二次根式练习10套(附答案)

合集下载

二次根式练习题30道加答案过程

二次根式练习题30道加答案过程

二次根式练习题30道加答案过程1.当a______时,a?2有意义;当x______时,2.当x______时,1有意义. x?315.计算:??11有意义;当x______时,的值为1. 2?22x?xab?11 xx3.直接写出下列各式的结果: 49=______;2=______;2=______;2=______; 2=______;[2]2=______.4.下列各式中正确的是. ??42??2?4?? 27?35.下列各式中,一定是二次根式的是. ?32 2?x6.已知2x?3是二次根式,则x应满足的条件是.x>0 x≤0 x≥-x>-3.当x为何值时,下列式子有意义? ?x; ?x2;x2?1; 7?x.8.计算下列各式:29.若?2?成立,则x,y必须满足条件______.10. ?112______;=______;4324?________.49?36=______;0.81?0.25=______;24a?a3=______.11.下列计算正确的是. 2?3? 2??6?42??312.化简5?2,结果是.?2-10 10 13.如果??,那么.x≥0 x≥ 0≤x≤ x为任意实数 14.当x=-3时,x2的值是.± - 93a6a2b?13a2?492?572x2y716.已知三角形一边长为,这条边上的高为cm,求该三角形的面积.17.把下列各式化成最简二次根式:=______;=______; 45=______; 48x=______;23=______;412=______;a5b3=______; 112?3=______.18.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式:如:32与2. 2与______; 32与______; a 与______; 8a与______;6a2与______.19.?x?xx?x成立的条件是. x<1且x≠0 x>0且x≠1 0<x≤1 0<x<10.下列计算不正确...的是. 3116?72y3x?13x6xy 2??209x?2x21.下列根式中,不是..最简二次根式的是 A.B.C.12D.22.1625= 279=243= 27=5=23=34.当a=______时,最简二次根式与?可以合并.35.若a=+2,b=-2,则a+b=______,ab=______. 36.合并二次根式:?5x1111? ?0.125222?=______;23.把下列二次根式,27,,445,2,,,化简后,与2的被开方数相同的有_________;与的被开a?4ax=______. xx?y23xy37.下列各式中是最简二次根式的是. ab2?3方数相同的有______;与的被开方数相同的有______.4. ?313=______;7?548=______.25.化简后,与的被开方数相同的二次根式是.141626.下列说法正确的是.被开方数相同的二次根式可以合并与可以合并只有根指数为2的根式才能合并2与不能合并27.可以与合并的二次根式是.2aa127a3a28、9?7?5.29.??.30.?3??31.?.32.27?13?.33.12?3438.下列计算正确的是.2??5ab?5a??6?5x?4x?x39.等于.6?6??221 ??2240.?112? 1..42..3..44.? 5.2.46.4?6?3?2.47...78.49.2ba?3a3bab?.参考答案1.a?2,x?3..2.x>0,x=1.3.7;7;7;7;0.7;49.4.D.5.B.6.D..x≤1;x=0;x 是任意实数;x≥-7..18;6;15;6.9.x≥0且y≥0.10.;24;16. 42;0.45;11.B.12.A.13.B. 14.Ba2.b; 15.2;6;24;2x;2ab; 49;12;6xy32y. 16..217.2;;;4;632302?;; abab;18.;;;;19.C.20.C.21.C.453; ; ; 22; ; 53222;2;4.23.,2,,,422.24.3;?6.25.B.26.A. 7.C.28.2?329.30.1123??434.6.35.2,3.36.2;?.31.?32.?33.37.B.38.D.39.B. 042. 6?41.36?7.19?6143.7?44.2.45.84?6.446.?8.47.2?5..?1..?2.? 二次根式1.表示二次根式的条件是______.2.使x有意义的x的取值范围是______..若?有意义,则m =______.4.已知??y?4,则xy的平方根为______..当x=5时,在实数范围内没有意义的是. 1?x| 7?x2?3x4x?206.若|x?5|?2?0,则x-y的值是.--7.计算下列各式: ?2?1)2328.已知△ABC的三边长a、b、c均为整数,且a和b 满足a?2?b2?6b?9?0.试求△ABC的c边的长.9.已知数a,b,c在数轴上的位置如图所示:化简:a2?|a?c|?2?|?b|的结果是:______. 10.已知矩形的长为2,宽为,则面积为______cm2.11.比较大小:3______2;5______4;?22______?6. 12.如果nm是二次根式,那么m,n应该满足条件. mn>0m>0,n≥0 m≥0,n>0 mn≥0且m≠013.把4234根号外的因式移进根号内,结果等于. ? ?44414.计算:5?=______;8a3b.122ab2=______; ?2213?2;=______;3?=______.15.先化简,再求值:?a,其中a?5?12. 16.把下列各式中根号外的因式移到根号里面: a?1 a;?1y?1?17.已知a,b为实数,且??0,求a2008-b2008的值. 18.化简二次根式:17=______;18=______;?413=______. 19.计算下列各式,使得结果的分母中不含有二次根式: 1=______; 132______;2x2=______;y=______.0.已知≈1.732,则13≈______;27≈______.1.计算b1a?ab?ab等于.1ab2ab 11a2bab bab bab22.下列各式中,最简二次根式是.1x?yab x2? 5a2b23.?? ?a?ba?b24.已知:△ABC中,AB=AC,∠A=120°,BC?8,求△ABC的面积.25.观察规律:12?1?2?1,1?2?3?,12??2?3求值.122?7=______;1?=______;1n?1?n=______.26.238ab3与6ba2b无法合并,这种说法是______的.27.一个等腰三角形的两边长分别是2和3,则这个等腰三角形的周长为.2?4362?262?42?4或62?28.?.29.0??12?|5?|?230.a?a133a?12aa.31.2aba1a?bb?aa3b?2bab3.32.化简求值:3x1?4y?x?y,其中x=4,y=1x9.33.已知四边形ABCD四条边的长分别为,,.5和3,求它的周长.4.探究下面问题判断下列各式是否成立.你认为成立的,在括号内画“√”,否则画“×”.①2?23?22;②3?38?338;③4?4?4;④5?524?5524.1515你判断完以上各题后,发现了什么规律?请用含有n的式子将规律表示出来,并写出n的取值范围.请你用所学的数学知识说明你在中所写式子的正确性.35.设a??b??,则a2007b2008的值是______.36.的运算结果是. 0abab2abab37.下列计算正确的是. 2?a?ba??aba2?b2?a?ba?1a?a8.1?2.1?2?.100101.40.2?2.41.已知x??,y??,求值:x2-xy+y2.42.已知x+y=5,xy=3,求x?y的值.yx43.若b<0,化简?ab3的结果是______.44.若菱形的两条对角线长分别为和则此菱形的面积为______.45.若x??2,则代数式x2-4x+3的值是______.6.当a<2时,式子a?2,2?a,a?2,2中,有意义的有. 1个 2个 3个7.若a,b两数满足b<0<a且|b|>|a|,则下列各式有意义的是.a?bb?a a?b ab48abab5??ab?9.?8x4.50.已知:如图,直角梯形ABCD中,AD∥BC,∠A =90°,△BCD为等边三角形,且AD=2,求梯形ABCD的周长.二次根式基础练习一、选择题1.若3?m为二次根式,则m的取值为A.m≤3B.m<3C.m≥D.m>32.下列式子中二次根式的个数有⑴1;⑵3?3;⑶?x2?1;⑷8;⑸12;⑹3?x;⑺x2?2x?3.A.2个 B.3个 C.4个 D.5个3.当a?2a?2有意义时,a的取值范围是A.a≥B.a>C.a≠ D.a≠-24.下列计算正确的是①??4??9?6;②?4?9?6;③52?42?5?4??4?1;④52?42?52?42?1;A.1个 B.2个 C.3个 D.4个5.化简二次根式2?3得A.?B.5C.?D.306.对于二次根式x2?9,以下说法不正确的是A.它是一个正数 B.是一个无理数C.是最简二次根式D.它的最小值是37.把3aab分母有理化后得A.4bB.C.1 bD.b28.ax?by的有理化因式是A.x?yB.x?yC.ax?by D.ax?by9.下列二次根式中,最简二次根式是A.3a B.13C.D.10.计算:a1b?ab?ab等于A.1ab2abB.1ababC.1bab D.bab二、填空题11.当x___________时,?3x是二次根式.12.当x___________时,3?4x在实数范围内有意义. 13.比较大小:?32______?23.14.2ba?a18b?____________;252?242?__________.15.计算:3a?2b?___________.16b216.计算:ca2=_________________.17.当a=3时,则15?a2?___________.18.若x?2x?23?x?3?x成立,则x满足_____________________.三、解答题19.把下列各式写成平方差的形式,再分解因式:)计算:⑴?3?;⑵2?13?6;⑶131?23?;⑷x?10?1y?z.221.计算:⑴?220;⑵0.01?81; 0.25?144⑶12123ab1?2?1;⑷?.352bab22.把下列各式化成最简二次根式: abc27132?122 ⑴;⑵?252723.已知:x?24.参考答案:一、选择题 c3.a4b120?4,求x2?2的值.x1.A;2.C;3.B;4.A;5.B;6.B;7.D;8.C;9.D;10.A.二、填空题11.≤1314b;12.≤;13.<;14.,7;15.302ab;16.;17.32;a34318.2≤x<3.三、解答题19.⑴;⑵;⑶;⑷;20.⑴?243;⑵2;⑶?43;⑷10xyz; 33c2321.⑴?;⑵;⑶1;⑷;22.⑴33;⑵ ?2bc;23.18.4a420二次根式检测题一、选择题有意义,那么x的取值范围是 A.x?B.x?3C.x? D.x≥3 2.下列二次根式中,是最简二次根式的是新- 课-标- 第-一 -网 1.A.2xyB.ab23.1?2a,那么A.a<≥11 B.错误!24.下列二次根式,5.a的值为6.m?n的值是C.1D..D.8. )A.x?1B.x??1C.x≥1D.x≤?19.n的最小值是A. B.C. D.210.k、m、n为三整数,若错误!未找到引用源。

【精华版】二次根式计算专题训练-(附答案)

【精华版】二次根式计算专题训练-(附答案)

二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣= 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣)= 1+1 = 27.计算(1)•(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6)=﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.。

二次根式基础练习(含答案)

二次根式基础练习(含答案)

二次根式(二次根式(11)1.当a ____________时时,23-a 有意义;当x ____________时时,31-x 有意义.2.当x ____________时时,x 1有意义;当x ____________时时,x1的值为1.3.直接写出下列各式的结果:(1)49=____________;;(2)2)7(=____________;;(3)2)7(-=____________;;(4)2)7(-=____________;;(5)2)70(=____________;;(6)22])7([-=____________..4.下列各式中正确的是.下列各式中正确的是( )( )( )..(A)416±=(B)2)2(2-=- (C)24-=- (D)3327=5.下列各式中,一定是二次根式的是.下列各式中,一定是二次根式的是( )( )( )..(A)23- (B)2)30(- (C)2- (D)x6.已知32+x 是二次根式,则x 应满足的条件是应满足的条件是( )( )( )..(A)x >0 (B)x ≤0 (C)x ≥-≥-3 (D)3 (D)x >->-3 37.当x 为何值时,下列式子有意义为何值时,下列式子有意义? ? (1)x -1;(2)2x-;(3)12+x ;(4).7x +8.计算下列各式:(1)2)23( (2)2)32(´ (3)2)53(´- (4)2)323(9.若y x xy ×=24成立,则x ,y 必须满足条件____________..1010.. (1)12172´____________;; (2))84)(213(--=____________;;(3)62434´________.(4)3649´=______;(5)25.081.0´=____________;;(6)31824a a ×=____________..1111.下列计算正确的是.下列计算正确的是.下列计算正确的是( )( )( )..(A)532=×(B)632=×(C)48=(D)3)3(2-=-1212.化简.化简2)2(5-´,结果是,结果是( )( )( )..(A)52 (B)52- (C) (C)--10 (D)10 1313.如果.如果)3(3-=-×x x x x ,那么,那么( )( )( )..(A)x ≥0 (B)x ≥3 (C)03 (C)0≤≤x ≤3 (D)x 为任意实数1414.当.当x =-=-33时,2x 的值是的值是( )( )( )..(A)(A)±±3 (B)3 (C)3 (B)3 (C)--3 (D)9 1515.计算:.计算:.计算:(1)(1)26´ (2)123´(3)8223´ (4)x x 62× (5)aab 131×(6)ab a 3162× (7)49)7(22´-(8)22513- (9)7272yx 1616.已知三角形一边长为.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.1717.把下列各式化成最简二次根式:.把下列各式化成最简二次根式:(1)12=____________;; (2)18=____________;;(3)45=____________;; (4)x 48=____________;;(5)32=____________;; (6)214=____________;;(7)35b a =____________;; (8)3121+=____________..1818.在横线上填出一个最简单的因式,使得它与所给二次根式相乘.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式:如:23与2. (1)32与____________;;(2)32与____________;; (3)a 3与____________;;(4)38a 与____________;; (5)26a 与____________..1919..xxx x -=-11成立的条件是成立的条件是( )( )( )..(A)x <1且x ≠0 (B)x >0且x ≠1(C)0(C)0<<x ≤1 (D)0(D)0<<x <1 2020.下列计算不正确的是.下列计算不正确的是.下列计算不正确的是( )( )( )..(A)471613=(B)xy xx y 63132=(C)201)51()41(22=-(D)x x x 3294=2121.下列根式中,不是最简二次根式的是.下列根式中,不是最简二次根式的是.下列根式中,不是最简二次根式的是( ) ( ) A .7 B B..3 C C..21D D..22222..(1)2516=(2)972= (3)324= (4)1227=(5)1525=(6)632=(7)211311¸ (8)125.02121¸2323.把下列二次根式.把下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有的被开方数相同的有___________________________;与;与3的被开方数相同的有____________;;与5的被开方数相同的有____________.. 2424.. (1)31312+=____________;;(2)485127-=____________.. 2525.化简后,与.化简后,与2的被开方数相同的二次根式是的被开方数相同的二次根式是( )( )( )..(A)12 (B)18 (C)41(D)612626.下列说法正确的是.下列说法正确的是.下列说法正确的是( )( )( )..(A)(A)被开方数相同的二次根式可以合并被开方数相同的二次根式可以合并被开方数相同的二次根式可以合并(B)8与80可以合并可以合并 (C)(C)只有根指数为只有根指数为2的根式才能合并的根式才能合并(D)2与50不能合并不能合并 2727.可以与.可以与a 12合并的二次根式是合并的二次根式是( )( )( ).. (A)a2 (B)a 54 (C)a 271 (D)a 32828、、.48512739-+ 2929...61224-+3030...503238318-++3131..).5.04313()81412(---3232...12183127--3333..)272(43)32(21--+3434..当a =____________时,最简二次根式时,最简二次根式12-a 与73--a 可以合并.合并. 3535.若.若a =7+2,b =7-2,则a +b =____________,,ab =____________.. 36.合并二次根式:(1))18(50-+=______;(2)ax xa x45+-=____________.. 3737.下列各式中是最简二次根式的是.下列各式中是最简二次根式的是.下列各式中是最简二次根式的是( )( )( ).. (A)a 8 (B)32-b (C)2yx - (D)y x 233838.下列计算正确的是.下列计算正确的是.下列计算正确的是( )( )( ).. (A)3232=+(B)b a ab 555+=(C)268=- (D)x x x =-45 3939..)32)(23(+-等于等于( )( )( )..(A)7 (B)223366-+-(C)1 (D)22336-+4040..××-121)2218(41 41..).23)(322(--4242..).3223)(3223(-+ 43 43..).3218)(8321(-+ 4444..6)1242764810(¸+- 4545..)18212(2-4646...1502963546244-+-4747..).32)(23(-- 4848...)12()12(87-+ 4949..).94(323ab aba b a a b ab +-+参考答案1..3,32>³x a. 2 2..x >0,x =1.3.(1)7(1)7;;(2)7(2)7;;(3)7(3)7;; (4)7(4)7;;(5)0.7(5)0.7;;(6)49(6)49.. 4 4..D . 5 5..B .6.D .7.(1)x ≤1;(2)x =0;(3)x 是任意实数;是任意实数;(4)(4)x ≥-≥-77.8.(1)18(1)18;;(2)6(2)6;;(3)15(3)15;;(4)6(4)6.. 9.x ≥0且y ≥0. 10 10..(1)6;(2)24(2)24;;(3)16(3)16.. (4)42 (4)42;;(5)0.45(5)0.45;;(6).3122a 11 11..B . 12 12..A . 13 13..B . 14 14..B 1515..(1)32; (2)6 (2)6;; (3)24 (3)24;; (4)x 32; (5)3b ;(6)ab 2; (7)49 (7)49;; (8)12 (8)12;; (9).263y xy 1616...cm 621717..(1)32; (2)23; (3)53; (4)x 34;(5)36; (6)223; (7)ab b a 2; (8)×630 1818..(1)3; (2)2; (3)a 3; (4)a 2; (5).61919..C . 20 20..C . 21 21..C .22.(1);54(2);35(3);22 (4);23 (5);63 (6);2 (7);322 (8)4 (8)4.. 23..454,125;12,27;18,82,32 2424...36)2(;33)1(- 2525..B . 26 26..A . 27 27..C . 28 28...33 29 29...632+ 3030...2163131...23+ 32 32...23- 3333..×-423411 3434..6. 35 35..3,72. 36 36..(1)22; (2)ax 3-. 3737..B . 38 38..D . 39 39..B. 40 B. 40..×66 41 41...763- 4242..×36194343..×417 44 44...215 45 45...62484- 4646..68-.4747...562- 48 48...12- 49 49...2ab -l二次根式(二次根式(22)1.x 2-表示二次根式的条件是表示二次根式的条件是__________________.. 2.使12-x x 有意义的x 的取值范围是的取值范围是__________________..3.若m m 32-+有意义,则m =____________.. 4.已知411+=-+-y x x ,则x y的平方根为的平方根为__________________.. 5.当x =5时,在实数范围内没有意义的是时,在实数范围内没有意义的是( )( )( )..(A)|1|x - (B)x -7(C)x 32-(D)204-x6.若022|5|=++-y x ,则x -y 的值是的值是( )( )( )..(A)(A)--7 (B)7 (B)--5 (C)3 (D)7 7.计算下列各式:.计算下列各式: (1)2)52.0(-(2)22)3(--(3)21))32((-(4)22)5.03(8.已知△ABC 的三边长a 、b 、c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.边的长.9.已知数a ,b ,c 在数轴上的位置如图所示:在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:的结果是:__________________.. 1010..已知矩形的长为cm 52,宽为cm 10,则面积为则面积为______cm ______cm 2. 1111.比较大小:.比较大小:.比较大小:(1)(1)23______32;(2)25______34;(3)22-______6-. 1212.如果.如果mn是二次根式,那么m ,n 应该满足条件应该满足条件( )( )( )..(A)mn >0 (B)m >0,n ≥0 (C)m ≥0,n >0 (D)mn ≥0且m ≠0 1313.把.把4324根号外的因式移进根号内,结果等于根号外的因式移进根号内,结果等于( )( )( )..(A)11-(B)11 (C)44- (D)441414.计算:.计算:.计算:(1)(1)x xy 6335×=____________;;(2)23221.8ab b a =____________;; (3);21132212××=____________;; (4))123(3+×=____________..1515.先化简,再求值:.先化简,再求值:)6()3)(3(----a a a a ,其中215+=a .1616.把下列各式中根号外的因式移到根号里面:.把下列各式中根号外的因式移到根号里面:.把下列各式中根号外的因式移到根号里面:(1);1aa -(2)×---11)1(y y1717.已知.已知a ,b 为实数,且01)1(1=---+b b a ,求a2008-b 2008的值.的值.18.化简二次根式:(1)71=______;(2)81=______;(3)314-=____________..1919.计算下列各式,使得结果的分母中不含有二次根式:.计算下列各式,使得结果的分母中不含有二次根式:(1)51=____________;; (2)321____________;;(3)322=____________;; (4)yx5=____________..2020.已知.已知3≈1.7321.732,则,则31≈____________;;27≈____________..(结果精确到0.001)2121.计算.计算)0,0(1>>´¸b a abab a b 等于等于( )( )( ).. (A)ab ab 21 (B)ab b a 21 (C)ab b 1 (D)ab b2222.下列各式中,最简二次根式是.下列各式中,最简二次根式是.下列各式中,最简二次根式是( )( )( ).. (A)yx -1(B)ba (C)42+x (D)b a 252323..(1)8517¸- (2)y xy 3212¸(3)ba b a ++2424.已知:△.已知:△ABC 中,AB=AC ,∠A =120120°,°,68=BC ,求△ABC 的面积.的面积.2525.观.观.观察察规律:32321,23231,12121-=+-=+-=+求值.(1)7221+=______;(2)10111+=______;(3)nn ++11=____________.. 2626..3832ab 与bab26无法合并,这种说法是无法合并,这种说法是__________________的.的.的.((填“正确”或“错误”“正确”或“错误”) )2727..一个等腰三角形的两边长分别是32和23,则这个等腰三角形的周长为角形的周长为( )( )( ).. (A)3423+ (B)3226+(C)3426+ (D)3423+或3226+ 2828..).454757272(125+--2929...32|275|)21()1π(10--++--3030...211393a aa aa -+3131...21233ab bb a a b a b a b a -+-3232.化简求值:.化简求值:y y xy x x 3241+-+,其中x =4,y =91.3333.已知四边形.已知四边形ABCD 四条边的长分别为50,72,5013和3100,求它的周长.,求它的周长. 3434.探究下面问题.探究下面问题.探究下面问题(1)(1)判断下列各式是否成立.你认为成立的,在括号内画“√”判断下列各式是否成立.你认为成立的,在括号内画“√”,否则画“×”.①322322=+ ( ) ( );②;②833833=+ ( ) ( );;③15441544=+ ( ) ( );④;④24552455=- ( ) ( ).. (2)(2)你判断完以上各题后,你判断完以上各题后,你判断完以上各题后,发现了什么规律发现了什么规律发现了什么规律??请用含有n 的式子将规律表示出来,并写出n 的取值范围.的取值范围.(3)(3)请你用所学的数学知识说明你在请你用所学的数学知识说明你在请你用所学的数学知识说明你在(2)(2)(2)中所写式子的正确性.中所写式子的正确性.中所写式子的正确性.3535.设.设67,67-=+=b a ,则a 2007b2008的值是的值是__________________..3636..))((b a a b a b b a -+的运算结果是的运算结果是( )( )( )..(A)0 (B)ab (b -a ) (C)ab (a -b ) (D)ab ab 23737.下列计算正确的是.下列计算正确的是.下列计算正确的是( )( )( )..(A)b a b a +=+2)((B)ab b a =+ (C)b a ba +=+22 (D)aa a =×13838..×+-221.221 39 39...)103()103(101100-+ 4040...)()(22b a b a --+4141.已知.已知23+=x ,23-=y ,求值:x 2-xy +y 2.4242.已知.已知x +y =5,xy =3,求xy y x+的值.的值.4343.若.若b <0,化简3ab-的结果是的结果是__________________..44.若菱形的两条对角线长分别为)2352(+和)2352(-则此菱形的面积为则此菱形的面积为__________________.. 4545.若.若25+=x ,则代数式x 2-4x +3的值是的值是__________________.. 4646..当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有有意义的有( )( )( )..(A)1个 (B)2个 (C)3个 4747.若.若a ,b 两数满足b <0<a 且|b |>|a |,则下列各式有意义的是义的是( )( )( )..(A)b a + (B)a b - (C)b a - (D)ab4848..××-×b a b a ab b a3)23(3549.48)832(3x x x x ¸-.5050.已知:如图,直角梯形.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =9090°,△°,△BCD 为等边三角形,且AD =2,求梯形ABCD 的周长.的周长.参考答案1.x ≤0. 2.x ≥0且×=/21x3.0. 4.1. 5.C . 6.D .7.(1)0.52(1)0.52;;(2)(2)--9;(3)23;(4)36(4)36..8.2,3,4.9.01010..102 1111.>,>,<..>,>,<..>,>,<. 1212..D . 1313..D .1414..(1)45x y 2 (2)2a 2b b;(3)34; (4)9 (4)9..1515..6a -3;561616..(1)a --(2)y --11717..a =-=-11,b =1,0. 1818..(1);77 (2);42 (3) (3)--×3391919..(1);55 (2);82 (3);66 (4)×y y x 552020..0.5770.577;;5.1965.196.. 2121..B . 2222..C . 2323..(1)55-;(2);33x (3)ba +2424...3322525..(1)722-;(2)1011-;(3).1n n -+2626.错误..错误..错误. 2727..D 2828...57329-2929...23- 3030..×617a3131..0.3232.原式=.原式=y x32+,代入得2.3333...33102235+ 3434..(1)(1)都打“√”都打“√”;(2)1122-=-+n nnn n n (n ≥2,且n是整数是整数)); (3)(3)证明:证明:×-=-=-+-=-+111)1(1223222nn nn nnnnn nn n3535...67-3636..B . 3737..D .3838..×-413939...103-4040..ab 4( (可以按整式乘法,也可以按因式分解法可以按整式乘法,也可以按因式分解法可以按整式乘法,也可以按因式分解法)). 4141..9. 4242..×3354343...ab b --4444..1. 4545..4. 4646..B . 4747..C . 4848...293ab b a -4949...245x -. 5050.周长为.周长为.625+。

二次根式练习10套(附答案)

二次根式练习10套(附答案)

二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。

3、16的平方根________,64的立方根________。

4、算术平方根等于它本身的数有________,立方根等于本身的数有________。

5、若2562=x ,则=x ________,若2163-=x ,则=x ________。

6、已知ABC Rt ∆两边为3,4,则第三边长________。

7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。

8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。

9、如果0)6(42=++-y x ,则=+y x ________。

10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。

12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。

二、选择题13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB. 5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB. 248cmC. 224cmD. 232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A. 2h ab =B. 2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。

二次根式混合运算题含答案

二次根式混合运算题含答案

二次根式混合运算题含答案二次根式混合运算125题(含答案)1、2、3、4、5、6、7、.8、9、.11、.12、;13、;14、.15、;16、.17、.19、20、;21、22、.23、24、25、26、;.27、28、;;29、;30、31、;(5);32、33、;34、;35、36、3﹣9+337、÷(3×)38、39、40、;.41、43、44、45、;46、.47、(﹣)2﹣;48、;49、;51、;52、.53、3﹣﹣+(﹣2)(+2)54、55、56、57、59、2÷﹣(2﹣)260、﹣2+(﹣1)261、(+2)﹣.62、63、64、65、.66、68、69、70、3﹣(﹣)71、72、﹣273、74、75、76、77、÷78、×+÷﹣79、80、81、﹣.82、83、84、85、(+1)2﹣286、(+1)(1﹣)﹣(﹣1)2+(+1)287、88、89、90、;91、.92、;93、;;94、95、;96、;97、98、|﹣|+﹣;99、;;100、101、(+)2008(﹣)2009.102、;103、;104、.105、(3+)÷;106、107、;108、;109、.111、(﹣)(+)+2+|﹣3|﹣2﹣1(4)(﹣2)×﹣6 114、115、(2﹣);116、;117、118、.119、.120、121、122、+6a;﹣×.123、124、(2)(7+4)(7﹣4)+(2+)125、参考答案1、原式=2﹣3=﹣;2、原式=×==30;3、原式=2﹣12=﹣10.4、原式==2.5、原式===﹣6a.6、原式=;7、原式=()2﹣(﹣1)2=2﹣(3﹣2+1)=8、原式=.9、.原式=(3﹣2+3)×=(+3)×=1+10、原式=﹣+=;11、原式=(4+)÷3=12、原式=2+3﹣=;13、原式==;14、原式=(7+)(7+)=14×2=15、原式==3+6﹣10=﹣1;16、原式=2﹣=﹣2.17、原式=﹣2+=3﹣2+=18、原式=(3﹣2)(3+2)=18﹣12=6;19、原式=(2﹣+)=(+)=+120、原式=﹣35÷=﹣15÷=﹣15;21、原式=3+﹣2+﹣3=;22、原式=3a+﹣2b23、原式=3﹣2+1﹣(2﹣3)=5﹣2.24、原式==25、原式=2+1﹣(﹣)=3﹣1=2.26、原式=17﹣(19﹣)=﹣2+;29、原式=+2﹣10=;30、原式=4﹣+=;31、原式=6﹣5=1;32、原式=12+18﹣12=;33、原式=(2+)×﹣2=3﹣2=1;34、原式=+×6﹣m=2m+3m﹣m=0;35、原式=++1=﹣1++1=36、原式=12=(12﹣3﹣+6)=;37、原式=6÷(×)=6÷6=38、原式=+3﹣2=3+3﹣2=3+.39、原式=++×1=6+1+=7+.40、原式=×3+6×﹣2x=2+3﹣2=3;41、原式=2﹣+3﹣2=2﹣2+142、原式=(6﹣+﹣2)÷2﹣3=3﹣+﹣﹣3=﹣+﹣;43、原式===444、=(4÷2)=45、原式=2+3﹣7=﹣2;46、原式===14.47、原式=10﹣7+=3+;48、原式=×(2﹣+)=+×=+1;49、原式=﹣1;50、原式=2+3+2﹣(2﹣3)=5+2+1=6+251、原式=4+﹣4=;52、原式=(4﹣2+6)÷=2+253、原式=6﹣3﹣+5﹣4=(6﹣3﹣)+1=+155、原式==.56、原式=[﹣(﹣)][+(﹣)]=5﹣(﹣)2=5﹣(5﹣2)=2.57、原式=4×2﹣16+12﹣16﹣8=﹣4﹣16;58、原式=+﹣+3=59、原式=2﹣(4﹣4+2)=2﹣6+4=6﹣6.60、原式=×2﹣2×3+5﹣2+1=﹣6﹣2+6=6﹣7.61、原式=a+2=2.62、原式=;63、原式=﹣+=﹣+=0.64、=2+﹣2=.65、=﹣=66、原式=9﹣14+4=﹣;67、原式=﹣43=﹣12=﹣11.68、原式=2×=12;69、原式=×3×=﹣;70、原式=12﹣2+6=16;71、原式=(4﹣2+6)×=2+272、原式=27÷(3×)×﹣8=3×﹣8=﹣8;73、原式=()2﹣()2=3﹣(2+2+5)=﹣4﹣274、原式=3+8=11;75、原式=2﹣12=﹣10;76、原式=5+﹣6=0;77、原式=÷=÷=1.78、原式=﹣==4+=4+.79、原式===;80、原式==9+6=1581、原式=(+)2﹣=3+2+2﹣=5+82、原式==;83、原式=;84、原式=5﹣6=﹣1;85、原式=4+=87、原式=+4×﹣+1=++1=1+.88、原式=(40)=30=15;89、原式=2+2=2+.90、原式===;91、原式===12.92、原式=2+2+4+2=;93、原式=9﹣14+24=;94、原式=(7+4)(7﹣4)+4﹣3=49﹣48+1=2;95、原式=﹣4×+9﹣12﹣()=﹣8+9﹣12﹣+1=﹣11;96、原式=﹣+=2x+=;97、原式=2a(b﹣×+)=2ab﹣+ab=98、原式=﹣+3﹣5=2﹣4;99、原式=12﹣4+1=13﹣4;100、原式=2+﹣=;101、原式=()=102、原式=3×2﹣2×3+5×4=6﹣6+20=20;103、原式=7﹣3+2=6;104、原式=(﹣)×=﹣=﹣105、原式=3÷+÷=3+=;106、原式=3﹣1﹣=2﹣107、原式=+1﹣×2=2+1﹣2=1;108、原式=3﹣2+1﹣1=3﹣2;109、原式=+4﹣3=110、﹣1=﹣1=﹣1=0;111、()()+2=﹣+2=5﹣7+2=0;112、+|﹣3|﹣2﹣1=1+3﹣=3;113、(﹣2)×﹣6=﹣4﹣=﹣9﹣=﹣114、原式=4﹣5=﹣1;115、原式=×=1;116、原式=5﹣2﹣5+2=;117、原式=4﹣2+﹣1=3﹣118、原式==3﹣2=1.120、原式=+1=121、原式=3+6a=2a+3a=5a;122、原式=﹣=﹣=3﹣2=1.123、原式==12;124、原式=49﹣48+2+=3+.125、原式===.。

二次根式计算专题训练(附答案)

二次根式计算专题训练(附答案)

二次根式计算专题训练一、解答题(共30 小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+| ﹣2| ﹣+()-2.(2)﹣4﹣(﹣).(3)( x﹣ 3)(3﹣x)﹣( x﹣ 2)2.3.计算化简:(1)++ (2)2﹣6 +3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣|(2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)?(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)( 2 +)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2.12.计算:①4+﹣+4;②( 7+4 )( 7﹣ 4 )﹣( 3 ﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣ 1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6)..已知:a=,b= ,求2+3ab+b2 的值.14 a15.已知 x, y 都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9 +5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知 y=+﹣4,计算x﹣y2的值.20.已知: a、 b、 c 是△ ABC的三边长,化简.21.已知 1< x<5,化简:﹣| x﹣5|.22.观察下列等式:①= = ;②= = ;③= = ⋯⋯⋯回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++⋯+.23.观察下面的变形规律:= ,= ,= ,= ,⋯解答下面的问题:(1)若n 为正整数,请你猜想= ;(2)计算:(+ +⋯+ )×()24.阅读下面的材料,并解答后面的问题:= = ﹣1= =﹣;= =﹣(1)观察上面的等式,请直接写出(2)计算()()= (n 为正整数)的结果;;(3)请利用上面的规律及解法计算:(+++⋯+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9 +7﹣5+2(2)(2﹣1)(2+1)﹣( 1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9 +7﹣5+2(2)(﹣1)(+1)﹣( 1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共 30 小题)1.计算:( 1) += 2 +5=7;(2)(+)+(﹣=4+2+2﹣ =6+.2.计算:( 1)(π﹣3.14) 0+|﹣2| ﹣+( )﹣2 ﹣ ﹣4 +9=1+2=12﹣5;( 2)﹣4 ﹣( ﹣ )=2 ﹣4× ﹣ +2=+( 3)(x ﹣3)( 3﹣ x )﹣( x ﹣2)2 =﹣x 2+6x ﹣ 9﹣( x 2﹣4x+4)=﹣2x 2+10x ﹣133.计算化简: (1)++ =2 +3 +2=5+2;(2)2﹣6 +3= 2×2 ﹣6× +3×4 = 144.计算( 1) +﹣= 2 +4 ﹣2= 6 ﹣ 2.(2)÷×=2 ÷3 ×3= 2 .5.计算:( 1) × +3×2 = 7 +30= 37 (2)2﹣ 6+3= 4 ﹣2+12= 146.计算:( 1)()2﹣20+| ﹣ | = 3﹣1+ =(2)(﹣)× ( 3﹣)×= 24=(3)2﹣ 3+= 4﹣12 +5 ﹣+5= 8(4)(7+4 )(2﹣ )2+(2+)(2﹣ )(2+ ) 2(2﹣ )2+(2+)(2﹣ ) =1+1=2=7.计算( 1) ? (a ≥0)== 6a( 2) ÷==(3)+﹣ ﹣=2 +3 ﹣2 ﹣4=2 ﹣3 (4)(3+)( ﹣ )=3 ﹣3 +2 ﹣5 ﹣﹣= 28.计算:( 1) +﹣= +3 ﹣2 =2 ;(2)3 +(﹣)+ ÷=+﹣2+ = .9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+ )+(1+ )2 =1﹣ 5+1+2 +5 =2+2 .10.计算:(1)﹣4 + =3 ﹣ 2 + =2 ;( 2)+2 ﹣(﹣)=2 +2 ﹣ 3 + =3 ﹣;(3)(2 + )(2 ﹣)=12﹣6 =6;( 4)+ ﹣(﹣1)0 = +1+3 ﹣1 =4 .11.计算:(1)(3 + ﹣4 )÷=4 +3 ﹣2x2×=(9 + ﹣ 2 )÷ 4=8 ÷4=7 ﹣2=2;=5 .(2)+9 ﹣ 2x2?12.计算:①4 + ﹣+4 =4 +3 ﹣2 +4 =7 +2 ;②( 7+4 )(7﹣4 )﹣( 3 ﹣1)2 ﹣﹣(﹣6 )﹣45+6.=49 48 45+1 = 13.计算题(1)××= = =2×3×5 =30;(2)﹣+2 =×4 ﹣2 +2×=2 ﹣2 + = ;(3)(﹣ 1﹣)(﹣+1)=﹣( 1+ )(1﹣) =﹣( 1﹣5) =4;(4)÷(﹣)=2 ÷(﹣)=2 ÷=12;(5)÷﹣×+ =4 ÷﹣+2 =4+ ;(6)= = = ..已知:a= , b= ,求2+3ab+b2 的值.14 a解: a= =2+ ,b= 2﹣,则 a+b=4, ab=1,a2+3ab+b2=( a+b)2 +ab=17.15.已知x, y 都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y 的值,因此,将已知等式变形:,x,y 都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y 都是有理数,∴ x2+2y﹣17 与 y+4 也是有理数,∴解得∵有意义的条件是x≥ y,∴取 x=5,y=﹣ 4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣ a ,=﹣,代入合并即可.【解答】解:原式 =﹣ a+=(﹣ a+1).【点评】本题考查了二次根式性质的应用当a≥0 时,=a,当a≤0 时,=﹣ a.17.计算:(1)9+5 ﹣ 3 = 9 +10 ﹣12 = 7 ;(2)2 = 2×2×2×= ;(3)()2016(﹣)2015.=[ (+)(﹣)] 2015?(+)=( 5﹣ 6)2015?(+)=﹣(+)=﹣﹣.18.计算:.解:原式 =+()2﹣2+1﹣+=3+3﹣2 +1﹣2+=4﹣.19.已知 y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x 的值,进而可求出 y 的值,然后代入 x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把 x=代入y=+﹣4,得y=﹣4,当 x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知: a、 b、 c 是△ ABC的三边长,化简.【解】解:∵ a、b、 c 是△ ABC的三边长,∴ a+b>c, b+c>a,b+a>c,∴原式 =| a+b+c| ﹣ | b+c﹣a|+| c﹣b﹣a|=a+b+c﹣( b+c﹣a) +( b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣ c.21.已知 1< x< 5,化简:﹣| x﹣5|.解:∵ 1< x< 5,∴原式 =| x﹣1| ﹣| x﹣ 5| =( x﹣1)﹣( 5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==⋯回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++⋯+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:( 1)原式 = = ;)(2)原式 = + + +⋯+=(﹣1).23 .观察下面的变形规律:=,=,=,=,⋯解答下面的问题:( 1)若 n 为正整数,请你猜想= ﹣;( 2)计算:(+ +⋯+ )×()解:原式 =[(﹣1)+(﹣)+(﹣)+⋯+(﹣)](+1)=(﹣1)(+1)=()2﹣12=﹣.2016 1 = 201524.阅读下面的材料,并解答后面的问题:= = ﹣ 1= = ﹣;= = ﹣(1)观察上面的等式,请直接写出(n 为正整数)的结果﹣;(2)计算()()= 1 ;(3)请利用上面的规律及解法计算:(+ + +⋯+ )().=(﹣ 1+ ﹣+⋯+ ﹣)()=(﹣1)(+1)=2017﹣1=2016.25.计算:(1)6﹣2 ﹣3 = 6﹣5 = 6﹣;(2)4 +﹣+4 =4 +3 ﹣2 +4 =7+2.26.计算( 1) | ﹣2| ﹣+2 = 2﹣﹣2+2 = ;( 2)﹣×+= ﹣×5+ =﹣1+﹣.=27.计算.=( 10 ﹣ 6 +4 )÷=( 10 ﹣6 +4 )÷=( 40 ﹣18 +8 )÷=30÷=15.28.计算( 1)9 +7﹣5+2= 9 +14﹣20+=;(2)(2 ﹣1)(2 +1)﹣(1﹣2 )2 = 12﹣1﹣1+4 ﹣12 = 4 ﹣2.29.计算下列各题.(1)(﹣)×+3 = ﹣+ =6﹣6 +=6﹣5 ;( 2)﹣×= +1﹣= 2 +1﹣2 .30.计算(1)9 +7﹣5+2 = 9 +14 ﹣20 + = ;(2)(﹣1)( +1)﹣( 1﹣2 )2 =3﹣1﹣( 1+12﹣ 4 )=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

二次根式计算专题训练附答案

二次根式计算专题训练附答案

二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣|(2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+=2+5=7;(2)(+)+(﹣=4+2+2﹣=6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2=1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)=2﹣4×﹣+2=+(3)(x﹣3)(3﹣x)﹣(x﹣2)2=﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++=2+3+2=5+2;(2)2﹣6+3=2×2﹣6×+3×4=144.计算(1)+﹣=2+4﹣2=6﹣2.(2)÷×=2÷3×3=2.5.计算:(1)×+3×2=7+30=37(2)2﹣6+3=4﹣2+12=146.计算:(1)()2﹣20+|﹣|=3﹣1+=(2)(﹣)×=(3﹣)×=24(3)2﹣3+=4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣)=1+1=27.计算(1)•(a≥0)==6a(2)÷==(3)+﹣﹣=2+3﹣2﹣4=2﹣3(4)(3+)(﹣)=3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2=1﹣5+1+2+5=2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6=6;(4)+﹣(﹣1)0=+1+3﹣1=4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2=49﹣48﹣(45+1﹣6)=﹣45+6.13.计算题(1)××===2×3×5=30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab=17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3=9+10﹣12=7;(2)2=2×2×2×=;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5|=(x﹣1)﹣(5﹣x)=2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12=2016﹣1=2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1=2016.25.计算:(1)6﹣2﹣3=6﹣5=6﹣;(2)4+﹣+4=4+3﹣2+4=7+2.26.计算(1)|﹣2|﹣+2=2﹣﹣2+2=;(2)﹣×+=﹣×5+=﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2=9+14﹣20+=;(2)(2﹣1)(2+1)﹣(1﹣2)2=12﹣1﹣1+4﹣12=4﹣2.29.计算下列各题.(1)(﹣)×+3=﹣+=6﹣6+=6﹣5;(2)﹣×=+1﹣=2+1﹣2.30.计算(1)9+7﹣5+2=9+14﹣20+=;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.。

二次根式专项练习附答案

二次根式专项练习附答案

二次根式专项练习附答案(共6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、已知,为实数,且,求的值.2、若的整数部分为,小数部分为,求的值.3、.4、阅读下列解题过程:,,请回答下列回题:(1)观察上面的解答过程,请直接写出=﹣;(2)根据上面的解法,请化简:.5、数a、b在数轴上的位置如图所示,化简:.6、使有意义的的取值范围是.7、若x,y为实数,且y=4++,则y﹣x的值是.8、当x时,二次根式在实数范围内有意义.9、方程:的解是 .10、若代数式有意义,则的取值范围为__________.11、若,则的值为.12、比较大小:;13、若+有意义,则=14、已知xy=3,那么的值为_________.15、把根号外的因式移到根号内:= .16、已知a,b,c为三角形的三边,则= .17、________.18、计算.19、计算;20、;21、);22、计算:23、计算:;24、25、计算:26、若二次根式在实数范围内有意义,则x的取值范围为( ).≥2 B. x≤2 ≥-2 ≤-227、若二次根式有意义,则的取值范围是【】A. B. C. D.28、若, 则的值为()A. C. 9 D.29、不改变根式的大小,把中根号外的因式移到根号内正确的结果是 A . B . C .- D .30、为使有意义,x的取值范围是()A.x>B.x≥C .x≠D .x≥且x≠31、下列二次根式中,化简后能与合并的是( )A. B. C. D.32、已知则与的关系为()33、下列计算正确的是()A. B.+C. D.34、下列计算或化简正确的是()A.B.C.D.35、下列二次根式中属于最简二次根式的是【】A .B .C .D .36、如果,那么(A );(B );(C );(D ).37、下列二次根式中,最简二次根式是().A. B. C. D.38、已知,则a的取值范围是…………【】A.a≤0;B.a<0; C.0<a≤1; D.a>039、式子(>0)化简的结果是()A. B. C. D.40、式子成立的条件是()A.≥3B.≤1 ≤≤3 <≤3参考答案一、简答题1、解:由题意,得,且,∴,∴.∴.2、解:可知,,则.3、4、考点:分母有理化.专题:计算题.分析:(1)根据题目提供的信息,最后结果等于分母的有理化因式;(2)先把每一项都分母有理化,然后相加减即可得解.解答:解:(1)=﹣;(2)+++…++,=﹣1+﹣+﹣+…+﹣+﹣,=﹣1,=10﹣1,=9.故答案为:(1)﹣,(2)9.点评:本题考查了分母有理化,读懂题目信息,得出每一个分式化简的最后结果等于分母的有理化因式是解题的关键.5、考点:二次根式的性质与化简;实数与数轴..专题:常规题型.分析:根据数轴判断出a、b的取值范围,然后判断出a+1,b﹣1,a﹣b的正负情况,再根据二次根式的性质去掉根号,进行计算即可得解.解答:解:根据图形可得,﹣2<a<﹣1,1<b<2,所以﹣1<a+1<0,0<b﹣1<1,a﹣b<0,所以,=﹣(a+1)+(b﹣1)+(a﹣b),=﹣a﹣1+b﹣1+a﹣b,=﹣2.点评:本题考查了二次根式的性质与化简,实数与数轴.根据图形判断出a、b的取值范围,是解题的关键.二、填空题6、解析:由4x-1≥0,得.7、考点:二次根式有意义的条件..分析:根据二次根式的意义,被开方数大于或等于0,列不等式组求解.解答:解:根据二次根式的意义得,解得x=5.则y=4,∴y﹣x=4﹣5=﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8、【答案】9、答案:x=1010、答案:且a≠111、答案:712、<13、1.考点:二次根式有意义的条件.分析:根据二次根式的被开方数是非负数得到x=0,由此可以求得的值.解答:解:由题意,得,解得x=0,则==1.故答案是:1.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14、15、16、解析:根据三角形的三边关系,可知,,,从而化简二次根式可得结果.17、三、计算题18、原式=﹣3+3=019、原式=2﹣3=﹣120、21、22、解:原式=1+3—3—1 (4分)=0 ( 2分)23、=024、解:(1)原式=2﹣2+=.25、四、选择题26、A27、D28、A 解析:所以,所以所以.29、C30、考点:二次根式有意义的条件..专题:常规题型.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可求解.解答:解:根据题意得,2x+3≥0且3x﹣2≠0,解得x≥﹣且x≠.故选D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.31、A 解析:因为所以只有A 项化简后能与合并.32、D 解析:∵,∴33、C 解析:B 中的二次根式的被开方数不同,不能合并;C项正确;D 项34、答案:A35、C 36、答案:D37、C38、答案:C39、A 解析:因为>0,,所以<0,所以.40、D 解析:根据二次根式的定义,式子成立的条件为,-1,即1<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。

3、16的平方根________,64的立方根________。

4、算术平方根等于它本身的数有________,立方根等于本身的数有________。

5、若2562=x ,则=x ________,若2163-=x ,则=x ________。

6、已知ABC Rt ∆两边为3,4,则第三边长________。

7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。

8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。

9、如果0)6(42=++-y x ,则=+y x ________。

10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。

12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。

二、选择题13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A. 2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。

26、下图的正方形网格,每个正方形顶点叫格点, 请在图中画一个面积为10的正方形。

五、解答题27、已知如图所示,四边形ABCD 中,,12,13,4,3cm CD cm BC cm AD cm AB ==== 090=∠A 求四边形ABCD 的面积。

28、如图所示,在边长为c 的正方形中,有四个斜边为c ,直角边为b a ,的全等直角三角形,你能利用这个图说明勾股定理吗?写出理由。

AEBDC第22题图第25题图第26题图A第27题图29、如图所示,15只空油桶(每只油桶底面直径均为cm 60)堆在一起,要给它盖一个遮雨棚,遮雨棚起码要多高?(结果保留一位小数)30、如图所示,在ABC Rt ∆中,090=∠ACB ,CD 是AB 边上高,若AD=8,BD=2, 求CD 。

31、在△ABC 中,AB=15,AC=13,BC 边上高AD=12,试求△ABC 周长。

第30题图CADB第29题图二次根式练习01答案: 一、填空题:1.4、6、7,1、2、3、5;2.32±,0.6;3.±2,2;4.0和1,0和±1; 5.±16,-4;6.5或7;7.24;8.直角;9.-2;10.-4,81;11.17120;12.1二、选择题:13-22:ACBCCBDDDB 三、计算题: 23.(1)x=47±;(2)x=6或x=-4;(3)x=-1;(4)x=6;24.用计算器计算答案略四、作图题:(略)五、解答题:27.提示:连结BD ,面积为56;28.提示:利用面积证明;29.327.8;30.CD=4;31.周长为42.二次根式练习02一、选择题(每小题2分,共30分) 1、25的平方根是( )A 、5B 、–5C 、5±D 、5±2、2)3(-的算术平方根是( )A 、9B 、–3C 、3±D 、3 3、下列叙述正确的是( )A 、0.4的平方根是2.0±B 、32)(--的立方根不存在 C 、6±是36的算术平方根 D 、–27的立方根是–3 4、下列等式中,错误的是( )A 、864±=±B 、1511225121±= C 、62163-=- D 、1.0001.03-=-5、下列各数中,无理数的个数有( )10.10100142π--, , , A 、1 B 、2 C 、3 D 、4 6、如果x -2有意义,则x 的取值范围是( )A 、2≥xB 、2<xC 、2≤xD 、2>x7、化简1|21|+-的结果是( )A 、22-B 、22+C 、2D 、28、下列各式比较大小正确的是( ) A 、32-<-B 、6655->-C 、14.3-<-πD 、310->-9、用计算器求得333+的结果(保留4个有效数字)是( ) A 、3.1742 B 、3.174 C 、3.175 D 、3.174310、如果mmm m -=-33成立,则实数m 的取值范围是( ) A 、3≥m B 、0≤m C 、30≤<m D 、30≤≤m 11、计算5155⨯÷,所得结果正确的是( )A 、5B 、25C 、1D 、5512、若0<x ,则xx x 2-的结果为( )A 、2B 、0C 、0或–2D 、–2 13、a 、b 为实数,在数轴上的位置如图所示,则2a b a +-的值是( )A.-bB.bC.b -2aD.2a -ba 0 b14、下列算式中正确的是( )A 、333n m n m -=-B 、ab b a 835=+C 、1037=+x xD 、52523521=+15、在二次根式:①12;③27中,与3是同类二次根式的是( )A 、①和③B 、②和③C 、①和④D 、③和④ 二、填空题(每小题2分,共20分) 16、–125的立方根是_____. 17、如果9=x ,那么x =________;如果92=x ,那么=x ________.18、要使53-x 有意义,则x 可以取的最小整数是 . 19、平方根等于本身的数是________;立方根等于本身的数是_______ 20、x 是实数,且02122=-x,则.____=x 21、若b a 、是实数,012|1|=++-b a ,则._____22=-b a22、计算:①____;)32(2=-②._____1964522=-23、若 2.645=== .24、计算:._____1882=++ 25、已知正数a 和b ,有下列命题: (1)若2=+b a ,则ab ≤1(2)若3=+b a ,则ab ≤23 (3)若6=+b a ,则ab ≤3根据以上三个命题所提供的规律猜想:若9=+b a ,则ab ≤________. 三、解答题(共50分) 26、直接写出答案(10分)②④⑦348-⑧()225+⑨27、计算、化简:(要求有必要的解答过程)(18分) ①8612⨯ ②)7533(3-③32 -321+2 ④123127+-⑤(2⑥2363327⨯-+28、探究题(10分)=______,=______,,=______. 根据计算结果,回答: (1)a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2).利用你总结的规律,计算 ①若2x 〈=②=_____29、(6分)已知一个正方形边长为3cm ,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长。

(精确到0.1cm )30、(6分)已知y x 、满足0|22|132=+-+--y x y x ,求y x 542-的平方根.附加题:31、(5分)已知21,31==y x,求下列各式的值 ①3223441y x y x y x ++ ②32241y xy y x +-32、(5分)已知ABC ∆的三边为c b a 、、.化简根式002参考答案一、CDDBCCDC BCCACDC二、-5; ±9; ±3; 2; 0; ±1、0; ±0.5; 2; 12;314;122。

8;;92;三、12;±23;-0.4;5;;9+;2;1.5;3;-63;1;3;0.5;6;34;13;0a =;2-x ; 3.14π-;6cm ; ±9;6;4c 。

二次根式练习03一、填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数范围内分解因式:a4-4 =____________.二、选择题(每题4分,共20分) 15.下列说法正确的是( ).(A) x≥1 (B)x>1且x≠-2(C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三、计算题(各小题6分,共30分)四、化简求值(各小题5分,共10分) 五、解答题(各小题8分,共24分)29. 有一块面积为(2a + b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32cm2,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?根式003答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x -y13. x≤414.15. B 16. A 17. D 18. A 19. A 20. D 23. 24 30. 0.900二次根式练习04一、填空题(每题3分,共54分)2.-27的立方根=.二、选择题(每题4分,共20分)15.下列式子成立的是( ).17.下列计算正确的是( ).四、化简求值(各小题8分,共16分)15. D 16. C 17. C 18. C 19. B 20. A根式004答案2. -33. -a -66. 07. 18. ≤012. 2003二次根式练习05二次根式:1.使式子有意义的条件是。

相关文档
最新文档