可靠性工程基本概念整理

合集下载

可靠性工程基本理论

可靠性工程基本理论

可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。

可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。

可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。

产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。

产品可以是一个零件也可以是一个系统。

规定的条件包括使用条件、应力条件、环境条件和贮存条件。

可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。

可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。

所以,可靠性工程学是一门综合性较强的工作技术。

2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。

可靠度用字母R表示,它的取值范围为0≤R≤1。

因此,常用百分数表示。

若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。

其中F称为失效概率,亦称不可靠度。

设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。

所以可靠度是时间的函数,记成R(t),称为可靠度函数。

图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。

图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。

在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。

失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。

可靠性工程

可靠性工程
随机变量:设试验的样本空间为Ω,在Ω上定义一个单值 实函数X=X(e),e∈Ω,对试验的每个结果e,X=X(e)有确定 的值与之对应。由于实验结果是随机的,那X=X(e) 的取值也是随机的,我们便称此定义在样本空间 上的单值 实函数X=X(e)为一个随机变量。
分布函数 :设X为随机变量,对任意实数χ,则称函数 F (χ)=P{X≤χ} 为随机变量X的分布函数。
二、可靠性统计基础知识
可靠性统计基础知识
1. 概率基础知识 2. 随机变量及其分布 3. 统计基础知识 4. 参数估计 5. 假设检验
1、概率基础知识
随机事件及其概率
随机实验:满足下列三个条件的试验称为随机试验; (1)试验可在相同条件下重复进行;(2)试验 的可能结果不止一个,且所有可能结果是已知 的;(3)每次试验哪个结果出现是未知的;随 机试验以后简称为试验,并常记为E。
失效率:失效率是工作到某时刻尚未失效的产品, 在该时刻后单位时间内发生失效的概率。一般记 为λ,它也是时间t的函数,故也记为λ(t),称为失效率 函数,有时也称为故障率函数或风险函数;它反映t 时刻失效的速率,也称为瞬时失效率。
一、可靠性工程概述
(三)浴盆曲线 对某一类产品而言,产品在不同的时刻有不同的失 效率(也就是失效率是时间的函数),对电子产品 而言,其失效率符合浴盆曲线分布 (如下图):
威布尔分 布(Ⅲ型 极值分 布)W(k,a
,b)
3、统计基础知识
研究对象的全体称为总体或母体,组成总体的每个基本单位 称为个体。
(1)按组成总体个体的多寡分为:有限总体和无限总体;
(2)总体具有同质性:每个个体具有共同的观察特征,而 与其它总体相区别;
(3)度量同一对象得到的数据也构成总体,数据之间的差 异是绝对的,因为存在不可消除的随机测量误差;

可靠性工程第二讲

可靠性工程第二讲

产品对象
指标
复杂系统, 设备,民用
产品 设备中损耗 零件,材料
灭火器保险 丝过载继电
器等
可靠度,MTBF,MTTFF,故 障率,可用寿命,维修度,可 用度,重要度,成本费用等.
可靠度,故障率,故障时间分 布,MTTF,特征值的稳定性
该指标从故障的性质侧面衡量可靠性,可作 为产品或系统设计的指标。
42
经济性指标
目的:使可靠度与成本相平衡。 主要指标: 费用比(CR)=全年维修费/购置费
MTBF / 成本 (维修费+使用费)/工作时间 劳动工资费用/物资费用 设计时需要权衡选择各个指标。
43
与人为差错有关的可靠性指标
自动化水 平提高
关系?
18
人类健康曲线
19
产品故障的浴盆曲线
大多数产品的故障率随时间的变化曲线形似 浴盆,称之为浴盆曲线。由于产品故障机理 的不同,产品的故障率随时间的变化大致可 以分为三个阶段:
20
对故障发生规律认识的变化
A B C D E F
21
故障发生规律的六种模式
六种模式所占比率
美国联航公司统计
航天产品统计数据
R(t) = P(T > t) = ∫ ∞ f (t )dt0 ≤t ≤∞ t
11
可靠度R(t)
可靠度R(t)与不可靠度(故障概率分 布函数F(t)为互补关系
R (t ) +F (t) = 1
100%
F(t),不可靠度
R(t) F(t)
R(t),可靠度
t/h
可靠度与不可靠度函数曲线
12
可靠度函数与累积故障分布函 数的性质
产品典型的故障率、可靠度和密度函数曲线 25

可靠性工程基本理论

可靠性工程基本理论

可靠性工程基本理论可靠性工程是一种工程学科,主要涉及如何对产品和系统的可靠性进行评估、设计和管理等。

可靠性工程的基本理论包括可靠性的定义、可靠性的特征、可靠性的评估方法、可靠性的设计原则和可靠性预测方法等。

1. 可靠性的定义可靠性是指产品或系统在规定条件下保持正常运行的能力。

从概率学的角度来看,可靠性是指产品或系统在规定时间内不出现故障的概率。

具体来说,可靠性可以用以下公式来表示:可靠性= (正常运行时间)/(正常运行时间+故障时间)2. 可靠性的特征可靠性具有以下几个特征:(1)可度量性:可靠性可以通过概率和统计方法进行量化和评估。

(2)时效性:产品或系统的可靠性是随着时间变化的,需要及时进行检测和更新。

(3)风险性:可靠性与风险直接相关,风险越高,可靠性要求越高。

(4)系统性:可靠性需要从整个系统的角度考虑,而非单个组成部分的可靠性。

3. 可靠性的评估方法可靠性评估方法主要包括故障模式和效应分析(FMEA)、故障树分析(FTA)、可靠性增长法(RAM)和可靠性试验等。

(1)故障模式和效应分析(FMEA)是一种从设计阶段就开始进行的预防性可靠性评估方法。

其主要思想是通过对每个零部件的故障模式和故障后果进行识别、分类和评估,推断出产品或系统的可靠性并采取相应的预防措施。

(2)故障树分析(FTA)是一种基于逻辑的可靠性评估方法。

它将故障模式和事件之间的因果关系表示为一棵树状结构,通过逐层分析和推断出故障的原因,进而评估产品或系统的可靠性。

(3)可靠性增长法(RAM)是一种逐步提高产品或系统可靠性的方法。

通过在产品或系统的使用过程中收集和分析故障数据,以修正设计和制造过程中不足之处,最终提高产品或系统的可靠性。

(4)可靠性试验是通过对样品进行一系列可靠性测试,从而评估产品或系统的可靠性。

常见的可靠性试验方法包括加速寿命试验、高温试验、低温试验、振动试验、冲击试验等。

4.可靠性的设计原则可靠性的设计原则包括下列几个方面:(1)原则上应对可能引起故障的所有因素(如环境因素)进行评估和控制。

可靠性工程技术基础

可靠性工程技术基础
9 可靠性工程技术基础
2.1.2 可靠性定量要求——主要指标参数
d.平均首次故障前时间 mean time to first failure (MTTFF) 可修复产品的一种基本可靠性参数。其度量方法为:在规
定的条件下,产品从开始使用到出现首次故障时产品寿命单 位总数与产品首次故障总数之比。
e. 故障率 产品可靠性的一种基本参数。其度量方法为:在规定的
表5 可靠性设计(定量)工作内容
合同和研制任 务书中规定的 期望产品达到 的合同指标, 它是承制方进 行可靠性设计 的依据
合同和研制任 务书中规定 的、产品必须 达到的合同指 标,它是进行 厂内考核或验 证的依据
*下面列出可靠性常用的设计指标参数
8 可靠性工程技术基础
2.1.2 可靠性定量要求——主要参数特征量
a. 可靠度 可靠性的概率度量,其符号为R(t) 例如: R(t)=0.95,0.99等。
条件下和规定的期间内,产品的故障总数与寿命单位总数之 比。
10 可靠性工程技术基础
表3
产品层次
可靠性常用的设计指标参数的应用
产品使用特征量
连续或间歇工作 连续或间歇工作 一次性使用
(可修复)
(不可修复)
装备
R(t)或MTBF R(t) 或MTTF
P(S)或P(F)
分系统 设备
R(t)或MTBF
R(t)或λ
1 可靠性工程技术基础
可靠性发展与产品质量的特性关系
产品质量的固有特性包含了产品的性能特性、专门特性、经济性、 时间性、适应性等方面,如图所示。
产品质量的固有特性
性能特性
专门特性
经济性 时间性 适应性
可 安 维 保 测 寿命 靠 全 修 障 试 周期 性 性 性 性 性 费用

可靠性工程基础知识

可靠性工程基础知识

t
b<0
b=0
b>0
Duane可靠性增长模型
lnC(t)=a+blnt
dN ( t ) dC( t ) t a b t (b 1)e t dt dt
11
基本概念(续)
软件与硬件可靠性问题对比
特征 失效原因 磨损 硬件 物理原因(如失真、断裂、 漂移) 会受到磨损 软件 主要为设计缺陷 无磨损 开发或升级后失效率随时间 单调下降 可靠性基本不受影响 无法由物理知识预测 采用冗余设计应保证冗余软 件的高度独立性,否则无助 于可靠性提高
17
可靠性工程发展历史(续)
深入发展期(20世纪80年代以后) 可靠性向更广泛和更深入的方向发展,将可靠性、维修性 和保障性有机结合在一起,形成可靠性系统工程。进入21 世纪以来,几乎所有工业领域都应用了可靠性技术。可靠 性工程的研究主要体现在集成化、协同化、系统和精确化。
全寿命周期可靠性管理 状态监测、维修决策和综合保障 高复杂系统可靠性研究 精确评估和控制 可靠性和经济性的协同化
从广义质量观看,质量涵盖可靠性;从狭义质量观看,质 量只是“符合性”。 传统质量管理是以制造过程的程序化、规范化为目标,试 图通过使工序稳定来提高质量。而可靠性则是研究消除故 障的对策,要在论证、设计、工艺中就采取措施防止缺陷 的发生,产品的可靠性是在设计阶段就已经决定了。
质量管理更多考虑“今天质量”,可靠性侧重于考虑“明 天的质量”。质量概念没有考虑时间因素,控制的是产品 出厂时是否合格以及质保期内故障情况,对于质保期之后 发生故障不能保证,可靠性问题关注产品的寿命、疲劳、 老化。
时间相关性 失效率为常数 环境因素 振动、冲击、腐蚀、温度、 湿度等影响可靠性 故障处理的一般手段,适当 冗余可以提高可靠性,大量 冗余受共因因素影响

可靠性工程基本理论

可靠性工程基本理论

编号:SY-AQ-01799( 安全管理)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑可靠性工程基本理论Basic theory of reliability engineering可靠性工程基本理论导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。

在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。

1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。

可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。

可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。

产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。

产品可以是一个零件也可以是一个系统。

规定的条件包括使用条件、应力条件、环境条件和贮存条件。

可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。

可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。

所以,可靠性工程学是一门综合性较强的工作技术。

2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。

可靠度用字母R表示,它的取值范围为0≤R≤1。

因此,常用百分数表示。

若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。

其中F称为失效概率,亦称不可靠度。

设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。

可靠性系统工程管理的基本概念

可靠性系统工程管理的基本概念
2.4控制
通过制订各种标准、规范、指南,建立实施程序,指导和控制各项可靠性系统工程工作的开展。设立一系列检查、控制点,使产品的研制、生产、使用过程均处于受控状态。建立闭环的R&M&S信息系统,及时反馈、分析和平价产品的R&M&S状况,制订改进措施并对其有效性进行监控。
3.全寿命周期管理的概念
如果说可靠性设计主要针对的是产品开发阶段,那么可靠性管理应该是指产品全寿命周期的管理。从国外的有关资料了解到,在通讯可靠性领域,可靠性的概念已得到进一步扩展。从一般意义上的“系统质量和可靠性”(包括硬件、软件可靠性等),增加了“网络质量和可靠性”以及“服务质量和可靠性”两大块。另外,从可靠性工程本身来说,它也是渗透到产品全寿命周期的各个阶段,所以进行全寿命周期R&M&S管理是非常必要的。
3.标准
可靠性标准是可靠性工作的依据,是指导可靠性工作,使其规范化、优化的保证。可靠性标准包括基础标准、管理标准、产品标准、设计标准、工艺标准、检验标准、试验标准、认证标准、认定标准、安全标准以及安装规范、使用规范、维修规范。
采用国际标准是加速我国产品标准化,迅速提高产品质量和可靠性水平的重要途径。美国军用可靠性标准(MIL)是国际上较完整、严密的标准体系,世界各国普遍引用用,也是我国军用可靠性标准的主要依据。国际电工委员会可靠性标准(IEC)低于美国军用标准,是国际上可以接受的标准,是我国出口产品的重要依据。经过多年努力,我国借鉴国,其中有的直接采用,有的等效采用了美国军用标准和国际电工委员会的标准,对我国可靠性工作起了重要指导作用。广义地说,国家各级行政领导机关部门制订的各种条例、办法等行政管理规定,也起了标准的作用。
4.技术
可靠性专业技术是实现可靠性的技术手段。可靠性工程不但选用SQC(Statistical Quality Control)技术,而且有许多专业技术,包括设计、工艺、使用维修、试验、分析等5个方面:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论可靠性是指产品在规定条件下和规定时间内,完成规定功能的能力。

“规定条件”:产品的使用条件、维护条件、环境条件。

“规定时间”:产品必须达到的任务时间。

如应力循环次数和车辆的行驶里程。

“规定功能”:产品必须具备的功能及其技术指标。

可靠性定义分为任务可靠性和基本可靠性。

两者都强调无故障完成任务。

任务可靠性强调完成规定的功能是界定在“任务剖面”的范围内。

基本可靠性强调的持续时间是界定在寿命剖面的范围内。

一个寿命剖面包含一个以上的任务剖面。

度量任务可靠性时只考虑危及任务成功的致命故障,与该任务无关的故障可以不考虑。

基本可靠性则涉及整个寿命周期内的所有故障。

任务剖面:产品完成规定任务的时间内所经历的时间和环境的描述。

产品的工作状态;维修方案;产品工作的时间与顺序;产品所处的环境(外加的与诱发的)的时间与顺序;任务成功或致命故障的定义。

寿命周期与寿命剖面:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。

它包含一个或多个任务剖面。

通常把产品的寿命剖面分为后勤和使用两个阶段。

可靠性的定义固有可靠性:产品在生产过程中确立的可靠性。

生产厂在模拟实际工作标准环境下,对产品进行检测并给以保证的可靠性。

使用可靠性:与产品的使用条件密切相关,受到使用环境、操作水平、保养与维修、使用者的素质等因素的影响。

维修性:产品在发生故障或失效后,能迅速修复以维持良好而完善的状态的难易性。

广义可靠性:产品在整个寿命周期内完成规定功能的能力。

包括狭义可靠性和维修性。

可靠性数学是可靠性研究的最重要的基础理论之一,主要研究解决各种可靠性问题的数学模型和数学方法,属于应用数学的范畴。

应用于可靠性的数据收集、数据分析、系统设计及寿命试验等方面。

可靠性物理即失效分析,是研究失效现象及其机制和检测方法的学科,使可靠性工程从数理统计方法发展到以理化分析为基础的失效分析方法。

从微观角度研究零部件(元器件)的失效发展过程和失效机理,从本质上、从机理方面探究产品的不可靠因素,为研制、生产高可靠性产品提供科学的依据。

可靠性工程是对产品(零部件、元器件、设备或系统)的失效及其发生概率进行统计、分析的一门边缘性学科,主要内容是运用系统工程的观点和方法论从设计、生产和使用等角度来研究产品的可靠性,包括对产品进行可靠性设计、可靠性预计、可靠性试验、可靠性评估、可靠性检验、可靠性控制、可靠性维修及失效分析。

实施可靠性工程应重视可靠性数据的收集与分析3. 可靠性设计应用可靠性理论、技术和设计参数的统计数据,在给定的可靠性指标下,对零件、部件、设备或系统进行的设计,称为可靠性设计。

通过预计、分配、分析、改进等一系列可靠性工程活动,把可靠性定量要求设计到产品的技术文件和图样中去,从而形成产品的固有可靠性。

系统可靠性设计零件可靠性设计系统可靠性设计的目的,就是要使系统在满足规定可靠性指标,完成预定功能的前提下,使系统的技术性能、重最、成本、时间等各方面取得协调,求得最佳设计;或是在性能、重量、成本、时间和其它要求的约束下,设计能得到实际高可靠度的系统。

系统可靠性设计常用的方法系统可靠性框图;故障模式影响与危害度分析FMECA;故障树分析FTA;马尔科夫过程研究可靠性的重要意义保证和提高产品的可靠性水平;提高经济效益;提高市场竞争能力第二章可靠性数学基础定义:产品在规定的条件下和规定的时间内,完成规定功能的概率称为可靠度。

可靠度的观测值是指直到规定的时间终了为止,能完成规定功能的产品数与该区间开始时刻投入工作产品数之比。

定义:产品在规定的条件下和规定的时间内,丧失规定功能概率称为累积故障概率(又称不可靠度)剩余寿命:若产品用到t时刻仍然完好,称为产品的年龄。

具有年龄t的产品从t时刻开始继续使用下去直到失效为止所经历的时间,称为具有年龄t的产品的剩余寿命。

定义:工作到某时刻尚未故障的产品,在该时刻后单位时间内发生故障的概率,称之为产品的故障率。

故障率浴盆曲线早期故障期;偶然故障期;耗损故障期可靠寿命:给定的可靠度所对应的产品工作时间。

中位寿命:产品的可靠度等于0.5时的可靠寿命。

平均寿命:产品寿命的平均值。

对于不可修产品,平均寿命就是平均故障前时间;对于可修复产品,平均寿命就是平均故障间隔时间。

可用性是系统可靠性与维修性的综合表征。

定义:可修复产品,在规定的条件下使用,在规定维修条件下修复,在规定的时间具有或维持其规定功能处于正常状态的概率。

瞬时有效度使用有效度极限有效度瞬时有效度是产品在某一时刻所具有或维持其规定功能的概率。

平均有效度是在某规定时间内有效度的平均值。

极限有效度是当时间趋于无限大时,瞬时有效度的极限值。

∙随机试验具有以下特点:重复性随机性明确性第3章典型系统可靠性模型系统由相互作用和相互依赖的若干单元结合成的具有特定功能的有机整体。

系统包含“单元”,其层次高于“单元”系统按其可否修复分为不可修复系统和可修复系统两类定义组成系统的所有单元中任一单元的故障都会导致整个系统故障的称为串联系统。

串联系统是最常用和最简单的模型之一。

组成系统的所有单元都发生故障时,系统才发生故障。

并联系统是最简单的冗余系统(有贮备模型)。

系统由n个单元组成,若系统中有r个或r个以上单元正常,则系统正常,这样的系统称作n中取r表决系统。

组成系统的各单元只有一个单元工作,当工作单元故障时,通过转换装置接到另一个单元继续工作,直到所有单元都故障时系统才故障,称为旁联系统,又称非工作贮备系统。

非工作贮备的优点是能大大提高系统的可靠度。

缺点是:(1)由于增加了故障监测与转换装置而提高了系统的复杂度;(2)要求故障监测与转换装置的可靠度非常高,否则贮备带来的好处会被严重削弱。

贮备系统按贮备单元在贮备期间的失效情况可分为三类∙冷贮备(无载贮备)贮备单元在贮备期间失效率为零;∙热贮备(满载贮备)贮备单元在贮备期间失效率与工作单元失效率一样;∙温贮备(轻载贮备)贮备单元在贮备期间失效率大于零而小于工作单元失效率。

维修度:对可能维修的产品在发生故障或失效后,在规定的条件下和规定的时间内完成修复的概率。

修复率:维修时间已达到某一时刻但尚未修复的产品在该时刻后的单位时间内完成修复的概率。

可用性:当需要时,可维修产品保持正常使用状态或功能的能力。

其度量指标是可用度。

第4章可靠性分配与预计可靠性分配系统可靠性分配就是将使用方提出的,在系统设计任务书(或合同)中规定的可靠性指标。

,从上而下,由大到小,从整体到局部,逐步分解,分配到各分系统,设备和元器件。

可靠性预计系统的可靠性预计是在系统的设计阶段根据组成系统的元器件等在规定条件下的可靠性指标、系统的结构、系统的功能以及工作方式等来推测系统的可靠性。

是一个由局部到整体、由小到大,由下到上的一种综合过程。

可靠性分配的目的是使各级设计人员明确其可靠性设计要求,根据要求估计所需的人力、时间和资源,并研究实现这个要求的可能性及办法。

可靠性预计的目的:将预计结果与要求的可靠性指标相比较,审查设计任务书中提出的可靠性指标是否能达到。

在方案论证阶段,通过可靠性预计,根据预计结果的相对性进行方案比较,选择最优方案。

在设计阶段,通过预计,发现设计中的薄弱环节,加以改进。

为可靠性增长试验、验证试验及费用核算等方面的研究提供依据。

通过预计给可靠性分配奠定基础。

可靠性分配与可靠性预计的关系:可靠性分配结果是可靠性预计的依据和目标;可靠性预计相对结果是可靠性分配与指标调整的基础。

相互制约,相辅相成,使系统的设计满足要求。

可靠性分配与可靠性预计的作用: 提高产品的固有可靠性;降低产品全寿命周期的费用;为可靠性增长计划提供科学依据.在新产品从开发研制一直到定型生产之前,一艇要经设计——试制——试验——修改设计——小批生产——检验——改进——定型生产这一过程,在这一过程中,产品可靠性水平在不断提高,称为可靠性增长。

可靠性分配的程序:明确系统可靠性参数指标要求;分析系统特点;选取分配方法(同一系统可选多种方法);准备输入数据;进行可靠性分配;验算可靠性指标要求;可靠性分配的无约束分配方法:等分配法;评分分配法;再分配法;比例分配法;AGREE方法等分配法又称为平均分配法。

当系统中个单元具有近似的复杂程度、重要性以及制造成本时,可用等分配法分配系统各单元的可靠度。

评分分配法含义:在可靠性数据非常缺乏的情况下,通过有经验的设计人员或专家对影响可靠性的几种因素评分,对评分进行综合分析而获得各单元产品之间的可靠性相对比值,根据评分情况给每个分系统或设备分配可靠性指标。

评分因素与原则:(1)复杂度最复杂的评10分,最简单的评1分。

(2)技术发展水平: 水平最低的评10分,水平最高的评1分。

(3)工作时间:单元工作时间最长的评10分,最短的评1分。

(4)环境条件 :单元工作过程中会经受极其恶劣而严酷的环境条件的评10分,环境条件最好的评1分。

可靠性指标分配的模糊数学模型:(1)建立评价因素集;(2)建立评价因素权重集;(3)建立因素评价集(等级)及相应分值集;(4)构建模糊综合评判矩阵;(5)计算各单元综合评价分值;(6)可靠性指标分配3.再分配法如果系统可靠性预计结果小于规定的系统可靠度,则须重新进行可靠度分配。

4.比例分配法使系统中各单元的容许失效率与该单元预计失效率成正比。

5. AGREE法考虑了组成系统各单元的复杂度、重要度、工作时间以及它们与系统之间的失效关系,又称为按照单元的复杂度及重要度的分配法。

适用于各单元工作期间的失效率为常数的串联系统。

可靠性预计目的、用途:评估系统可靠性,审查是否能达到要求的可靠性指标。

在方案论证阶段,通过可靠性预计,比较不同方案的可靠性水平,为最优方案的选择及方案优化提供依据。

在设计中,通过可靠性预计,发现影响系统可靠性的主要因素,找出薄弱环节,采取设计措施,提高系统可靠性。

为可靠性分配奠定基础。

分类根据战术技术中可靠性的定量要求 :基本可靠性预计由于产品不可靠导致对维修和保障的要求。

任务可靠性预计估计产品在完成任务的过程中完成其规定功能的概率。

从产品构成角度分析:单元可靠性预计(元件、部件或设备等)系统可靠性预计可靠性预计基本方法及用途:系统可靠性预计:数学模型法;边值法;故障树分析法设备可靠性预计:数学模型法;相似分析法;元器件计数法;应力分析法元器件可靠性预计:应力分析法数学模型法:根据组成系统的各单元间的可靠性数学模型,按概率运算法则,预计系统的可靠度的方法,是一种经典的方法。

相似设备法:将新设计的产品和已知可靠性数据的相似设备进行比较,从而简单估计出新产品可能达到的可靠性水平。

相似产品法考虑的相似因素一般包括:产品结构、性能的相似性;设计的相似性;材料和制造工艺的相似性;使用剖面(保障、使用和环境条件) 的相似性相似复杂性法:将新设计产品的与相似产品相比较,考虑新产品的相对复杂性,建立新、老产品可靠性之间的函数关系。

相关文档
最新文档