[精品]2016-2017学年河北省唐山市古冶区七年级(上)期中数学试卷(解析版)

合集下载

【6套打包】唐山市七年级上册数学期中考试单元检测试卷(含答案)

【6套打包】唐山市七年级上册数学期中考试单元检测试卷(含答案)

七年级上学期期中考试数学试题及答案一、选择题1.如图,由 6 个相同的小正方体搭成的几何体,那么从左面看几何体的平面图形是2.下列说法中,正确的是A.在数轴上表示 - a 的点一定在原点的左边B.有理数 a 的倒数是 12C.一个数的相反数一定小于或等于这个数D.如果a a =-那么 a 是负数或零3.有理数 a 、b 在数轴上的位置如图所示,那么下列式子中成立的是A. a >bB. a <bC. ab >0D. ab>04.在代数式4a ,0,m ,x + y ,1x ,2x yπ+中,整式共有()A.3 个B.6 个C.5 个D.4 个5.下列判断正确的是A. 3a 2bc 与 b ca 2 不是同类项B. 25m n 和2a b+都是单项式C.单项式 - x 3 y 2 的次数是 3,系数是-1D. 3x 2 - y + 2 x y 2 是三次三项式6.下列去括号正确的是A.a +(b -c)=a +b +cB.a -(b -c)=a -b -cC.a -(-b +c)=a -b -cD.a -(-b -c)=a +b +c7.下列说法中正确的是A.角是由两条射线组成的图形B.两点之间的线段叫做两点之间的距离C.如果线段A B=BC,那么B叫做线段A C的中点D.两点确定一条直线8.下列说法不正确的是A.若x=y则x+a =y +aB.若x=y则x-b =y -bC.若x=y则a x =ayD.若x=y则x y b b =9.如图,点A位于点O的第9题第10题A.南偏东35°方向上B.北偏西65°方向上C.南偏东65°方向上D.南偏西65°方向上10.如图,∠AOC和∠BOD都是直角,如果∠DOC=28°,则下列判断错误的是A.∠AOD=∠BOCB.∠AOB=148°C.∠AOB+∠DOC=180°D.若∠DOC变小,则∠AOB变大二、填空题1l.有资料显示,被称为“地球之肺”的森林正以毎年15000000公顷的速度从地球上消失, 将15000000用科学记数法表示为.12.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是.第12题第13题13.把一副三角板按照如图所示的位置拼在一起,不重叠也没有缝隙,则∠ABC的度数为.14.时钟的时间是3点30分,时钟面上的时针与分针的夹角是.15.将一个圆分割成三个扇形,它们圆心角度数之间的关系为2:3:4,则这三个扇形中圆心角最小的度数是.16.下列方程中:(1)3x +6y =1;(2)y2 -3y- 4 =0;(3)x2 +2x=1;(4)3x- 2 =4x+1.其中是一元一次方程的是(填写序号即可)17.已知点A、B、C三点在一条直线上,线段A B=6cm,线段B C=8cm,则线段A C的长度为.18.一家商店把一种旅游鞋按成本价a 元提高50%标价,然后再以8折优惠卖出,则这种旅游鞋每双的售价是元(用含a的式子表示).三、解答题19.计算:(1)(-20)+(+3)-(-5)-(+ 7) (2)(-3)⨯(-4)- 48 ÷6-(3)151(12)()236-⨯--(4)-14 +(-2)3⨯(-0.5)-15--20.合并同类项:(1)3a2-2a +4a2 - 7a (2)(x2 +5y)-12(4x2 -3y-1)21.化简求值:2(2x-3y)-(3x+2y +1)其中x= 2,y = 0.5.22.解方程:(1)4(x+0.5)+x = 7 (2)2121 34x x-+=-四、解答题23.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的正方形,问: (1)这个窗户的外框总长为;(2)这个窗户的面积为;(3)当a= 4 时,求这个窗户的面积。

人教版七年级上册试卷2016~2017学年度七年级上学期期中测试数学试卷.docx

人教版七年级上册试卷2016~2017学年度七年级上学期期中测试数学试卷.docx

2016~2017学年度七年级上学期期中测试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.在-0.25、+2.3、0、23-这四个数中,最小的数是( ) A .-0.25B .+2.3C .0D .23-2.计算(-3)3的结果是( ) A .-9B .9C .-27D .273.x =-1是下列哪个方程的解( ) A .x -5=6B .6221=+x C .3x +1=4 D .4x +4=04.32-的相反数是( ) A .23-B .23 C .32 D .32-5.下列计算正确的是( ) A .-2(a +b )=-2a +b B .-2(a +b )=-2a -b C .-2(a +b )=-2a -2bD .-2(a +b )=-2a +2b6.下列说法中正确的是( )A .单项式532xy 的系数是3,次数是2B .单项式-15ab 的系数是15,次数是2C .21-xy 是二次单项式D .多项式4x 2-3的常数项是37.小新出生时父亲28岁,现在父亲的年龄是小新的3倍,现在小新的年龄是( )岁 A .14B .15C .16D .178.代数式y 2+2y +7的值是6,则4y 2+8y -5的值是( ) A .9B .-9C .18D .-189.下列说法中正确的是( ) A .任何数都不等于它的相反数 B .若|x |=2,那么x 一定是2C .有比-1大的负整数D .如果a >b >1,那么a 的倒数小于b 的倒数10.如果a +b +c =0,且|a |>|b |>|c |,则下列说法中可能成立的是( ) A .a 、b 为正数,c 为负数 B .a 、c 为正数,b 为负数 C .b 、c 为正数,a 为负数D .a 、c 为正数,b 为负数二、填空题(本大题共6个小题,每小题3分,共18分)12.我国邻水的面积约为370000 km 2,用科学记数法表示为__________km 2 13.若单项式3ab m 和-4a n b 是同类项,则m +n =__________14.学校里男生人数占学生总数的60%,女生人数是a ,学生总数是__________人15.一艘船从甲码头到乙码头顺流而行,用了3小时,从乙码头返回甲码头逆流而上,多用了1.5小时.已知水流的速度是4 km /h ,设船在静水中的平均速度为x km /h ,可列方程为____________16.在一次数学游戏中,老师在A 、B 、C 三个盘子里分别放了一些糖果,糖果数依次为a 0、b 0、c 0,记为G 0=(a 0,b 0,c 0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个记为一次操作.若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果;若三个盘子中的糖果数相同,游戏结束,n 次操作后的糖果数记为G n =(a n ,b n ,c n ).小明发现:若G 0(4,8,18),则由此永远无法结束,那么G 2016=__________ 三、解答题(共8题,共52分)17.(本题12分)计算:(1) 16+(-25)+24+(-35) (2) )412()211()43(-÷-⨯-(3) 1283)3()5(23÷---⨯ (4) |-10|+|(-4)2-(1-32)×2|18.(本题4分)先化简,再求值:3x2-[7x-(4x-3)-2x2],其中x=519.(本题6分)解方程:(1) 3x+7=32-2x(2) 2-3(x+1)=1-2(1+0.5x)20.(本题8分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元)表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?21.(本题5分)甲地的海拔高度是h m,乙地的海拔高度是甲地海拔高度的3倍多20 m,丙地的海拔高度比甲地的海拔高度低30 m,列式计算乙、丙两地的高度差22.(本题6分)四人做传数游戏,小郑任报一个数给小丁,小丁把这个数加1传给小红,小红再把所得的数乘以2后传给小童,小童把所听到的数减1报出答案(1) 如果小郑所报的数为x,请把小童最后所报的答案用代数式表示出来(2) 若小郑报的数为9,则小童的答案是多少?(3) 若小童报出的答案是15,则小郑传给小丁的数是多少?23.(本题6分)有理数a 、b 在数轴上的对应点位置如图所示(1) 用“<”连接0、-a 、-b 、-1(2) 化简:|a |-2|a +b -1|-31|b -a -1|(3) 若a 2c +c <0,且c +b >0,求cb ac b a c c c c +-+----+++||1|1|1|1|的值24.(本题8分)如图,在数轴上每相邻两点间的距离为一个单位长度,点A 、B 、C 、D 对应的数分别是a 、b 、c 、d ,且d -2a =14(1) 那么a =__________,b =__________(2) 点A 以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B 以4个单位/秒的速度也沿着数轴的正方向运动.当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求这个点对应的数(3) 如果A 、B 两点以(2)中的速度同时向数轴的负方向运动,点C 从图上的位置出发也向数轴的负方向运动,且始终保持AB =32AC .当点C 运动到-6时,点A 对应的数是多少?武珞路中学2016~2017学年度七年级上学期期中测试数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)二、填空题(共6小题,每小题3分,共18分) 11.向西走了60 m 12.3.7×105 13.214. a 2515.3(x +4)=(3+1.5)(x -4) 16.(10,11,9)16.提示:G 1(5,9,16)、G 2(6,10,14)、G 3(7,11,12)、G 4(8,12,10)、G 5(9,10,11)、 G 6(10,11,9)、G 7(11,9,10)、G 8(9,10,11)、…… 从第5个开始每3个一循环 三、解答题(共8题,共72分) 17.解:(1) -20;(2) 21-;(3) 13;(4) 42 18.解:原式=5x 2-3x -3=107 19.解:(1) x =5;(2) x =0 20.解:设星期六盈亏数为x-27.8+(-70.3)+200+138.1+(-8)+x +188=458,解得x =38 答:星期六盈利了38元 21.解:(2h +50)m 22.解:(1) 2x +1(2) 当x =9时,2x +1=19 (3) 当2x +1=15时,x =7 23.解:(1) -1<-b <0<-a(2) 由图可知:a <0,a +b -1<0,b -a -1>0∴原式=-a -2(-a -b +1)-31(b -a -1)=353534-+b a(3) ∵a 2c +c <0 ∴c <0 ∵c +b >0∴原式=1-1-(-1)=1 24.解:(1) 由图可知:d =a +8∵d -2a =14∴a +8-2a =14,a =-6,b =a -2=-8 (2) 由(1)可知:a =-6,b =-8,c =-3,d =2点A 运动到D 点所花的时间为38设运动的时间为t则A 对应的数为2-3(t -38)=10-3tB 对应的数为:-8+4(t -1)=4t -12 当A 、B 两点相遇时,10-3t =4t -12,t =722 ∴4t -12=74 答:这个点对应的数为74 (3) 设运动的时间为tA 对应的数为:-6-3tB 对应的数为:-8-4t∴AB =|-6-3t -(-8-4t )|=|t +2|=t +2 ∵AB =32AC . ∴AC =23AB =323+t ∵C 对应的数为-6∴AC =|-6-(-6-3t )|=|3t |=323+t ① 当3233+=t t ,t =2 ② 当03233=++t t ,t =32-,不符合实际情况∴t =2∴-6-3t =-12答:点A 对应的数为-12初中数学试卷桑水出品。

河北省唐山市七年级上学期期中数学试卷

河北省唐山市七年级上学期期中数学试卷

河北省唐山市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共6题;共12分)1. (2分)的倒数的相反数是()A .B . 2C . -2D . -2. (2分)向东走-8米的意义是()A . 向东走8米B . 向西走8米C . 向西走-8米D . 以上都不对3. (2分) (2016七上·莒县期中) 下列各组中,不是同类项的是()A . 52与25B . ﹣ab与baC . 0.2a2b与﹣ a2bD . a2b3与﹣a3b24. (2分) (2017七上·乐清期中) 购买m本书需要n元,则购买3本书共需费用()A .B .C . 3mnD . 3n5. (2分) (2018七上·新左旗期中) 在下列变形中,正确的是()A . 如果a=b ,那么B . 如果 =4,那么a=2C . 如果a–b+c=0,那么a=b+cD . 如果a=b ,那么a+c=b–c6. (2分) (2019七上·萧山期末) 下列各数中,结果是负数的是()A .B .C .D .二、填空题: (共8题;共14分)7. (3分) (2018七上·揭西月考) 用“<”、“=”或“>”号填空:-2________0 ________ ________8. (1分) (2015七上·港南期中) ﹣9,6,﹣3三个数的和比它们绝对值的和小________.9. (2分)代数式﹣2πab的系数为________,次数为________.10. (3分) (2017七上·秀洲期中) 用四舍五入法将下列各数取近似值:(1) 0.03495(精确到百分位)≈________;(2) 8.0504(精确到0.1)≈________;(3)51965000(精确到十万位)≈________.11. (1分) (2017七上·锡山期末) 小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本,笔记本买来后,小明、小华分别比小敏多拿了5本和7本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏________元.12. (1分)如果代数式2x+y的值是3,那么代数式7﹣6x﹣3y的值是________13. (1分) (2019七上·北京期中) 若,则 ________.14. (2分) (2019九上·邯郸月考) 如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是________;…按此规律运动到点A2019处,则点A2019与点A0间的距离是________.三、解答题: (共12题;共114分)15. (20分) (2019七上·萧山月考) 计算:(1) (-5)+(-4)-(+11)-(-19)(2)(3)﹣32×[﹣(﹣1)3 ](4) .16. (5分)计算(1)(2)﹣6×(﹣3)+2×(﹣4)17. (5分)解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.18. (10分) (2020七上·椒江期中)(1)化简:3a-[-2b+(4a-3b)](2)化简求值:x2-3(2x2-4y)+2(x2-y),其中 x=-2,y=19. (10分) (2018七上·翁牛特旗期末) 计算:(1)(2)20. (5分)用幂的运算知识,你能比较出3555与4444和5333的大小吗?请给出科学详细的证明过程.21. (5分) (2020七上·柳州期末) 商店里有某种型号的电视机,每台售价1200元,可盈利,现有一客商以11500元的总价购买了若干台这种型号的电视机,这样商店仍有的利润,问客商买了几台电视机?22. (15分) (2018七上·金堂期末) 计算题(1)计算:(2)化简求值.2( -5y)-[-3( -3y)] ,其中 = ,y=-2(3)解方程:23. (9分) (2020九上·青山期中) 如图①是一张长为18 ,宽为12 的长方形硬纸板,把它的四个角都剪去一个边长为的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积 ________ ;(用含的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,12345160________216________80当取什么正整数时,长方体盒子的容积最大________?(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出的值;如果不是正方形,请说明理由.24. (10分) (2018七上·黑龙江期末) 某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?25. (10分) (2019七上·青岛期中) 某市设计的长方形休闲广场如图所示,两端是两个半圆形的花坛,中间是一个直径为长方形宽度一半的圆形喷水池.(1)用图中所标字母表示广场空地(图中阴影部分)的面积.(2)若休闲广场的长为90米,宽为40米,求广场空地的面积(计算结果保留π).26. (10分) (2020七上·郑州月考) 以下四个有理数:﹣3,4,0,0.5(1)把以上各数及其相反数表示在数轴上;(2)用>号把以上数轴上的各数连接起来.参考答案一、选择题: (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题: (共8题;共14分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、答案:10-2、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题: (共12题;共114分)答案:15-1、答案:15-2、答案:15-3、答案:15-4、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。

【6套打包】唐山市七年级上册数学期中考试单元检测试卷(解析版)

【6套打包】唐山市七年级上册数学期中考试单元检测试卷(解析版)

人教版七年级第一学期期中模拟数学试卷【含答案】一、选择题(每小题3分,共30分)1.在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A.2个B.3个C.4个D.5 个2.下列计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣2(c﹣d)=﹣2c+2d D.﹣(a﹣b)=﹣a﹣b3.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104B.25.9×105C.2.59×106D.0.259×107 4.在,x+1,﹣2,,0.72xy,,中单项式的个数有()A.2个B.3个C.4个D.5个5.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b+a>0D.a+c>06.如图中,是正方体的表面展开图的是()A.B.C.D.7.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣68.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子a个,每个2元,橙色珠子b个,每个5元,那么小强购买珠子共需花费()A.(2a+5b)元B.(5a+2b)元C.2(a+5b)元D.5(2a+b)元9.已知M是一个五次多项式,N是一个三次多项式,则M﹣N是一个()次整式.A.5B.3C.小于等于5D.210.现有以下五个结论:①正数、负数和0统称为有理数;②若两个非0数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数.其中正确的有()A.0个B.1个C.2个D.3个二.填空题(每小题3分,共15分)11.如果|a+1|+(b﹣3)2=0,那么a﹣b的值是.12.用以平面去截一个正方体,得到的截面形状中最多是边形.13.一商店把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为元.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是.15.已知长方形的长为4cm,宽3cm,现将这个长方形绕它的一边所在直线旋转一周,则所得到的几何体的体积为cm3.三.解答题16.(12分)计算题:(1)(1﹣)×(﹣24)(2)﹣×[(﹣3)3×(﹣)2﹣6](3)﹣()2×9﹣2×(﹣)+|﹣4|×0.52+2×(﹣1)217.(15分)计算或化简求值(1)6x+7x2﹣9+4x﹣x2+6(2)5m﹣2(4m+5n)+3(3m﹣4n)(3)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=18.(5分)如果a,b互为相反数,c,d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式﹣cd+y2017的值.19.(6分)已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.20.(8分)数轴上点A对应的数为a,点B对应的数为b,且多项式﹣x2y﹣xy2﹣2xy+5的次数为a,常数项为b.(1)直接写出a、b的值;(2)数轴上点A、B之间有一动点P(不与A、B重合),若点P对应的数为x,试化简:|2x+6|+4|x ﹣5|﹣|6﹣x|+|3x﹣9|.21.(9分)解答下面的问题:(1)如果a2+a=3,求a2+a+2015的值.(2)已知a﹣b=﹣3,求3(b﹣a)2﹣5a+5b+5的值.(3)已知a2+2ab=﹣3,ab﹣b2=﹣5,求4a2+ab+b2的值.一、填空题(每小题3分共18分)B卷(50分)22.规定*是一种新的运算符号,且a*b=a2+a×b﹣a+2,例如:2*3=22+2×3﹣2+2=10,请你根据上面的规定可求:1*3*5的值为.23.已知代数式ax5+bx3﹣3x+c,当x=0时,该代数式的值为﹣1.已知当x=3时,该代数式的值为9,试求当x=﹣3时该代数式的值为.24.若A=nx n+4+x3﹣n﹣x3,B=3x n+4﹣x4+x3+nx2,当整数n=时,A﹣B是五次四项式.25.桌上摆着一个由若干个相同正方体摆成的几何体,从正面、左面看所得的平面图形如图所示,这个几何体最多可以由个这样的正方体组成.26.x1、x2、x3、…x20是20个由1,0,﹣1组成的数,且满足:①x1+x2+x3+…+x20=4,②(x1﹣1)2+(x2﹣1)2+(x3﹣1)2…+(x20﹣1)2=32,则这列数中1的个数为个.27.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,…,按照这种移动规律进行下去,第n次移动到达点A n,如果点A n与原点的距离不小于50,那么n的最小值是.二、解答题(每小题8分,共32分)28.(8分)已知代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)当a=,b=时,此代数式的值与字母x的取值无关;(2)在(1)的条件下,求多项式3(a2﹣2ab﹣b2)﹣(3a2+ab+b2)的值;(3)在(1)的条件下,求(b+a2)+(2b+•a2)+(3b+•a2)+…+(9b+•a2)的值.29.(8分)某超市对顾客实行优惠购物,规定如下:①若一次性购物商品总价不超过100元则不予优惠;②若一次性购物总价超过100元,但不超过300元,给予九折优惠;若一次性购物商品总价超过300元,其中300元以下部分(包括300元)给予九折优惠;超过300元部分给予八折优惠.小李前后分两次去该超市购物,分别付款234元和94.5元.(1)求小李第一次购物所购商品的总价是多少元?(2)小张决定一次性购买小李分两次购买的商品,他可以比小李节约多少元?30.(8分)现用棱长为1cm的若干小立方体,按如图所示的规律在地上搭建若个几何体.图中每个几何体自上而下分别叫第一层,第二层…第n层(n为正整数),其中第一层摆放一个小立方体,第二层摆放4个小立方体,第三层摆放9个小立方体…,依次按此规律继续摆放.(1)求搭建第4个几何体需要的小立方体个数;(2)为了美观,若将每个几何体的所有露出部分(不包含底面)都喷涂油漆,已知喷涂1cm2需要油漆0.2g.①求喷涂第4个几何体需要油漆多少g?②求喷涂第n个几何体需要油漆多少g?(用含n的代数式表示)31.(8分)已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点左边,距离原点8个单位长度,点B在原点的右边.(1)请直接写出A,B两点所对应的数.(2)数轴上点A以每秒1个单位长度的速度出发向左运动,同时点B以每秒3个单位长度的速度出发向左运动,在点C处追上了点A,求C点对应的数.(3)已知,数轴上点M从点A向左出发,速度为每秒1个单位长度,同时点N从点B向左出发,速度为每秒2个单位长度,经t秒后点M、N、O(O为原点)其中的一点恰好到另外两点的距离相等,求t的值.参考答案一、选择题1.在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A.2个B.3个C.4个D.5 个【分析】根据正数与负数的定义求解.【解答】解:在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数有﹣1、﹣10、﹣|+3|这3个,故选:B.【点评】本题考查了正数和负数:在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.2.下列计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣2(c﹣d)=﹣2c+2d D.﹣(a﹣b)=﹣a﹣b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b,不符合题意;B、原式不能合并,不符合题意;C、原式=﹣2c+2d,符合题意;D、原式=﹣a+b,不符合题意,故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104B.25.9×105C.2.59×106D.0.259×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2590000用科学记数法表示为:2.59×106.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在,x+1,﹣2,,0.72xy,,中单项式的个数有()A.2个B.3个C.4个D.5个【分析】根据单项式的定义即可求出答案.【解答】解:﹣2,,0.72xy,是单项式,故选:C.【点评】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.5.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b+a>0D.a+c>0【分析】根据数轴上点的位置判断出a,b,c的大小,利用有理数的加法法则判断即可.【解答】解:根据数轴上点的位置得:﹣4<b<﹣3<﹣1<0<1<c,即|a|<|c|<|b|,∴a+b<0,b+c<0,b+a<0,a+c>0,故选:C.【点评】此题考查了有理数的加法,以及数轴,熟练掌握运算法则是解本题的关键.6.如图中,是正方体的表面展开图的是()A.B.C.D.【分析】根据正方体的特征以及展开图的特点进行解答即可.【解答】解:A、C、D它们不是正方体的表面展开图.故选:B.【点评】此题考查了正方体的展开图,解题时要充分发挥学生的空间想象力,注意有“田”字格的展开图都不能围成正方体.7.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣6【分析】由已知得出a﹣2b=8,代入原式=2(a﹣2b)+10计算可得.【解答】解:∵﹣a+2b+8=0,∴a﹣2b=8,则原式=2(a﹣2b)+10=2×8+10=16+10=26,故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子a个,每个2元,橙色珠子b个,每个5元,那么小强购买珠子共需花费()A.(2a+5b)元B.(5a+2b)元C.2(a+5b)元D.5(2a+b)元【分析】直接利用两种颜色的珠子的价格进而求出手链的价格.【解答】解:∵绿色珠子每个2元,橙色珠子每个5元,∴小强购买珠子共需花费(2a+5b)元,故选:A.【点评】此题主要考查了列代数式,正确得出各种颜色珠子的数量是解题关键.9.已知M是一个五次多项式,N是一个三次多项式,则M﹣N是一个()次整式.A.5B.3C.小于等于5D.2【分析】根据合并同类项的法则即可判断M﹣N是一个五次多项式.【解答】解:因为M是一个五次多项式,N是一个三次多项式,所以M﹣N的结果中,M的五次项没有同类项与它合并,即M﹣N仍然是一个五次整式.故选:A.【点评】此题考查了整式的加减,用到的知识点为:只有同类项才能合并成一项,不是同类项的项不能合并.熟练掌握合并同类项法则是解本题的关键.10.现有以下五个结论:①正数、负数和0统称为有理数;②若两个非0数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数.其中正确的有()A.0个B.1个C.2个D.3个【分析】根据有理数的乘法、除法法则及相反数和有理数的概念求解可得.【解答】解:①正有理数、负无理数和0统称为有理数,此结论错误;②若两个非0数互为相反数,则它们相除的商等于﹣1,此结论正确;③数轴上的每一个点均表示一个确定的实数,此结论错误;④绝对值等于其本身的有理数是零和正数,此结论错误;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数,也有可能是0,此结论错误.故选:B.【点评】本题主要考查有理数的除法,解题的关键是掌握有理数的乘法、除法法则及相反数和有理数的概念.二.填空题(每小题3分,共15分)11.如果|a+1|+(b﹣3)2=0,那么a﹣b的值是﹣4.【分析】根据绝对值及偶次方的非负性,可求出a、b的值,将其代入a﹣b中即可求出结论.【解答】解:∵|a+1|+(b﹣3)2=0,∴a+1=0,b﹣3=0,∴a=﹣1,b=3,∴a﹣b=﹣1﹣3=﹣4.故答案为:﹣4.【点评】本题考查了偶次方及绝对值的非负性,利用绝对值及偶次方的非负性求出a、b的值是解题的关键.12.用以平面去截一个正方体,得到的截面形状中最多是六边形.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.【解答】解:∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形,故答案为:六.【点评】此题考查了截一个几何体,用到的知识点为:截面经过正方体的几个面,得到的截面形状就是几边形.13.一商店把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为3200元.【分析】设彩电的标价为x元,根据售价﹣进价=利润建立方程求出其解即可.【解答】解:设彩电的标价为x元,有题意,得0.9x﹣2400=2400×20%,解得:x=3200.故答案为:3200.【点评】本题考查了销售问题的数量关系的运用,列一元一次方程解实际问题的运用,解答时根据售价﹣进价=利润建立方程是关键.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是﹣2b.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b,故答案为:﹣2b【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.15.已知长方形的长为4cm,宽3cm,现将这个长方形绕它的一边所在直线旋转一周,则所得到的几何体的体积为48π或36πcm3.【分析】根据圆柱体的体积公式V=πr2h分两种情况进行计算即可.【解答】解:V=π×42×3=48π,V=π×32×4=36π,故答案为:48π或36π.【点评】此题主要考查了点、线、面、体,关键是掌握圆柱体的体积公式.三.解答题16.(12分)计算题:(1)(1﹣)×(﹣24)(2)﹣×[(﹣3)3×(﹣)2﹣6](3)﹣()2×9﹣2×(﹣)+|﹣4|×0.52+2×(﹣1)2【分析】(1)利用乘法分配律展开,再依次计算乘法和减法即可得;(2)根据有理数的混合运算顺序和运算法则计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=1×(﹣24)﹣×(﹣24)=﹣24+9=﹣15;(2)原式=﹣×(﹣27×﹣6)=﹣×(﹣12﹣6)=﹣×(﹣18)=;(3)原式=﹣×9﹣2×(﹣)×+4×+×=﹣4+1+1+5=3.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.17.(15分)计算或化简求值(1)6x+7x2﹣9+4x﹣x2+6(2)5m﹣2(4m+5n)+3(3m﹣4n)(3)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=【分析】(1)根据合并同类项法则计算即可得;(2)先去括号,再合并同类项即可得;(3)将原式去括号,合并同类项即可化简,再将a与b的值代入计算可得.【解答】解:(1)原式=6x2+10x﹣3;(2)原式=5m﹣8m﹣10n+9m﹣12n=6m﹣22n;(3)原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2,当a=﹣,b=时,原式=12×(﹣)2×﹣6×(﹣)×()2=12××+3×=1+=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)如果a,b互为相反数,c,d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式﹣cd+y2017的值.【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,x与y的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,x=±1,y=﹣1,∴﹣cd+y2017=0+1﹣1+(﹣1)=﹣1.【点评】此题考查了代数式求值,绝对值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.19.(6分)已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【解答】解:(1)这个几何体是三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长即C=4×3=12cm,根据题意可知主视图的长方形的长是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=12×10=120cm2.答:这个几何体的侧面面积为120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.20.(8分)数轴上点A对应的数为a,点B对应的数为b,且多项式﹣x2y﹣xy2﹣2xy+5的次数为a,常数项为b.(1)直接写出a、b的值;(2)数轴上点A、B之间有一动点P(不与A、B重合),若点P对应的数为x,试化简:|2x+6|+4|x ﹣5|﹣|6﹣x|+|3x﹣9|.【分析】(1)根据多项式的次数和常数项的定义求出a、b即可;(2)先去掉绝对值符号,再合并同类项即可.【解答】解:(1)a=3,b=5;(2)∵P在A、B之间(不与A、B重合),A表示的数为3,B表示的数是5,∴3<x<5,∴x+3>0,x﹣5<0,6﹣x>0,x﹣3>0,|2x+6|+4|x﹣5|﹣|6﹣x|+|3x﹣9|=|2(x+3)|+4|x﹣5|﹣|6﹣x|+|3(x﹣3)|=2x+6+4(5﹣x)﹣(6﹣x)+3x﹣9=2x+6+20﹣4x﹣6+x+3x﹣9=2x+11.【点评】本题考查了多项式、绝对值、数轴、整式的加减等知识点,能求出a、b的值和去掉绝对值符号是解此题的关键.21.(9分)解答下面的问题:(1)如果a2+a=3,求a2+a+2015的值.(2)已知a﹣b=﹣3,求3(b﹣a)2﹣5a+5b+5的值.(3)已知a2+2ab=﹣3,ab﹣b2=﹣5,求4a2+ab+b2的值.【分析】(1)把已知等式代入计算即可求出值;(2)原式变形后,把a﹣b=﹣3代入计算即可求出值;(3)把已知两式变形,计算即可求出所求.【解答】解:(1)∵a2+a=3,∴原式=3+2015=2018;(2)∵a﹣b=﹣3,∴原式=3(a﹣b)2﹣5(a﹣b)+5=27+15+5=47;(3)∵a2+2ab=﹣3①,ab﹣b2=﹣5②,∴①×4﹣②×得:4a2+8ab﹣ab+b2=4a2+ab+b2=﹣12+=﹣.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.一、填空题(每小题3分共18分)B卷(50分)22.规定*是一种新的运算符号,且a*b=a2+a×b﹣a+2,例如:2*3=22+2×3﹣2+2=10,请你根据上面的规定可求:1*3*5的值为47.【分析】先根据新定义计算1*3,再将所得结果与5进行“*”运算,据此可得.【解答】解:1*3*5=(12+1×3﹣1+2)*5=5*5=52+5×5﹣5+2=25+25﹣5+2=47,故答案为:47.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.已知代数式ax5+bx3﹣3x+c,当x=0时,该代数式的值为﹣1.已知当x=3时,该代数式的值为9,试求当x=﹣3时该代数式的值为﹣11.【分析】根据当x=0时,该代数式的值为﹣1求出c=﹣1,根据当x=3时,该代数式的值为9求出243a+27b=19,把x=﹣3代入代数式,即可求出答案.【解答】解:∵代数式ax5+bx3﹣3x+c,当x=0时,该代数式的值为﹣1,∴c=﹣1,即代数式为ax5+bx3﹣3x﹣1,∵当x=3时,该代数式的值为9,∴ax5+bx3﹣3x﹣1=a×35+b×33﹣3×3﹣1=9,∴243a+27b=19,∴当x=﹣3时,ax5+bx3+3x﹣1=a×(﹣3)5+b×(﹣3)3﹣3×(﹣3)﹣1=﹣19+9﹣1=﹣11,故答案为:﹣11.【点评】本题考查了求代数式的值的应用,解此题的关键是求出243a+27b=19.24.若A=nx n+4+x3﹣n﹣x3,B=3x n+4﹣x4+x3+nx2,当整数n=﹣2时,A﹣B是五次四项式.【分析】将A=nx n+4+x3﹣n﹣x3,B=3x n+4﹣x4+x3+nx2代入A﹣B中,去括号合并得到最简结果,再根据五次四项式的定义即可求出n的值.【解答】解:∵A=nx n+4+x3﹣n﹣x3,B=3x n+4﹣x4+x3+nx2,∴A﹣B=(nx n+4+x3﹣n﹣x3)﹣(3x n+4﹣x4+x3+nx2)=nx n+4+x3﹣n﹣x3﹣3x n+4+x4﹣x3﹣nx2=(n﹣3)x n+4+x3﹣n﹣2x3+x4﹣nx2,由题意,得n﹣3≠0,n+4=5,或3﹣n=5,解得n=1(不合题意舍去),或n=﹣2.故答案为﹣2.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.也考查了多项式的次数与项数的定义.25.桌上摆着一个由若干个相同正方体摆成的几何体,从正面、左面看所得的平面图形如图所示,这个几何体最多可以由13个这样的正方体组成.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【解答】解:易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为:13【点评】考查由三视图判断几何体,关键是对学生对三视图掌握程度和灵活运用能力和对空间想象能力方面的考查.26.x1、x2、x3、…x20是20个由1,0,﹣1组成的数,且满足:①x1+x2+x3+…+x20=4,②(x1﹣1)2+(x2﹣1)2+(x3﹣1)2…+(x20﹣1)2=32,则这列数中1的个数为12个.【分析】设这20个数中1有x个,﹣1有y个,则0有(20﹣x﹣y)个,根据①知这20个数的和为4,从而得出x+(﹣1)×y+0×(20﹣x﹣y)=4,即x﹣y=4 ①;由②知x 个0、(20﹣x﹣y)个﹣1、y个﹣2的平方和为32,从而得出0×x+(﹣1)2×(20﹣x﹣y)+(﹣2)2×y=32,即﹣x+3y=12 ②,联立方程组求解可得.【解答】解:设这20个数中1有x个,﹣1有y个,则0有(20﹣x﹣y)个,∵x1+x2+x3+…+x20=4,∴x+(﹣1)×y+0×(20﹣x﹣y)=4,即x﹣y=4 ①;∵(x1﹣1)2+(x2﹣1)2+(x3﹣1)2…+(x20﹣1)2=32,∴0×x+(﹣1)2×(20﹣x﹣y)+(﹣2)2×y=32,即﹣x+3y=12 ②,由①②求解可得x=12,y=8,即这列数中1的个数为12,故答案为:12.【点评】此题考查了规律型:数字的变化类,弄清题中两个等式所表示的意义是解本题的关键.27.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,…,按照这种移动规律进行下去,第n次移动到达点A n,如果点A n与原点的距离不小于50,那么n的最小值是33.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A33表示的数为﹣47﹣3=﹣50,A34表示的数为49+3=52,则可判断点A n与原点的距离不小于50时,n的最小值是33.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A15表示的数为﹣20﹣3=﹣23,A17表示的数为﹣23﹣3=﹣26,A19表示的数为﹣26﹣3=﹣29,A21表示的数为﹣29﹣3=﹣32,A23表示的数为﹣32﹣3=﹣35,A25表示的数为﹣﹣35﹣3=﹣38,A27表示的数为﹣38﹣3=﹣41,A29表示的数为﹣41﹣3=﹣44,A31表示的数为﹣44﹣3=﹣47,A33表示的数为﹣47﹣3=﹣50,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,A14表示的数为19+3=22,A16表示的数为22+3=25,A18表示的数为25+3=28,A20表示的数为28+3=31,A22表示的数为31+3=34,A24表示的数为34+3=37,A26表示的数为37+3=40,A28表示的数为40+3=43,A30表示的数为43+3=46,A32表示的数为46+3=49,A34表示的数为49+3=52,所以点A n与原点的距离不小于50,那么n的最小值是33.故答案为:33.【点评】本题考查了规律型,认真观察、仔细思考,找出点表示的数的变化规律是解决本题的关键.二、解答题(每小题8分,共32分)28.(8分)已知代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)当a=﹣3,b=1时,此代数式的值与字母x的取值无关;(2)在(1)的条件下,求多项式3(a2﹣2ab﹣b2)﹣(3a2+ab+b2)的值;(3)在(1)的条件下,求(b+a2)+(2b+•a2)+(3b+•a2)+…+(9b+•a2)的值.【分析】(1)先去括号,合并同类项,根据题意求出a、b即可;(2)先去括号,合并同类项,再代入求出即可;(3)先用适当的方法变形,再合并同类项,最后代入求出即可.【解答】解:(1)(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,当2﹣2b=0,a+3=0时,此代数式的值与字母x的取值无关,即b=1,a=﹣3,故答案为:﹣3,1;(2)当a=﹣3,b=1时,3(a2﹣2ab﹣b2)﹣(3a2+ab+b2)=3a2﹣6ab﹣3b2﹣3a2﹣ab﹣b2=﹣7ab﹣4b2=﹣7×(﹣3)×1﹣4×12=17;(3)(b+a2)+(2b+•a2)+(3b+•a2)+…+(9b+•a2)=b+a2+2b+•a2+3b+•a2+…+9b+•a2=45b+a2+a2﹣a2+a2﹣a2+…+a2﹣a2=45b+a2=45×1+×(﹣3)2=62.【点评】本题考查了多项式乘以多项式法则,整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.29.(8分)某超市对顾客实行优惠购物,规定如下:①若一次性购物商品总价不超过100元则不予优惠;②若一次性购物总价超过100元,但不超过300元,给予九折优惠;若一次性购物商品总价超过300元,其中300元以下部分(包括300元)给予九折优惠;超过300元部分给予八折优惠.小李前后分两次去该超市购物,分别付款234元和94.5元.(1)求小李第一次购物所购商品的总价是多少元?(2)小张决定一次性购买小李分两次购买的商品,他可以比小李节约多少元?【分析】(1)先求出原价为300元时所需付钱数,与234比较后可得出第一次购物所购商品的总价小于300元,再用234除以折扣率即可求出小李第一次购物所购商品的总价;(2)设小李第二次购物所购商品的总价是x元,由90<94.5<100可知分两种情况考虑,当x<100时,可得出x=94.5,根据小李两次购物所付金额总数﹣小张所需付金额=节约的钱数,即可求出结论;当x>100时,根据原价×折扣率=所付金额,可求出x的值,再根据小李两次购物所付金额总数﹣小张所需付金额=节约的钱数,即可求出结论.综上此题得解.【解答】解:(1)∵300×0.9=270(元),234<270,∴第一次购物所购商品的总价是234÷0.9=260(元).答:小李第一次购物所购商品的总价是260元.(2)设小李第二次购物所购商品的总价是x元,当x<100时,x=94.5,此时节约的钱数为(234+94.5)﹣[300×0.9+(260+94.5﹣300)×0.8]=14.9(元);当x>100时,有0.9x=94.5,解得:x=105,此时节约的钱数为(234+94.5)﹣[300×0.9+(260+105﹣300)×0.8]=6.5(元).答:小张可以比小李节约14.9元或6.5元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量间的关系,列式计算;(2)分两种情况求出小李第二次购物所购商品的总价.30.(8分)现用棱长为1cm的若干小立方体,按如图所示的规律在地上搭建若个几何体.图中每个几何体自上而下分别叫第一层,第二层…第n层(n为正整数),其中第一层摆放一个小立方体,第二层摆放4个小立方体,第三层摆放9个小立方体…,依次按此规律继续摆放.(1)求搭建第4个几何体需要的小立方体个数;(2)为了美观,若将每个几何体的所有露出部分(不包含底面)都喷涂油漆,已知喷涂1cm2需要油漆0.2g.①求喷涂第4个几何体需要油漆多少g?②求喷涂第n个几何体需要油漆多少g?(用含n的代数式表示)【分析】(1)观察得到每层向上的面都为正方形,即每层的个数都为平方数,则搭建第4个几何体的小立方体的个数=1+4+9+16;第n个几何体第n层的个数为n2,所以总数为1+22+32+42+…+n2;(2)①喷漆第四个几何露在外面的表面积为:4×(1+2+3+4)+42=56(cm2),再用表面积×0.2,即可解答.②第n个几何体的所有露出部分(不含底面)的面积=4×(1+2+3+…+n)+n2,化简后乘以0.2即可.【解答】解:(1)搭建第4个几何体的小立方体的个数=1+4+9+16=30;(2)①喷漆第四个几何露在外面的表面积为:4×(1+2+3+4)+42=56(cm2),56×0.2=11.2(g).②第n个几何体的所有露出部分(不含底面)的面积=4×(1+2+3+…+n)+n2=4×+n2=3n2+2n,所以所需要的油漆量=(3n2+2n)×0.2=(0.6n2+0.4n)g.【点评】此题主要考查了图形的变化类:通过特殊图象找到图象变化,归纳总结出规律,再利用规律解决问题.也考查了三视图.31.(8分)已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点左边,距离原点8个单位长度,点B在原点的右边.(1)请直接写出A,B两点所对应的数.(2)数轴上点A以每秒1个单位长度的速度出发向左运动,同时点B以每秒3个单位长度的速度出发向左运动,在点C处追上了点A,求C点对应的数.(3)已知,数轴上点M从点A向左出发,速度为每秒1个单位长度,同时点N从点B向左出发,速度为每秒2个单位长度,经t秒后点M、N、O(O为原点)其中的一点恰好到另外两点的距离相等,求t的值.【分析】(1)根据题意找出A与B点对应的数即可;(2)设经过x秒点A、B相遇,根据题意列出方程,求出方程的解得到x的值,即可确定出C点对应的数;(3)根据题意分5种情况列出关于t的方程,求出方程的解即可得到结果.【解答】解:(1)根据题意得:A点所对应的数是﹣8;B对应的数是20;(2)设经过x秒点A、B相遇,根据题意得:3x﹣x=28,解得:x=14,则点C对应的数为﹣8﹣14=﹣22;(3)依题意有20﹣2t=8+t,解得t=4;或2t=20,解得t=10;或2(2t﹣20)=8+t,解得t=16;或2t﹣t=20+8,解得t=28;或2t﹣20=2(8+t),方程无解.故t的值为4或10或16或28.【点评】此题主要考查了一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.。

古冶区七年级数学期中试卷

古冶区七年级数学期中试卷

1. 下列各数中,有理数是()A. √2B. πC. √9D. √-12. 已知a、b是方程x² - 3x + 2 = 0的两个实数根,则a + b的值是()A. 1B. 2C. 3D. 43. 在下列各式中,正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)³ = a³ + 3a²b + 3ab² + b³D. (a - b)³ = a³ - 3a²b + 3ab² - b³4. 已知等腰三角形底边长为6,腰长为8,则该三角形的周长为()A. 14B. 20C. 22D. 245. 若x + 1是x² - 5x + 6的因式,则x的值为()A. 2B. 3C. 4D. 56. 下列函数中,有最小值的是()A. y = x²B. y = -x²C. y = x³D. y = -x³7. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)8. 若sinα = 1/2,则α的度数是()A. 30°B. 45°C. 60°D. 90°9. 已知一个正方形的对角线长为10,则该正方形的面积为()A. 50B. 100C. 50√2D. 100√210. 下列各组数中,成等差数列的是()A. 2,5,8,11,14B. 1,3,6,10,15C. 4,7,10,13,16D. 3,6,9,12,1511. 若a + b = 5,ab = 6,则a² + b²的值为______。

2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)2016-2017学年度第一学期期中教学质量测试七年级数学试卷题号一二三四总分得分一.选择题(每小题3分,共30分) 1. 下列各数中,为负数的是() A、-1 B、0 C、2 D、3.14 2. 如图所示的图形为四位同学画的数轴,其中正确的是()3. 九台全区7年级学生大约有10200人,10200这个数用科学记数法表示为() A、 B、 C、 D、 4.下列各数与相等的()A. B. C. D. 5.将式子3-5-7写成和的形式,正确的是() A.3+5+7 B.-3+(-5)+(-7) C.3-(+5)-(+7) D.3+(-5)+(-7) 6.如果,且m+n<0,则下列选项正确的是() A、m<0, n< 0 B、m>0, n< 0 C、m,n异号,且负数的绝对值大 D、m,n异号,且正数的绝对值大 7.一个数的偶数次幂是正数,这个数是() A.正数 B.负数 C.正数或负数 D.有理数 8.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“ 是最小的正整数,是最大的负整数,是绝对值最小的有理数.”请问:,,三数之和是() A.-1 B.0 C.1 D.2 9. 下列代数式符合书写要求的是() A、 B、 C、 5 D、10.一个两位数,十位数字是,个位数字是,则这个两位数用式子表示为() A、 B、 C、 D、二、填空题(每小题3分,共18分)11. 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差_________kg。

12. 九台区中小学生大约有8.9万人,近似数8.9万精确到_________位 13. 比较大小(填“>”或“<” )_____ 14. 在数-5,-3,-2,2,6中,任意两个数相乘,所得的积中最小的数是________. 15. 观察下面一列数:-,,-,,…,按照这个规律,第2016个数是_________ 16.小明身上带着元钱去商店里买学习用品,付给售货员(<)元,找回元,则小明身上还有_________元(用含有、、来表示)三、计算题(本大题共6小题,共32分) 17.(5分)�D3+(-4)�D(-5)四、解答题(本大题共6小题,共40分) 23.(7分)请将数轴补全,然后把数-4,1,0,,-(-5)表示在数轴上,并按从小到大的顺序,从左到右串个糖葫芦,把数填在“○”内24.(7分)已知:与互为相反数求的值 25.(8分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶纪录如下(单位:千米):+10,-9,+7,-15,+6,-14,+4,-2 (1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶10千米耗油0.5升,且最后返回岗亭,这时摩托车共耗油多少升?26.(8分)人在运动时每分钟心跳的次数通常和人的年龄有关,如果用表示一个人的年龄,用表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么 (1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少? (2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?27.(10分)如图,已知数轴上点A表示的数为-7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为(>0)秒(1)点C表示的数是_________ (2)求当等于多少秒时,点P到达点B 处(3)点P表示的数是_________(用含有的代数式表示)(4)求当t等于多少秒时,PC之间的距离为2个单位长度七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B B D A C B A C 二、填空题(每小题3分,共18分) 11、 0.6;12、千;13、>;14、-30;15、;16、- + 。

河北省唐山市 七年级(上)期中数学试卷

河北省唐山市 七年级(上)期中数学试卷

七年级(上)期中数学试卷一、选择题(本大题共12小题,共24.0分)1.数轴上到原点的距离为3的点表示的数为()A. 3B. −3C. −3或3D. −6或62.单项式a2的系数是()A. 2B. 1C. 0D. a3.在数110,-9,-5,0中,最小的数是()A. 110B. −9C. −5D. 04.下面计算正确的是()A. −2−3=−5B. −32=−6C. 12÷2=2×2=4D. (−23)2=435.若5a|x|b2与-0.2a3b|y|是同类项,则x、y的值分别是()A. x=±3,y=±2B. x=3,y=2C. x=−3,y=−2D. x=3,y=−26.如图,数轴上点A表示的数是-2,将点A向右移动5个单位长度,得到点B,则点B表示的数是()A. 5B. −8C. 2D. 37.小李在解方程5a-x=13(x为未知数)时,误将-x看作+x,得方程的解为x=-2,则原方程的解为()A. x=0B. x=1C. x=2D. x=38.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. −4a2b+3ba2=−a2bD. 5a2−4a2=19.如图是张小亮的答卷,他的得分应是()A. 40分B. 60分C. 80分D. 100分10.下列各题正确的是()A. 由5x=−2x−3,移项得5x−2x=3B. 由2x−13=1+x−32,去分母得2(2x−1)=1+3(x−3)C. 由2(2x−1)−3(x−3)=1,去括号得4x−2−3x−9=1D. 把x0.7−0.17−0.2x0.03=1中的分母化为整数,得10x7−17−20x3=111.据某省统计局发布,2017年该省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年该省有效发明专利为a万件,则2018年该省有效发明专利为()A. (1+2×22.1%)aB. (1+22.1%)×2aC. (1+22.1%)2aD. 22.1%×2a12.若代数式k+13值比3k+12的值小1,则k的值为()A. −1B. 27C. 1D. 57二、填空题(本大题共8小题,共24.0分)13.把12500写成a×10n(1≤a<10,n为整数)的形式,则a的值为______.14.当x为______时,3x−12的值为-1.15.一个多项式加上3x2y-3xy2得x3-3xy2,则这个多项式为______.16.数轴上大于-2且小于4的所有整数的和是______.17.已知a+b=5,c-d=-3,则(d-a)-(b+c)的值为______.18.当x=0.5,y=14,时1x-1y=______.19.某4名工人3月份完成的总工作量比此月人均定额的4倍多16件,如果设此月人均定额是x件,那么这4名工人此月实际人均工作量为______件.(用含x的式子表示)20.如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是______.三、计算题(本大题共3小题,共24.0分)21.(1)计算:(-1)10×2+(-2)3-(-6);(2)计算:(-16)÷49÷49.22.化简求值:5(2x2+3x-1)-2(3x2+5x-6),其中x=-3.23.(1)解方程:3x+7=32-2x;(2)解方程:1-12x=3-13(x-1).四、解答题(本大题共3小题,共28.0分)24.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?25.已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a-b)2,ab之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a-b)2的值.26.某校计划添置20张办公桌和一批椅子(椅子不少于20把),现从A、B两家公司了解到:同一款式的产品价格相同,办公桌每张210元,椅子每把70元.A公司的优惠政策为:每买一张办公桌赠送一把椅子;B公司的优惠政策为:办公桌和椅子都实行8折优惠.(2)如果购买办公桌的同时买30把椅子,并且可以到A、B两公司分别购买,请你设计一种购买方案,使所付金额最少.答案和解析1.【答案】C【解析】解:设这个数是x,则|x|=3,解得x=±3.故选:C.先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.本题考查的是数轴的特点,熟知数轴上各点到原点的距离的定义是解答此题的关键.2.【答案】B【解析】解:单项式a2的系数是1,故选:B.根据单项式中的数字因数叫做单项式的系数可得答案.此题主要考查了单项式,关键是掌握单项式系数定义.3.【答案】B【解析】解:根据有理数比较大小的方法,可得-9<-5<0<,∴在数,-9,-5,0中,最小的数是-9.故选:B.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4.【答案】A解:A、原式=-5,符合题意;B、原式=-9,不符合题意;C、原式=×=,不符合题意;D、原式=,不符合题意,故选:A.各式计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.【答案】A【解析】解:∵5a|x|b2与-0.2a3b|y|是同类项∴|x|=3,|y|=2,解得:x=±3,y=±2.故选:A.根据同类项相同字母的指数相同可得出|x|=3,|y|=2,从而可得出x和y的值.本题考查同类项的知识,关键是掌握同类项相同字母的指数相同.6.【答案】D【解析】解:∵数轴上的点A表示的数是-2,将点A向右移动5个单位长度,得到点B,∴点B表示的数是:-2+5=3.故选:D.根据数轴从左到右表示的数越来越大,可知向右平移则原数就加上平移的单位长度就得平移后的数,从而可以解答本题.本题考查数轴,解题的关键是明确数轴从左到右表示的数越来越大.7.【答案】C【解析】解:由题意得,5a-2=13,解得,a=3,∴原方程为15-x=13,故选:C.根据题意,方程5a+x=13的解是x=-2,可先得出a=3,然后,代入原方程,解出即可;本题考查了一元一次方程的解,把方程的解代入先求出a的值,然后求解,读懂题意是关键.8.【答案】C【解析】解:A、3a与2b不是同类项,不能合并,此选项错误;B、2a3与3a2不是同类项,不能合并,此选项错误;C、-4a2b+3ba2=-a2b,此选正确;D、5a2-4a2=a2,此选项错误;故选:C.根据同类项的定义和合并同类项的法则逐一判断即可得.本题主要考查合并同类项,解题的关键是掌握同类项的定义和合并同类项的法则.9.【答案】A【解析】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=1,⑤若a+b=0,则a与b互为相反数,故选:A.根据绝对值、倒数、相反数、立方以及平均数进行计算即可.本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.解:A、由5x=-2x-3,移项得5x+2x=-3,不符合题意;B、由=1+,去分母得2(2x-1)=6+3(x-3),不符合题意;C、由2(2x-1)-3(x-3)=1,去括号得4x-2-3x+9=1,不符合题意;D、把-=1中的分母化为整数,得-=1,符合题意,故选:D.各方程整理变形后,即可作出判断.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.11.【答案】C【解析】解:2017年该省有效发明专利数为a(1+22.1%)万件,2018年的年增长率保持不变,则2018年该省有效发明专利数为a(1+22.1%)(1+22.1%)=a(1+22.1%)2万件,故选:C.根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.考查了列代数式,掌握2次增长或下降之类方程的等量关系是解决本题的关键.12.【答案】D【解析】解:根据题意得:+1=,去分母得:2k+2+6=9k+3,移项合并得:7k=5,解得:k=,故选:D.根据题意列出方程,求出方程的解即可得到k的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.解:12500用科学记数法表示为:1.25×104,∴a=1.25,故答案为:1.25.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】-13【解析】解:根据题意得:=-1,去分母得:3x-1=-2,移项合并得:3x=-1,解得:x=-,故答案为:-根据题意列出方程,求出方程的解即可得到x的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.【答案】x3-3x2y【解析】解:∵一个多项式加上3x2y-3xy2得x3-3xy2,∴这个多项式=(x3-3xy2)-(3x2y-3xy2)=x3-3xy2-3x2y+3xy2=x3-3x2y.故答案为:x3-3x2y.根据题意列出多项式相减的式子,再去括号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.16.【答案】5【解析】解:∵大于-2且小于4的整数是:-1、0、1、2、3,∴它们的和是-1+0+1+2+3=5,故答案为:5.先求出大于-2,并且小于4的整数,再求出它们的和.本题考查了有理数大小比较,正数大于负数,找到大于-2,并且小于4的整数是解题的关键.17.【答案】-2【解析】解:∵a+b=5,c-d=-3,∴原式=d-a-b-c=-(a+b)-(c-d)=-5+3=-2,故答案为:-2原式去括号变形后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】-2【解析】解:当x=0.5,y=时,原式=2-4=-2,故答案为:-2把x与y的值代入原式计算即可求出值.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.19.【答案】(x+4)【解析】解:(4x+16)÷4=x+4(件).答:这4名工人此月实际人均工作量为(x+4)件.故答案为:(x+4).根据4名工人3月份完成的总工作量比此月人均定额的4倍多16件得到总工考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.20.【答案】5【解析】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是1,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.根据运算程序可找出前几次输出的结果,根据输出结果的变化找出变化规律“第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数)”,依此规律即可得出结论.本题考查了代数式求值以及规律型中数字的变化类,根据输出结果的变化找出变化规律是解题的关键.21.【答案】解:(1)原式=1×2-8+6=0;(2)原式=-16×94×94=-81.【解析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式利用除法法则计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【答案】解:当x=-3时,原式=10x2+15x-5-6x2-10x+12=4x2+5x+7=4×9-15+7=28【解析】根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.【答案】解:(1)移项合并得:5x=25,解得:x=5;(2)去分母得:6-3x=18-2x+2,移项合并得:-x=14,解得:x=-14.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.【答案】解:(1)17+(-9)+7+(-15)+(-3)+11+(-6)+(-8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(-9)=6,第三次6+7=13,第四次13+(-15)=-2,第五次-2+(-3)=-5,第六次-5+11=6,第七次6+(-6)=0,第八次0+(-8)=-8,第九次-8+5=-3,第十次-3+16=13,答:最远距出发点17千米;(3)(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.【解析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.本题考查了正数和负数,(1)利用了有理数的加法,(2)计算出每次与出发点的距离是解题关键,(3)单位耗油量乘以路程.25.【答案】解:(1)图乙中小正方形的边长为a-b.(2)方法①:S=(a-b)2;方法②:S=(a+b)2-4ab;(3)因为图中阴影部分的面积不变,所以(a-b)2=(a+b)2-4ab;(4)由(3)得:(a-b)2=(a+b)2-4ab,∵a+b=8,ab=12,∴(a-b)2=82-4×12=64-48=16.【解析】(1)根据图形即可得出图乙中阴影部分小正方形的边长为a-b;(2)直接利用正方形的面积公式得到图中阴影部分的面积为(a-b)2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(a+b)2-4ab;(3)根据图中阴影部分的面积是定值得到(a+b)2,(a-b)2,ab之间的等量关系式;(4)利用(3)中的公式得到(a-b)2=(a+b)2-4ab,进而得出(a-b)2的值.本题考查了完全平方公式的几何背景,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.26.【答案】解:(1)A公司付款:20×210+70×(m-20)=70m+2800;B公司付款:20×210×0.8+70×0.8=56m+3360;(2)当m=30时,A公司付款为70×30+2800=4900(元),B公司付款为:56×30+3360=5040(元),到A,B公司分别购买,到A公司买20张办公桌,用20×210=4200,赠20把椅子,再到B公司买10把椅子,10×70×0.8=560,一共用4200+560=4760(元),此方案所付金额最少.【解析】(1)根据题意列出两种公司的付款代数式即可;(2)把m=30代入解答即可.此题考查代数式问题,解决本题的关键是得到A,B两种公司需付费的等量关系,有一定难度,要注意理清关系.。

2016--2017学年度上期中七年级数学试卷

2016--2017学年度上期中七年级数学试卷

第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年河北省唐山市古冶区七年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题2分,共24分)1.(2分)下列四个数中,属于负整数的是()A.﹣3 B.0 C.﹣ D.﹣2.82.(2分)﹣3是3的()A.倒数B.绝对值C.相反数D.平方3.(2分)声音在空气中传播每小时约通过1200000m,将1200000用科学记数法表示为()A.12×106 B.1.2×106C.1.2×107D.1.2×1084.(2分)在下列代数式中,次数为3的单项式是()A.x2y B.xy3C.x3+y3D.3xy5.(2分)若代数式x﹣1与2的值是互为倒数,则x=()A.﹣1 B.2 C.D.36.(2分)一辆汽车在2秒内行驶米,则它在a秒内行驶()A.米B.米C.米D.米7.(2分)下列各式中,不相等的是()A.(﹣2)2和﹣22B.(﹣2)2和22C.(﹣1)3和﹣1 D.|(﹣1)3|和|(﹣1)2|8.(2分)下列式子去括号正确的是()A.﹣(2a﹣b)=﹣2a﹣b B.3a+(4a2+2)=3a+4a2﹣2C.﹣(2a+3y)=2a﹣3y D.﹣2(a﹣6)=﹣2a+129.(2分)如果a的倒数是﹣1,那么a2016=()A.1 B.﹣1 C.2016 D.﹣201610.(2分)已知方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=()A.±2 B.1 C.2 D.﹣211.(2分)如图,一个长方形观光园,它的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)花园种植的是花草,设正方形观光休息亭的边长为x米,则下列说法中错误的是()A.观光园的周长为300米B.观光休息亭的占地面积为4x2米2C.花园占地面积为(100﹣2x)(50﹣2x)米2D.观光大道总长为(300﹣2x)米12.(2分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…解答下列问题:3+32+33+34+…+32016的末位数字是()A.0 B.1 C.3 D.7二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)计算:﹣2+8=.14.(3分)若有理数a,b满足|a+3|+(b﹣2)2=0,则a b=.15.(3分)某种商品原价每件a元,现打6折出售,这时的售价是元.16.(3分)数轴上数a、b的位置如图所示,试比较a与﹣b的大小关系为:a ﹣b(填“>”,“<”或“=”).17.(3分)若﹣3x2m y3与4x2y n是同类项,那么m﹣n=.18.(3分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项,形式如下:﹣(x2﹣2x+1)=﹣x2+5x﹣3,则所捂的多项式为.19.(3分)已知三个连续的偶数和为60,则这三个数中最小数是.20.(3分)多项式A=2(m2﹣3mn+n2),B=m2+2amn+2n2,如果B﹣A中不含mn 项,则a=.三、解答题(本大题共6小题,共52分)21.(8分)(1)计算:(﹣6)+(﹣3)+8(2)计算:﹣33﹣(﹣2)2+4÷|﹣2|22.(8分)老师在黑板上出了一道解方程的题8x﹣x﹣4=﹣3x﹣6,小明马上举起了手,要求到黑板上去做,他是这样做的:8x﹣x﹣3x=﹣6+4 ①4x=﹣2 ②x=﹣③老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,导致后续错误,请你指出他从第步(填编号)开始出错,错误的原因是;然后,你自己细心地解下列方程:5x+2=2x﹣3.23.(9分)(1)计算:(x3+4x﹣3)﹣(x3﹣3x);(2)先化简再求值:3(ab+2a3b)﹣(3ab+a3b),其中a=,b=﹣1.24.(8分)某儿童服装店老板以每件50元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以每件70元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:(1)该服装店在售完这30件连衣裙后,赚了多少钱?(2)平均每件连衣裙赚了多少钱?25.(8分)对数轴上的点P进行如下操作:先把点P表示的数乘﹣2,再把所得数对应的点向左运动一个单位,得到点P的对应点P1.(1)点A,B在数轴上,对点A、B进行上述操作后得到点A1、B1,如图,若点A表示的数是1,则点A1表示的数是;若点B1表示的数是7,则点B表示的数是;(2)若数轴上的点M经过上述操作后,位置不变,则点M表示的数是.并在数轴上画出点M的相反数N的位置.26.(11分)某单位计划从甲、乙两个苗圃园购买A、B两种花苗,其中甲、乙两个苗圃园定价都是A种花苗每棵a元,B种花苗每棵b元.为了促销,甲、乙两苗圃园各推出了自己的优惠方案:甲苗圃园买一颗A种花苗送一颗B种花苗;乙苗圃园两种花苗都按定价的85%付款.该单位计划选购A种花苗共110棵,B 种花苗共160棵,打算从乙苗圃园购买A种花苗60棵,B种花苗80棵,其余从甲苗圃园购买.(1)该单位计划从甲、乙苗圃园购买花苗共花费多少元?(2)该单位计划从乙苗圃园购买花苗比从甲苗圃园购买花苗多花多少元?(3)若该单位计划只从一个苗圃园购买A种花苗10棵,B种花苗100棵,通过计算说明从哪个苗圃园购买合算.2016-2017学年河北省唐山市古冶区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题2分,共24分)1.(2分)下列四个数中,属于负整数的是()A.﹣3 B.0 C.﹣ D.﹣2.8【解答】解:A、﹣3是负整数,故A符合题意;B、0是整数,不是负整数,故B不符合题意;C、﹣是负分数,故C不符合题意;D、﹣2.8是负分数,故D不符合题意;故选:A.2.(2分)﹣3是3的()A.倒数B.绝对值C.相反数D.平方【解答】解:﹣3是3的相反数,故选:C.3.(2分)声音在空气中传播每小时约通过1200000m,将1200000用科学记数法表示为()A.12×106 B.1.2×106C.1.2×107D.1.2×108【解答】解:将1200000用科学记数法表示为:1.2×106.故选:B.4.(2分)在下列代数式中,次数为3的单项式是()A.x2y B.xy3C.x3+y3D.3xy【解答】解:(B)次数为4的单项式,故B不是,(C)次数为3的多项式,故C不是,(D)次数为2的单项式,故D不是,故选:A.5.(2分)若代数式x﹣1与2的值是互为倒数,则x=()A.﹣1 B.2 C.D.3【解答】解:由题意(x﹣1)×2=1,解得x=,故选:C.6.(2分)一辆汽车在2秒内行驶米,则它在a秒内行驶()A.米B.米C.米D.米【解答】解:一辆汽车在2秒内行驶米,则它在a秒内行驶,故选:B.7.(2分)下列各式中,不相等的是()A.(﹣2)2和﹣22B.(﹣2)2和22C.(﹣1)3和﹣1 D.|(﹣1)3|和|(﹣1)2|【解答】解:A、(﹣2)2=4,﹣22=﹣4,符合题意;B、(﹣2)2=22=4,不符合题意;C、(﹣1)3=﹣1,不符合题意;D、|(﹣1)3|=|(﹣1)2|=1,不符合题意,故选:A.8.(2分)下列式子去括号正确的是()A.﹣(2a﹣b)=﹣2a﹣b B.3a+(4a2+2)=3a+4a2﹣2C.﹣(2a+3y)=2a﹣3y D.﹣2(a﹣6)=﹣2a+12【解答】解:(A)原式=﹣2a+b,故A错误;(B)原式=3a+4a2+2,故B错误;(C)原式=﹣2a﹣3y,故C错误;故选:D.9.(2分)如果a的倒数是﹣1,那么a2016=()A.1 B.﹣1 C.2016 D.﹣2016【解答】解:由a的倒数是﹣1,得a=﹣1,那么a2016=(﹣1)2016=1,故选:A.10.(2分)已知方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=()A.±2 B.1 C.2 D.﹣2【解答】解:由题意,得|a|﹣1=1且a﹣2≠0,解得a=﹣2,故选:D.11.(2分)如图,一个长方形观光园,它的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)花园种植的是花草,设正方形观光休息亭的边长为x米,则下列说法中错误的是()A.观光园的周长为300米B.观光休息亭的占地面积为4x2米2C.花园占地面积为(100﹣2x)(50﹣2x)米2D.观光大道总长为(300﹣2x)米【解答】解:A、观光园的周长为100+100+50+50=300米,不符合题意;B、观光休息亭的占地面积为4x2米2,不符合题意;C、花园占地面积为(100﹣2x)(50﹣2x)米2,不符合题意;D、观光大道总长为(200+100﹣4x)米,符合题意;故选:D.12.(2分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…解答下列问题:3+32+33+34+…+32016的末位数字是()A.0 B.1 C.3 D.7【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,∴3=3,3+9=12,12+27=39,39+81=120,120+243=363,363+729=1092,1092+2187=3279,又∵2016÷4=504,∴3+32+33+34+…+32016的末位数字是0,故选:A.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)计算:﹣2+8=6.【解答】解:﹣2+8=6.故答案为:6.14.(3分)若有理数a,b满足|a+3|+(b﹣2)2=0,则a b=9.【解答】解:由题意得,a+3=0,b﹣2=0,解得,a=﹣3,b=2,则a b=9.故答案为:9.15.(3分)某种商品原价每件a元,现打6折出售,这时的售价是0.6a元.【解答】解:这时的售价是0.6a元;故答案为:0.6a.16.(3分)数轴上数a、b的位置如图所示,试比较a与﹣b的大小关系为:a <﹣b(填“>”,“<”或“=”).【解答】解:由图可知a>0,b<0,且|a|<|b|,所以﹣b>0,所以a<﹣b.故答案为:<.17.(3分)若﹣3x2m y3与4x2y n是同类项,那么m﹣n=﹣2.【解答】解:由﹣3x2m y3与4x2y n是同类项,得2m=2,n=3.解得m=1.m﹣n=1﹣3=﹣2,故答案为:﹣2.18.(3分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项,形式如下:﹣(x2﹣2x+1)=﹣x2+5x﹣3,则所捂的多项式为3x﹣2.【解答】解:(x2﹣2x+1)+(﹣x2+5x﹣3)=x2﹣2x+1﹣x2+5x﹣3=3x﹣2.故答案为:3x﹣2.19.(3分)已知三个连续的偶数和为60,则这三个数中最小数是18.【解答】解:设中间那个偶数为x.列方程得:(x﹣2)+x+(x+2)=60,解得:x=20.即这三个数为18、20、22.最小的数是18.故答案是:18.20.(3分)多项式A=2(m2﹣3mn+n2),B=m2+2amn+2n2,如果B﹣A中不含mn 项,则a=﹣3.【解答】解:∵A=2(m2﹣3mn+n2),B=m2+2amn+2n2,∴B﹣A=m2+2amn+2n2﹣2(m2﹣3mn+n2)=m2+2amn+2n2﹣2m2+6mn﹣2n2=﹣m2+(2a+6)mn,∵B﹣A中不含mn项,∴2a+6=0,解得,a=﹣3,故答案为:﹣3.三、解答题(本大题共6小题,共52分)21.(8分)(1)计算:(﹣6)+(﹣3)+8(2)计算:﹣33﹣(﹣2)2+4÷|﹣2|【解答】解:(1)(﹣6)+(﹣3)+8=﹣10+8=﹣2(2)﹣33﹣(﹣2)2+4÷|﹣2|=﹣27﹣4+2=﹣31+2=﹣2922.(8分)老师在黑板上出了一道解方程的题8x﹣x﹣4=﹣3x﹣6,小明马上举起了手,要求到黑板上去做,他是这样做的:8x﹣x﹣3x=﹣6+4 ①4x=﹣2 ②x=﹣③老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,导致后续错误,请你指出他从第①步(填编号)开始出错,错误的原因是移项没变号;然后,你自己细心地解下列方程:5x+2=2x﹣3.【解答】解:①,移项没变号;故答案为:①,一项变号;解:移项,得8x﹣x+3x=﹣6+4,合并同类项,得10x=﹣2,系数化为1,得x=﹣.23.(9分)(1)计算:(x3+4x﹣3)﹣(x3﹣3x);(2)先化简再求值:3(ab+2a3b)﹣(3ab+a3b),其中a=,b=﹣1.【解答】解:(1)(x3+4x﹣3)﹣(x3﹣3x)=x3+4x﹣3﹣x3+3x=7x﹣3;(2)3(ab+2a3b)﹣(3ab+a3b)=3ab+6a3b﹣3ab﹣a3b=5a3b,当a=,b=﹣1时,原式=5×()3×(﹣1)=﹣.24.(8分)某儿童服装店老板以每件50元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以每件70元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:(1)该服装店在售完这30件连衣裙后,赚了多少钱?(2)平均每件连衣裙赚了多少钱?【解答】解:(1)7×(70﹣6)+6×(70﹣4)+3×70+5×(70+8)+4×(70+4)+5×(70+5)=448+396+210+390+296+375=2115(元),∵50×30=1500(元),∴2115﹣1500=615(元),∴赚了615元;(2)615÷30=20.5(元).∴平均每件连衣裙赚了20.5元.25.(8分)对数轴上的点P进行如下操作:先把点P表示的数乘﹣2,再把所得数对应的点向左运动一个单位,得到点P的对应点P1.(1)点A,B在数轴上,对点A、B进行上述操作后得到点A1、B1,如图,若点A表示的数是1,则点A1表示的数是﹣3;若点B1表示的数是7,则点B表示的数是﹣4;(2)若数轴上的点M经过上述操作后,位置不变,则点M表示的数是﹣.并在数轴上画出点M的相反数N的位置.【解答】解:(1)点A1表示的数是﹣2×1﹣1=﹣3;设点B表示的数为x,则﹣2x﹣1=7,解得:x=﹣4.故点B表示的数是﹣4;(3)设点M表示的数为y,则﹣2y﹣1=y,解得y=﹣,点M的相反数N=.如图所示:故答案为:﹣3,﹣4;﹣.26.(11分)某单位计划从甲、乙两个苗圃园购买A、B两种花苗,其中甲、乙两个苗圃园定价都是A种花苗每棵a元,B种花苗每棵b元.为了促销,甲、乙两苗圃园各推出了自己的优惠方案:甲苗圃园买一颗A种花苗送一颗B种花苗;乙苗圃园两种花苗都按定价的85%付款.该单位计划选购A种花苗共110棵,B 种花苗共160棵,打算从乙苗圃园购买A种花苗60棵,B种花苗80棵,其余从甲苗圃园购买.(1)该单位计划从甲、乙苗圃园购买花苗共花费多少元?(2)该单位计划从乙苗圃园购买花苗比从甲苗圃园购买花苗多花多少元?(3)若该单位计划只从一个苗圃园购买A种花苗10棵,B种花苗100棵,通过计算说明从哪个苗圃园购买合算.【解答】解:(1)由题意可得,(110﹣60)a+[160﹣(110﹣60)﹣80]b+(60a+80b)×85%=50a+30b+51a+68b=101a+98b,即单位计划从甲、乙苗圃园购买花苗共花费(101a+98b)元;(2)由题意可得,(60a+80b)×85%﹣{(110﹣60)a+[160﹣(110﹣60)﹣80]b}=(51a+68b)﹣(50a+30b)=51a+68b﹣50a﹣30b=a+38b,该单位计划从乙苗圃园购买花苗比从甲苗圃园购买花苗多花(a+38b)元;(3)由题意可得,在甲苗圃购买花费为:10a+(100﹣10)b=10a+90b,在乙苗圃购买花费为:85%(10a+100b)=8.5a+85b,10a+90b﹣8.5a﹣85b=1.5a+5b>0,即从乙苗圃园购买合算.。

相关文档
最新文档