介电常数的测量的讲义2013.8

合集下载

介电常数测量

介电常数测量

测量介电常数的方法探究班级:姓名:序号:学号:学院:测量介电常数的方法探究介电常数应用在科技的方方面面,但是如何测得介电常数以保证需要呢,本文就几种主流测量方法进行了探究。

主流的测量介电常数的方法即空间波法和探针法。

空间波法:空间波法是一种介电常数的实地检测法。

用该方法测量介电常数时,可以将测量仪器拿到被测物所在位置进行无损的实地测量,可获得最接近微波遥感真实值的介电常数。

微波遥感的典型目标,如土壤、沙地岩石、水体、冰雪、各类作物、各类草地、森林等,当其表面统计粗糙度远远小于所使用的波长时可用菲涅尔反射系数描述其介电常数与观测角之间的关系:R∥=(-)/(+)(1)R⊥=(-)/(+)(2)其中为目标物的相对介电常数,R∥为水平极化反射系数,R⊥为垂直极化反射系数,θ为入射角。

只要测得以上参数,经过绝对定标或者相对定标后,通过数学运算就可以反演得到介电常数。

空间波测量介电常数是利用菲涅尔反射定律进行的,要求所用波长大于被测目标的统计粗糙度,在粗糙度大时会影响精度,这时必须引入粗糙度修正量。

可以利用加大观测角以提高粗糙表面物的测量精度,从实际中,对土壤、草丛、冰的测量结果看是比较好的。

探针法:在探针法实地测量介质介电常数时,探针的位置一般有两种:即全部没入待测介质中和探针位于空气和介质构成的接触面上。

在两种情况下,样品的介电常数都可以通过在非谐振时测量的反射波、传输波或者谐振时测量的谐振频率和3dB带宽等参数来反演得到。

探针法测量介电常数,可以使用的探针有:单极振子、波导和同轴线等。

相对于其他探针,单极振子的结构简单,测量方便,且可以获得相对比较精确地测量结果,是目前探针法实地测量介电常数研究中的一个热点。

单极振子:用单极振子探针法测量介电常数主要是通过测量反射系数ρ、天线的输入阻抗Zn (或导纳Y)、S参数、天线谐振长度hr和激励电阻抗Rr或谐振频率fs和3dB带宽的变化等来反眼。

这些放发根据原理和测量值的不同可以分为反射法、传输发和谐振法。

介电常数的测量

介电常数的测量

电子材料介电常数μ的测量方法摘要:本文综述了几种常用电子材料介电常数μ的测量方法,包括频域,时域法,谐振腔技术和噪声相关技术,以及这些方法的背景研究现状。

目前,这几种方法已广泛应用测量原理中。

关键词:介电常数;介电常数的测量介质在外加电场会产生感应电荷而削弱电场,原外加电场与介质中的电场的比值即为相对介电常数,与频率相关。

介电常数的相对介电常数与真空中绝对介电常数的乘积。

自从20世纪40年代以来,随着电力,电子,通信,雷达等技术的发展,促进了材料介电常数测量技术的发展。

相反,介电常数测量技术的发展也促进各众多科研领域的发展。

本文分析了材料介电常数测量的原理与测量方法。

一.测量原理:电磁波与材料介质相互作用的时候,会发生反射,透射,散射等物理现象,通过测量研究这些现象,可以获得介质的相关参数,根据现象的不同,测量介电常数的方法可大致分为,频域传输发,时域法,噪声相关法和谐振腔法。

1.频域传输法:假设一平面电磁波Et=cos(wt-koz)垂直入射到材料表面,则其反射波与入射波分别为Er=ΓExcos(wt+koz),Et=TExcos(wt-kz)式子中,ko=w√εoμo,k=w√εμ,Γ=η-ηo/η+ηo,T=2η/η+ηo, ηo=√μo/εo, η=√μ/ε。

由此可见,只需要测量出反射波与入射波就可以推到出介电常数。

2.时域传输法:将材料等效为一个无源性的网络h(t),给定输入激励脉冲信号s(t),测反射脉冲信号和透射脉冲信号分别为:R(t)=s(t)*h(t),T(t)=s(t)*h’(t),其中h(t)是输入冲击脉冲产生的反射响应,h’(t)为透射响应脉冲,因此同上述方法,只需要测量h(t)或者h’(t)就可以推导出介电常数。

3.噪声相关法:首先将介质材料等效为一个无源网络系统。

制造一个噪声源,同时将噪声源产生的噪声分为两个支路,其中一支经过固定延时后与介质相互作用,响应函数为h(t),另一支经过可变延时器。

介电常数的测定 (3)

介电常数的测定 (3)

实验题目:介电常数的测定 89实验目的:本实验要求学生了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。

实验原理:1. 介电体(又称电介质)最基本的物理性质是它的介电性,对介电性的研究不但在电介质材料的应用上具有重要意义,而且也是了解电介质的分子结构和激化机理的重要分析手段之一,探索高介电常数的电介质材料,对电子工业元器件的小型化有着重要的意义。

介电常数(又称电容率)是反映材料特性的重要参量,电介质极化能力越强,其介电常数就越大。

测量介电常数的方法很多,常用的有比较法,替代法,电桥法,谐振法,Q 表法,直流测量法和微波测量法等。

各种方法各有特点和适用范围,因而要根据材料的性能,样品的形状和尺寸大小及所需测量的频率范围等选择适当的测量方法。

2.介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系: SCd r 00εεεε==(1)式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120-⨯=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。

一、替代法当实验室无专用测量电容的仪器,但有标准可变电容箱或标准可变电容器时,可采用替代法设计一简易的电容测试仪来测量电容。

这种方法的优点是对仪器的要求不高,由于引线参数可以抵消,故测量精度只取决于标准可变电容箱或标准可变电容器读数的精度。

若待测电容与标准可变电容的损耗相差不大,则该方法具有较高的测量精度。

替代法参考电路如图2.2.6-1(a)所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。

合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。

大学物理实验介电常数的测量的讲义

大学物理实验介电常数的测量的讲义

固体与液体介电常数的测量一、实验目的:运用比较法粗测固体电介质的介电常数,运用比较法法测量固体的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。

二、实验原理:介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系:SCdr 00εεεε==式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120-⨯=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。

替代法:替代法的电路图如下图所示。

此时电路测量精度与标准电容箱的精度密切相关。

实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。

谐振法:1、交流谐振电路:在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由电振荡。

若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。

RLC 串联谐振电路如下图所示:图一:RLC 串联谐振电路其中电源和电阻两端接双踪示波器。

电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电容C 两端的电压2π ,落后于电感两端的电压2π,如图二。

图二:电阻R 、电容C 和电感L 的电压矢量图电路总阻抗:Z ==L V →-RV →回路电流:V I Z==电流与信号源电压之间的位相差:1arctan i L C R ωωϕ⎛⎫- ⎪=-⎪ ⎪⎝⎭找到RLC 串联电路的谐振频率,如果已知L 的值,就可以得出C 的大小。

2、谐振法测量电容谐振法测量电容的原理图见上图一,由已知电感L ,电阻R 待测电容C x 组成振荡电路,改变信号源频率使RLC 回路谐振,使得双踪示波器两个频道的波形相位相同,电阻上电压最大,则电容可由下式求出:L f C X 2241π=式中f 为频率,L 为已知电感,C x 为待测电容。

介电常数及其测量方法概述

介电常数及其测量方法概述

介电常数及其测量方法概述作者:秦鸿瑜来源:《科教导刊·电子版》2013年第18期摘要介质介电常数描述了电磁波与介质的相互作用及变化,为了划分不同介质,提出了采用介电常数来划分不同介质的的方法。

本文介绍了介电常数的基本知识及测量方法,介绍了实验室的几种测量方法:时域反射法(TDR)、空间波法、同轴线法、谐振环法,为实验测量提供参考。

关键词介电常数空间波同轴线中图分类号:TB30 文献标识码:A1 介电常数的基本概念2介电常数测量方法介电常数测量方法有传输线法、同轴线法、波导法、探针法、谐振腔法和空间波法。

实验室测量方法有时域反射法(TDR)、空间波法、探针法、同轴线法等。

传输线法简便易行,但在tan€%]€%^较小时,测得的介电常数误差较大;探针法使用结构简单的单极振子,通过传输、反射的测量得出谐振参数,反演得到介电常数;谐振腔法采用高品质因数的谐振腔体测量低损介质,技术复杂,不易操作;空间波法通过测量地面目标体的微波反射系数,再通过反射系数来求得复介电常数。

2.1 时域反射法时域反射法(TDR)类似于雷达系统,首先向待测物发射电磁波,通过记录分析反射波形来确定待测物的距离,进而判断待测物特性。

TDR信号中包含介电常数和电导率信息,一般被测物体的阻抗是连续的,信号没有反射,如果有阻抗变化,就会有信号反射回来,频率范围从1兆赫到几兆赫。

时域反射系统由一个信号发生器、传输线传感器和一个接收器组成。

根据反射回波的时间可以判断阻抗不连续点距接收端的距离,利用电磁波在探头中的旅行时间可得到介质的介电常数。

2.2 空间波法2.3 同轴线法2.4 谐振环法谐振环法是基于传输线理论得到介电常数变化的方法。

谐振环法可以通过反射信号和发送通过介质的信号来测量介电常数。

发送信号和接收反射信号这两种测量方法相比,发送信号测得介电常数变化更灵敏。

谐振传感器的测量精度相对较高,但与待测媒质的导电性密切相关。

3 总结本文介绍了介电常数的基本概念及几种测量方法,并对这几种常见的方法进行了分析和比较。

介电常数的测量方法及其频率范围

介电常数的测量方法及其频率范围

介电常数的测量方法及其频率范围
介电常数的测量方法主要有以下几种:
1.干板法:将被测物作为一块厚度均匀的平板,分别置于两块金属板之间,形成一个电容器。

测量这个电容器的电容值,由此计算介电常数。

2.微波共振法:将被测物放置在一个微波谐振腔中,测量微波在谐振腔中的传播速度和波长,由此计算介电常数。

3.交流电桥法:使用一个交流电桥测量电容值,从而计算介电常数。

4.时间域反射法:利用电磁波在两种介质之间的反射性质,测量反射波的时间延迟和振幅,计算介电常数。

介电常数的频率范围从直流到高频都可以测量,具体的测量范围取决于仪器的灵敏度和测量的样品。

在一般情况下,微波共振法适用于高频范围(GHz),干板法和交流电桥法适用于中低频范围(kHz~GHz),时间域反射法则适用于较低频率范围(Hz~kHz)。

材料物理性能 实验五材料介电常数测定

材料物理性能 实验五材料介电常数测定

材料介电常数的测定一、目的意义介电特性是电介质材料极其重要的性质。

在实际应用中,电介质材料的介电系数和介电损耗是非常重要的参数。

例如,制造电容器的材料要求介电系数尽量大而介电损耗尽量小。

相反地,制造仪表绝缘机构和其他绝缘器件的材料则要求介电系数和介电损耗都尽量小。

而在某些特殊情况下,则要求材料的介质损耗较大。

所以,研究材料的介电性质具有重要的实际意义。

本实验的目的:①探讨介质极化与介电系数、介电损耗的关系; ②了解高频Q 表的工作原理;③掌握室温下用高频Q 表测定材料的介电系数和介电损耗角正切值。

二、基本原理2.1材料的介电系数按照物质电结构的观点,任何物质都是由不同性的电荷构成,而在电介质中存在原子、分子和离子等。

当固体电介质置于电场中后,固有偶极子和感应偶极子会沿电场方向排列,结果使电介质表面产生等量异号的电荷,即整个介质显示出一定的极性,这个过程称为极化。

极化过程可分为位移极化、转向极化、空间电荷极化以及热离子极化。

对于不同的材料、温度和频率,各种极化过程的影响不同。

(1)材料的相对介电系数ε 介电系数是电介质的一个重要性能指标。

在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电系数。

此外,由于介电系数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式。

所以,通过介电常数随电场强度、频率和温度变化规律的研究还可以推断绝缘材料的分子结构。

介电系数的一般定义为:电容器两极板间充满均匀绝缘介质后的电容,与不存在介质时(即真空)的电容相比所增加的倍数。

其数学表达式为 0a x C C ε= (1) 式中 x C ——两极板充满介质时的电容; 0a C ——两极板为真空时的电容;ε——电容量增加的倍数,即相对介电常数。

从电容等于极板间提高单位电压所需的电量这一概念出发,相对介电常数可理解为表征电容器储能能力程度的物理量。

从极化的观点来看,相对介电常数也是表征介质在外电场作用下极化程度的物理量。

介电常数的测量

介电常数的测量

实验七 介电常数的测量ε和损耗角tgδ的温度和频率特性,可以获取物质内部 测量物质在交变电场中介电常数r结构的重要信息。

DP—5型介电谱仪内置带有锁相环(PLL)的宽范围正弦频率合成信号源和由乘法器、同步积分器、移相器等组成的锁定放大测量电路,具有弱信号检测和网络分析的功能。

对填充介质的平行板电容器的激励信号的正交分量(实部和虚部)进行比较、分离、测量,检测介电频率谱和温度谱。

作为大学物理实验的内容,具有测量精度高、方法新颖、知识性和实用性强等特点。

[目的要求]ε和损耗角tgδ的温度和频率特性。

1.学习用介电谱仪测量物质在交变电场中介电常数r2.了解带有锁相环(PLL)的正弦频率合成信号源和锁定放大测量电路的原理和结构。

3.掌握对信号的正交分量(实部和虚部)进行比较、分离、测量的方法。

[实验原理]图1测量原理图原理如图1所示.置于平板电极之间的样品,在正弦型信号的激励下,等效于电阻R和电容C的并联网络。

其中电阻R是用来模拟样品在极化过程中由于极化滞后于外场的变化所引起的能量损失。

若极板的面积为A,间距为d,则:R=d/Aσ, C=εA/d, tgδ=1/ωRC=σ/ωε式中ε=εoεr,εo为真空介电常量,σ为与介电极化机制有关的交流电导率。

设网络的复阻抗为Z,其实部为Z’,虚部为Z″,样品上激励电压为Vs(基准信号),通过样品的电流由运放ICl转化为电压Vz:(样品信号),用V’s,V″s和V″z分别表示其实部和虚部,则有:Vz=RnVs/Z, σ=K(V’sV’z+V″sV″z), ωε=K(V’sV″z-V″sV’z)tgδ=(V’sV’z+V″sV″z)/ (V’sV″z-V″sV’z)式中K=d/ARn(V’sV’s+V″sV″s)。

电压的实部和虚部通过开关型乘法器IC2和π/2移相器IC3实现分离后测量。

IC2的作用是将被测正弦信号Vz(或Vs)与同频率的相关参考方波Vr相乘。

本系统测量时通过移相微调电路使Vr和vs同相位,即Vs的虚部V″s=O,测量公式简化为:σ=K’V’z, ωε=K’V″z, tgδ=V’z/V″z式中K’=d/(ARnV’s).图中K指向1时测量V’s,指向2时测量V’z和V″z。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体与液体介电常数的测量
一、实验目的:
运用比较法粗测固体电介质的介电常数,运用比较法法测量固体的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。

二、实验原理:
介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系:
S
Cd r 00εεεε==
式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120
-⨯=ε,S 为样品的有
效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。

替代法:
替代法的电路图如下图所示。

此时电路测量精度与标准电容箱的精度密切相关。

实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。

谐振法:
1、交流谐振电路:
在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由电振荡。

若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。

RLC 串联谐振电路如下图所示
:
图一:RLC 串联谐振电路
其中电源和电阻两端接双踪示波器。

电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电
容C 两端的电压2π ,落后于电感两端的电压2π
,如图二。

图二:电阻R 、电容C 和电感L 的电压矢量图
电路总阻抗:Z =
=
L V →-R
V →
回路电流:V I Z
=
=电流与信号源电压之间的位相差:1arctan i L C R ωωϕ⎛⎫- ⎪=-
⎪ ⎪⎝⎭
找到RLC 串联电路的谐振频率,如果已知L 的值,就可以得出C 的大小。

2、谐振法测量电容
谐振法测量电容的原理图见上图一,由已知电感L ,电阻R 待测电容C x 组成振荡电路,改变信号源频率使RLC 回路谐振,使得双踪示波器两个频道的波形相位相同,电阻上电压最大,则电容可由下式求出:
L f C X 2241
π=
式中f 为频率,L 为已知电感,C x 为待测电容。

3、谐振法测量液体磁导率:
在密制的螺绕环中,由安培环路定理得:
B
l NI μ
= (1)
NBS
L I
I
ψ
=
=
(2) 联立(1)、(2)式得
2Ll
N S
μ=
(r 0=μμμ) L —电感强度 S —螺绕环的截面积 N —螺绕环的匝数 l —螺绕环的有效长度 4、相对介电常数与相对磁导率的计算:
在测量固体的相对介电常数时,我们用到参数已知的压电陶瓷片,可直接有公式
0r S
C d
εε=
计算得到相对介电常数。

在测量液体电介质的电容时,我们已知蒸馏水的278H O ε=,由
0r S
C d εε=
⇒C =C
εε液体液体水水
易得液体的相对介电常数。

同理,密制螺绕环的一些参数也难以直接测量,若已知2H O =1.0002μ,可由2
Ll
N S
μ=
推得: L =L μμ液体液体
水水
电感可谐振法测得,因此可得液体的相对磁导率。

三、实验内容: 1、仪器、元件与用具:
信号源一台、电容箱一个、交流电阻箱一个、压电陶瓷一个、电感器一个、导线若干、
平行板电容器,螺绕环电感,双踪示波器,矩形样品池,黄铜片二片、游标卡尺、磁性表座2只(用于固定矩形样品池),滴管,废液池,抺布,卷纸,蒸馏水,待测液体
溶液。

2、实验步骤:
必做实验:(1)、运用替代法测量压电陶瓷的介电常数εr, 取信号源电压10V以上, 频率1000HZ, 电阻R=1000欧姆。

(2)、运用谐振法测量压电陶瓷的介电常数εr,电感L取0.1H,电阻R取5kΩ。

(3)、运用谐振法测量液体介电常数。

具体步骤如下:
a. 将平行板电容器竖直放入矩形样品池中,加入标准样品水,直到水完全浸没平行板电
容器(注意不要让水浸入铜片中,以免生锈),利用标准电感箱、标准电阻箱,用RLC交流共振法测量共振频率。

取标准电阻箱值为5000.0Ω,调节标准电感箱值为1H,测量对应的谐振频率,计算平行板电容器的总电容。

b. 利用待测样品代替标准样品水重复上述步骤,测出样品的谐振频率,计算出样品的总电
容。

c. 测量塑封膜的谐振频率,计算它的电容。

d.平行板电容器中间是膜-液体-膜三个电容串联,分别计算出样品水和待测样品的电容,计算出待测样品的相对介电常数。

选作实验: 测量液体的磁导率:
a. 将标准样品水加入螺绕环电感内的玻璃管中,要求水完全装满玻璃管,利用标准电容
箱、标准电阻箱,用RLC交流共振法测量螺绕环的电感。

取标准电阻箱值为10.0Ω,调节标准电容箱值为0.02μF,测量对应的谐振频率,计算螺绕环的电感。

b. 利用待测样品代替标准水重复步骤3,测出样品的谐振频率,计算出相对磁导率。

相关文档
最新文档