一个三角函数的值转换为其他三角函数的值的变换过程。

在三角恒等变换中,我们利用三角函数的基本关系和性质,通过代数运算和恒等式的推导,将一个三角函数的表达式转换为其他三角函数的表达式。

三角恒等变换在解三角形问题中起到了重要的作用,可以帮助我们简化计算过程,提高解题效率。

二、常见的三角恒等变换公式1. 正弦函数的恒等变换正弦函数的恒等变换公式如下:sin(A ± B) = sinAcosB ± cosAsinBsin2A = 2sinAcosAsin(A + B)sin(A - B) = cos2B - cos2A这些恒等变换公式可以帮助我们将一个正弦函数的值转换为其他正弦函数的值,从而简化计算过程。

2. 余弦函数的恒等变换余弦函数的恒等变换公式如下:cos(A ± B) = cosAcosB ∓ sinAsinBcos2A = cos^2A - sin^2Acos(A + B)cos(A - B) = cos2A - sin2B利用这些恒等变换公式,我们可以将一个余弦函数的值转换为其他余弦函数的值,从而简化计算过程。

3. 正切函数的恒等变换正切函数的恒等变换公式如下:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)tan2A = (2tanA) / (1 - tan^2A)tan(A + B) = (tanA + tanB) / (1 - tanAtanB)这些恒等变换公式可以帮助我们将一个正切函数的值转换为其他正切函数的值,从而简化计算过程。

三角恒等变换与解三角形

三角恒等变换与解三角形

三角恒等变换与解三角形三角恒等变换(Trigonometric Identities)是数学中重要的基本概念之一,它们在解三角形等相关问题中发挥着重要的作用。

在本文中,我们将探讨三角恒等变换的基本概念以及如何利用它们解决三角形的问题。

1. 引言三角恒等变换是指在三角函数之间的相等关系。

通过运用这些恒等变换,我们可以简化和变换三角函数的表达式,从而更容易解决与三角函数相关的问题。

2. 基本的三角恒等变换2.1 正弦函数的平方和余弦函数的平方等于1对于任意角θ,有sin^2θ + cos^2θ = 1。

这个恒等变换被称为三角函数的基本恒等变换,它表明正弦函数的平方与余弦函数的平方之和等于1。

2.2 余弦函数与正弦函数的互补关系对于任意角θ,有sin(π/2 - θ) = cosθ 和cos(π/2 - θ) = sinθ。

这表明余弦函数与正弦函数在π/2之间具有互补关系。

2.3 正切函数与余切函数的互补关系对于任意角θ,有tan(π/2 - θ) = cotθ 和cot(π/2 - θ) = tanθ。

这表明正切函数与余切函数在π/2之间具有互补关系。

3. 利用三角恒等变换解三角形利用三角恒等变换,我们可以简化和变换三角函数的表达式,从而解决与三角形相关的问题。

以下是一些常用的例子:3.1 例子1:已知一个角的正弦值,求解这个角的余弦值和正切值。

假设已知角θ的正弦值为sinθ = 3/5。

根据正弦函数的平方和余弦函数的平方等于1,我们可以得到cos^2θ = 1 - (sinθ)^2 = 1 - (3/5)^2 = 16/25。

因此,cosθ = ±4/5,取决于角θ的实际情况。

同样地,根据正切函数的定义,我们可以得到tanθ = sinθ/cosθ = (3/5)/ (±4/5) = 3/4。

3.2 例子2:已知一个角的余弦值,求解这个角的正弦值和余切值。

假设已知角θ的余弦值为cosθ = 4/5。

三角变换与解三角形PPT

三角变换与解三角形PPT

sin(x ) cos cos(x ) sin 4 4 4 4 7 2 2 2 2 4 . 10 2 10 2 5




(2)因为x ( , ), 2 4 4 2 3 所以cos x 1 sin x 1 ( ) . 5 5 24 7 2 sin 2 x 2 sin x cos x , cos 2 x 2 cos x 1 . 25 25
2
3
所以sin(2 x ) sin 2 x cos cos 2 x sin 3 3 3 24 7 3 . 50



题型二
三角函数与解三角形
【例2】(2009·四川)在△ABC中,A,B为锐角,角A,
3 10 . B,C所对应的边分别为a,b,c,且cos2A= , sinB= 10 5
B. 4 2 3 D. 6 2
由a=c= 6 2 可知,∠C=75°, 1 所以∠B=30°,sin B= . 2 由正弦定理得 b a sin B 2 6 1 2 . sin A 2 6 2 4
3.(2009·全国Ⅱ)已知△ABC中,tan A=
cos A等于 A. 12 解析
3

2.(2009·广东)已知△ABC中,∠A,∠B,∠C的对边分
别为a,b,c,若a=c= 6 2且∠A=75°,则b等于 ( A )
A.2 C.4 2 3 解析 因sin A=sin 75°=sin(30°+45°) =sin 30°cos 45°+sin 45°cos 30°=
6 2 , 4
1.(2009·江西)若函数 f ( x) (1 3 tan x) cos x ,0 x 则f(x)的最大值为 A.1 C. 3 1 解析 B.2 D. 3 2

三角变换及解三角形45张

三角变换及解三角形45张
角差公式
利用角度差公式将一个角转换为两个角的差,如$alpha = beta - gamma$,则有$sin(alpha) = sin(beta)cos(gamma) - cos(beta)sin(gamma)$。
倍角公式
将一个角转换为它的两倍,如$alpha = 2beta$,则有 $sin(alpha) = 2sin(beta)cos(beta)$。
正弦函数性质
正弦函数在其定义域内是奇函数,即 $f(-x)=-f(x)$,且在每个周期内,其 值域为$[-1,1]$。
余弦函数的图像和性质
余弦函数图像
余弦函数图像也是一个周期函数,其基 本周期为$2pi$,图像呈现波形。
VS
余弦函数性质
余弦函数在其定义域内是偶函数,即$f(x)=f(x)$,且在每个周期内,其值域为$[1,1]$。
正割与余割的转换
利用三角函数的互割关系,将正
割转换为余割或将余割转换为正
割,如$sec(alpha)
=
csc(frac{pi}{2} - alpha)$。
函数值的变换
半角公式
利用半角公式可以将角度减半,从而 求出相应的三角函数值,如 $sin(frac{alpha}{2}) = pmsqrt{frac{1 - cos(alpha)}{2}}$。
正切函数的是一个奇函数,其基本周期为 $pi$,图像呈现锯齿波形。
正切函数性质
正切函数在其定义域内是奇函数,即$f(x)=-f(x)$,且在每个周期内,其值域为$(infty, +infty)$。
04
CATALOGUE
解三角形
正弦定理
总结词
正弦定理是解三角形的重要工具,它建立了三角形各角正弦值与对应边长之间的关系。

三角恒等变换与解三角形

三角恒等变换与解三角形

三角恒等变换与解三角形三角恒等变换是解决三角形相关问题中常用的工具。

通过利用三角函数之间的关系,可以在一些情况下简化问题的求解,或者将复杂的三角形相关问题转化为更简单的形式。

本文将介绍一些常见的三角恒等变换,并结合实例说明其在解三角形问题中的应用。

1. 正弦定理正弦定理是三角形中常用的定理之一,用于求解三角形的边或角。

假设有一个三角形ABC,边长分别为a、b、c,对应的内角为A、B、C,正弦定理的数学表达式为:```a/sinA = b/sinB = c/sinC```其中,等式两边都表示边与对应角的正弦值的比例关系。

举例:已知三角形的两边a、b和它们夹角C,求第三边c。

根据正弦定理可得```c/sinC = a/sinA = b/sinB```通过这个等式可以解出c的值,进而求得整个三角形的相关信息。

2. 余弦定理余弦定理也是解决三角形问题时常用的定理之一,可以用于求解三角形的边或角。

假设有一个三角形ABC,边长分别为a、b、c,对应的内角为A、B、C,余弦定理的数学表达式为:```c^2 = a^2 + b^2 - 2*a*b*cosC```其中,等式右侧表示边长和夹角的余弦值的比例关系。

举例:已知三角形的两边a、b和它们的夹角C,求第三边c。

根据余弦定理可得```c^2 = a^2 + b^2 - 2*a*b*cosC```通过解这个方程可以求得c的值。

3. 正切定理正切定理是利用正切函数关系来解决三角形问题的定理,可以用于求解三角形的边或角。

假设有一个三角形ABC,边长分别为a、b,对应的内角为A、B,正切定理的数学表达式为:```tanA = (b*sinA)/(a - b*cosA)```其中,等式右侧表示两个边长度和夹角的正切值的比例关系。

举例:已知三角形的一边a和它的内角A,求另一边b。

根据正切定理可得```tanA = (b*sinA)/(a - b*cosA)```通过这个等式可以解出b的值。

第三讲 三角函数恒等变换与解三角形

第三讲 三角函数恒等变换与解三角形

第三讲 三角函数恒等变换与解三角形1、三角函数恒等变形的基本策略。

(1)注意隐含条件的应用:1=cos 2x +sin 2x 。

(2)角的配凑。

α=(α+β)-β,β=2βα+-2βα-等。

(3)升幂与降幂。

主要用2倍角的余弦。

(4)化弦(切)法,用正弦定理或余弦定理。

(5)引入辅助角。

asin θ+bcos θ=22b a +sin (θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab 确定。

2、解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

3、三角函数公式。

1.两角和与差的三角函数 2.二倍角公式 βαβαβαsin cos cos sin )sin(±=±; αααcos sin 22sin =;βαβαβαsin sin cos cos )cos( =±; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; tan tan tan()1tan tan αβαβαβ±±= 。

22tan tan 21tan ααα=-。

4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

1-4-11三角变换与解三角形、平面向量

1-4-11三角变换与解三角形、平面向量

数学(理) 第4页
新课标· 高考二轮总复习
考情分析
相关的内容要予以高度重视,它们将是今后高考命题的 热点;同时将解三角形的知识与实际问题结合起来,也 将是今后命题的一个热点,复习时要给予重视.
数学(理) 第5页
新课标· 高考二轮总复习
考情分析
2.平面向量在高考中的考查内容主要集中在三个 方面:一是向量的基本概念,二是向量的坐标运算,三 是向量的数量积,其中向量的数量积及其应用是考查的 重点内容.从试题形式上看主要以小题为主,一般为 1~2题,同时平面向量具有几何与代数形式的“双重
数学(理) 第16页
新课标· 高考二轮总复习
a· b (3)向量的夹角:cosθ=cos〈a,b〉= |a|· |b| x1x2+y1y2 = 2 2 2 2. x1+y1· x2+y2 → (4)三点共线的充要条件:P,A,B 三点共线⇔OP= → → xOA+yOB(x+y=1).
数学(理) 第17页
数学(理) 第24页
新课标· 高考二轮总复习
2sinxcosx+sinxcosx cosx+sinx = =sin2x· cosx-sinx cosx-sinx
π 4 - 2cos -x 7 5 28 4 =sin2x· = × =- . π 25 3 75 +x 2cos 5 4
数学(理) 第25页
新课标· 高考二轮总复习
π π π [点评] 注意 +x, -x,2x 三个角的内在联系, + 4 4 4
π π π π x 与 -x 互余,2x= +x- -x, +2x= 4 4 4 2 π π π 2 +x, -2x=2 -x. 4 2 4
数学(理) 第28页
新课标· 高考二轮总复习
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 三角变换与解三角形
一、选择题
1.(2010·福建卷)计算1-2sin 222.5°的结果等于 ( ) A.12 B.22 C.33 D.32 解析:1-2sin 222.5°=cos 45°=22
. 答案:B
2.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ= ( ) A .-43 B.54 C .-34 D.45
解析:sin 2θ+sin θ·cos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2
tan 2θ+1,又
tan θ=2,故原式=4+2-24+1=45.
答案:D
3.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为 ( ) A .75° B .60° C .45° D .30° 解析:由题知,12×4×3×sin C =33,∴sin C =3
2.
又0<C <π2,∴C =π
3.
答案:B
4.(2010·威海模拟)已知方程
x 2+4ax +3a +1=0(a >0)的两根为
tan α、tan β,且α、β∈
⎝ ⎛⎭
⎪⎫-π2,π2,则tan
α+β2
的值是
( )
A.12 B .-2 C.43 D.1
2或-2
解析:∵a >0,∴tan α+tan β=-4a <0,tan α·tan β=
3a +1>0,又∵α、β∈⎝ ⎛⎭
⎪⎫-π2,π2,
∴α、
β∈⎝ ⎛⎭⎪⎫-π2,0,则α+β2∈⎝ ⎛⎭⎪⎫
-π2,0,∴tan(α+β)=
tan α+tan β
1-tan α·tan β=-4a
1-(3a +1)

43
,∴tan(α+β)=2tan
α+β
2
1-tan
2
α+β
2
=4
3,整理得2tan 2α+β2+3tan α+β2-2=0,解得tan α+β2
=-2或1
2
(舍去).故选B.
答案:B
5.(2010·北京卷)某班设计了一个八边形的班徽(如图),它
由腰长为1,顶角为α的四个
等腰三角形,及其底边构成的正方形所组成.该八
边形的面积为 ( )
A .2sin α-2cos α+2
B .sin α-3cos α+3
C .3sin α-3cos α+1
D .2sin α-cos α+1 解析:等腰三角形的面积为12×1×1·sin α=1
2sin α,
等腰三角形的底边长为a =12+12-2×1×1×cos α

2-2cos α,所以八边形面积为:4×1
2
sin α+a 2
=2sin α+2-2cos α. 答案:A 二、填空题
6.(2010·北京卷)在△ABC 中,若b =1,c =3,∠C =2π
3,则a =________.
解析:由正弦定理b sin B =c sin C ,即1sin B =3sin 2π3,sin B =12,又b <c ,∴∠B =π
6
.
∴∠A =π
6.∴a =1.
答案:1 7.已知△ABC
的三个内角A ,B ,C 满足cos A (sin B +cos
B )+cos
C =0,则∠A =________.
解析:由题意得
cos A (sin B +cos B )-cos(A +B )=0,整
理得sin B (cos A +sin A )=0,
因为sin B >0,所以cos A +sin A =0,tan A =-1,
又A ∈(0,π),所以∠A =3π
4
.
答案:34
π
8.某工程设计员为了测量某地的地势,向正东方向走了x 千米后,他向右转150°,然 后朝新方向走了3千米,这时他距离出发点恰好为3千米,则x 的值为________.
解析:如图,设此人从A 出发,则AB =x ,BC =3,AC =3,∠ABC =30°,由正 弦定理得BC sin ∠CAB =AC sin 30°,故∠CAB =60°或120°,当∠CAB =60°时,∠ACB =
90°,AB =23;当∠CAB =120°时,∠ACB =30°,故AB = 3. 答案:23或3
9.(2010·江苏卷)在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a
b =6cos C ,
则tan C tan A +tan C tan B
的值是________. 解析:∵b a +a
b =6cos C ,由余弦定理得a 2+b 2ab =
6·a 2+b 2-c 22ab ,∴a 2+b 2=32
c 2,
∴tan C tan A +tan C tan B =
sin C cos C ⎝ ⎛⎭⎪⎫
cos A sin A +cos B sin B =sin C cos C ·sin C sin A sin B
=c 2ab ·
a 2+
b 2-
c 22ab
=2c 2
a 2+
b 2-
c 2

2c 2
32
c 2-c 2=4.
答案:4
三、解答题
10.(2010·辽宁卷)在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=
(2b+c)sin B+(2c+b)sin C.
(1)求A的大小;
(2)若sin B+sin C=1,试判断△ABC的形状.
解:(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c +b)c,即a2=b2+c2+bc,由
余弦定理得a2=b2+c2-2bc cos A,
故cos A=-1
2,A=120°.
(2)由(1)得sin2A=sin2B+sin2C+sin B sin C.
又sin B+sin C=1,得sin B=sin C=1 2.
因为0°<B<90°,0°<C<90°,故B=C. 所以△ABC是等腰的钝角三角形.
11.(2010·天津卷)在△ABC中,AC
AB=
cos B
cos C.
(1)证明B=C;
(2)若cos A=-1
3,求sin⎝




4B+
π
3的值.
(1)证明:在△ABC 中,由正弦定理及已知得sin B
sin C =
cos B
cos C
.于是sin B cos C -cos B sin C =0, 即sin(B -C )=0.
因为-π<B -C <π,从而B -C =0. 所以B =C .
(2)解:由A +B +C =π和(1)得A =π-2B , 故cos 2B =cos(π-A )=-cos A =1
3
.
又0<2B <π,于是sin 2B =1-cos 2
2B =22
3
.
从而sin 4B =2sin 2B cos 2B =42
9,
cos 4B =cos 2
2B -sin 2
2B =-7
9
.
所以sin ⎝⎛⎭⎫4B +π3=sin 4B cos π3+cos 4B sin π3 =42-73
18
.
12.已知向量m =(-1,cos ωx +3sin ωx ),n =(f (x ),cos ωx ),其中ω>0,且m ⊥n ,
又函数f (x )的图象任意两相邻对称轴间距为3
2π.
(1)求ω的值;
(2)设α是第一象限角,且f ⎝⎛⎭⎫32α+π2=23
26,求sin ⎝⎛⎭
⎫α+π
4cos ()
4π+2α的值.
解:(1)由题意得m ·n =0,所以,
f (x )=cos ωx ·(cos ωx +3sin ωx )=1+cos 2ωx 2+3sin 2ωx
2=sin ⎝⎛⎭⎫2ωx +π6+12 根据题意知,函数f (x )的最小正周期为3π, 又ω>0,所以ω=1
3
(2)由(1)知f (x )=sin ⎝⎛⎭⎫23x +π6+1
2
所以f ⎝⎛⎭⎫32α+π2=sin ⎝⎛⎭⎫α+π2+12=cos α+12=23
26 解得cos α=5
13
因为α是第一象限角,故sin α=12
13

所以sin ⎝⎛⎭
⎫α+π
4cos (4π+2α)=sin ⎝⎛⎭
⎫α+π
4cos 2α=22(cos α-sin α)
=-13
14 2.。

相关文档
最新文档