汽车发动机悬置设计

合集下载

汽车动力总成悬置系统优化设计PPT课件

汽车动力总成悬置系统优化设计PPT课件

旋转惯性力
Pr m1r 2
其水平和垂直的两个分量:
PjⅡ m2r2 cos 2 二级往复惯性力;
注:二级以上往复惯性力很小,已略去。
Prx m1r2 cost Pry m1r 2 sint
二、汽车动力总成悬置系统激振源
2. 发动机的干涉力和力距
c. 惯性力系的平衡 发动机平衡的含义:
惯性力系平衡; 转矩的均匀性。
三、汽车动力总成在车架上的振动
1. 发动机的自由振动
2)系统模型
如图3-1所示。
3)、自由振动方程
整机振动可分解为随同它的质心c点沿 X 、Y 、Z
的三个平动,和绕质心的转动。在微振动条件下,其角
位移可用绕 X 、Y 、Z 轴的转角 、 、 表示。当刚
体作六自由度自由振动时,有如下的表达式:
Mxc Fx
对因汽车摆动造成的车架扭转具有良好的运动顺从性。 阻抗和隔绝动载荷
有效地抑制在汽车行驶中,因道路凹凸不平而引起的激振影响 支承动、静载荷
在所有工况下,承受所有动、静载荷,并使动力总成在所有方 向上的位移处于可接受的范围内,不与底盘上的其他零部件发 生干涉。 保证发动机机体与飞轮壳的连接面弯矩不超过允许值。 保证合理的使用寿命
二、汽车动力总成悬置系统激振源
4. 激振频率分析
经分析可知:
a. 由不平衡量引起的激振力是离心力,它与转速成正比,只有在高转速时其作用 才显著。
b. 均匀点火脉冲的激励作用只有在低速时才明显。由上可知,发动机作为激振源 的激振频率范围为:
c. 地面激振频率范围:
1.5~2.5
可作为悬置设计时依据。
式中:Q -比例常数,一阶不平衡力Q=1,二阶不平衡力Q=2 c. 传动轴(变速器挂直接档)不平衡质量引起的激振频率:

汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)引言概述:汽车悬置系统是汽车底盘系统的重要组成部分,对于汽车的驾驶稳定性和乘坐舒适性至关重要。

本文旨在提供汽车悬置系统设计的指南,帮助读者了解悬置系统的基本原理和设计要点,从而优化汽车悬置系统的性能与驾驶舒适。

正文内容:一、悬置系统基本原理1. 悬置系统的定义和作用2. 悬置系统的基本组成部分3. 悬置系统的工作原理4. 悬置系统与驾驶稳定性的关系5. 悬置系统与乘坐舒适性的关系二、悬置系统设计要点1. 悬置系统弹簧的选取和设计2. 悬置系统减震器的选择和调整3. 悬置系统阻尼的调节和优化4. 悬置系统材料的选择与优化5. 悬置系统与车体结构的匹配设计三、悬置系统振动控制1. 悬置系统振动类型与特性2. 悬置系统振动控制的方法3. 悬置系统调频器的设计与优化4. 悬置系统振动控制与驾驶稳定性的关系5. 悬置系统振动控制与乘坐舒适性的关系四、悬置系统磨损与维护1. 悬置系统磨损的原因与表现2. 悬置系统磨损程度的检测方法3. 悬置系统磨损的预防与延长寿命的方法4. 悬置系统维护的注意事项5. 悬置系统维护对驾驶稳定性和乘坐舒适性的影响五、悬置系统创新与发展趋势1. 悬置系统新材料的应用2. 悬置系统主动控制技术的发展3. 悬置系统电子化的趋势4. 悬置系统智能化的发展5. 悬置系统可持续发展的方向结论:通过本文的介绍,读者可以更好地理解汽车悬置系统的设计原理和要点,并在实际应用中引导悬置系统的优化与改进。

汽车悬置系统的设计不仅影响驾驶稳定性和乘坐舒适性,也与汽车的安全性和性能密切相关。

因此,合理设计和维护汽车悬置系统对于提高整车的操控性和乘坐舒适性至关重要。

未来,随着汽车技术的飞速发展,悬置系统将面临更多的创新与发展机遇,我们期待悬置系统能够更好地满足人们对于汽车驾驶体验和乘坐舒适性的需求。

汽车发动机悬置系统的设计指南

汽车发动机悬置系统的设计指南

1 发动机悬置系统的设计指南1.1 悬置系统的设计意义及目标简介现代汽车发动机无一不是采用弹性支承安装的,这在汽车行业称之为“悬置”,在力学及振动工程中则是个隔振问题。

如果不用中间弹性元件而直接将发动机刚性地固紧在汽车车架(底盘)上,则当汽车在不平坦的路面上行驶时将导致机身由于车架的变形、冲击而损坏;而当汽车在平坦光滑的路面上行使时来自发动机的振动将导致车架、车身产生令人厌恶的结构噪声。

此外弹性悬置还能补偿在发动机安装及运动过程中由车架变形导致的相对位置的不精确。

由此可知,悬置系统的设计目标值:1) 能在所有工况下承受动、静载荷,并使发动机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉;2) 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声;3) 能充分地隔离由于地面不平产生的通过悬置而传向发动机的振动,降低振动噪声;4) 保证发动机机体与飞轮壳的连接弯矩不超过发动机厂家的允许值。

1.2 悬置系统的布置方式选择每个隔振器(悬置系统)不论其结构形状如何都可以看作由三个相互垂直的弹簧组成,按照这三个弹簧的刚度轴线和参考坐标轴线间的相对位置关系,悬置系统弹性支承的布置可以有常见的三种不同方式:1) 平置式。

这是常用的、传统的布置方式,其特征是布局简单、安装容易。

在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴各自对应地平行于所选取的参考坐标轴。

2) 斜置式。

这是一种目前汽车发动机中用得最多的布置方式。

在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴相对于参考坐标轴的布置是:除一个轴平行于参考坐标外,其他两个轴分别与参考坐标轴有一夹角。

一般斜置式的弹性支承都是成对地对称布置于垂向纵剖面的两侧,但每对之间的夹角可以不同,坐标位置也可任意。

这种布置方式的最大优点是:它既有较强的横向刚度,又有足够的横摇柔度,因此特别适用于象汽车发动机这样既要求有较大的横向稳定性,又要求有较低的横摇固有频率以隔离由不均匀扭矩引起的横摇振动。

发动机悬置系统设计理论基础

发动机悬置系统设计理论基础

发动机悬置系统常用材料
高强度钢
用于制造承受较大载荷的悬置支架和 连接件,具有较高的强度和刚度。
铝合金
复合材料
如玻璃纤维增强塑料(GFRP)和碳纤 维增强塑料(CFRP),具有轻质、高 强度和耐腐蚀等优点,适用于需要减 轻重量的部件。
质量轻,散热性好,常用于制造需要 轻量化的部件,如悬置支架和连接件 。
引入仿真分析
利用仿真分析工具对悬置系统进行优 化设计,提高设计效率。
强化试验验证
通过试验验证设计的有效性,确保实 际应用中的性能表现。
持续改进与创新
关注行业动态,不断改进和创新发动 机悬置系统设计技术,提高整车性能 。
感谢您的观看
THANKS
材料创新
新型高阻尼材料和复合材料的出现将为发动机悬 置系统的发展提供更多可能性,提高减振效果和 耐久性。
模块化设计
为了便于维护和更换,发动机悬置系统将趋向于 采用模块化设计,降低生产成本和维修成本。
05
发动机悬置系统设计中的 问题与解决方案
发动机悬置系统设计中的常见问题
振动传递
发动机产生的振动通过悬置系 统传递至车架,影响整车舒适
发动机悬置系统设计理论基 础
目 录
• 发动机悬置系统概述 • 发动机悬置系统设计理论 • 发动机悬置系统材料与制造工艺 • 发动机悬置系统设计实例分析 • 发动机悬置系统设计中的问题与解决方案
01
发动机悬置系统概述
发动机悬置系统的定义
发动机悬置系统是汽车动力总成的重 要组成部分,主要负责将发动机固定 在车架上,并隔离发动机的振动和噪 音,以保证车辆的舒适性和稳定性。
它由多个橡胶悬置组成,每个悬置具 有不同的刚度和阻尼特性,以适应不 同的振动频率和幅度。

汽车动力总成悬置系统布置研究

汽车动力总成悬置系统布置研究

汽车动力总成悬置系统布置研究汽车动力总成悬置系统是指车辆的发动机、变速箱、驱动轴等部件的支撑系统,其目的是保证动力总成在车辆行驶过程中的平稳运行和减少振动噪音,提高车辆的舒适性和安全性。

因此,合理的悬置系统布置设计对车辆的性能和品质至关重要。

一、悬置系统的种类根据不同的悬置部件,车辆的悬置系统可以分为以下几种:1. 弹簧悬挂系统弹簧悬挂系统是最常见的悬挂系统之一,它通过弹簧将动力总成与车轮相连接,可以减轻震动和减少冲击。

空气悬挂系统能够根据路况自动调节车身高度和硬度,同时具有良好的稳定性和舒适性。

液压悬挂系统有很好的减震效果,可使车身保持平稳运行,并具有良好的舒适性和控制性。

电磁悬挂系统通过电磁力来减震和悬挂,使车辆能够更好地保持平稳运行,尤其是在高速行驶时。

二、悬挂系统的设计在设计悬挂系统时,需考虑以下因素:选择合适的悬挂系统类型,并考虑其性能和成本因素。

一般而言,车型越高档,悬挂系统也越先进,成本也越高。

2. 负载和车速。

负载和车速是影响悬挂系统工作的重要因素。

正常情况下,应该设计考虑到负载和车速的变化范围,以保证悬挂系统的稳定性。

3. 频率响应特性。

悬挂系统在不同的频率下响应不同,需要考虑对于不同频率的响应以达到减震效果最佳。

4. 空间约束和紧凑性。

悬挂系统的布置需要考虑到车辆内部的空间约束和布局,以最大程度地减小占用空间从而提高车厢内部的可用性和舒适性。

5. 安装和维修。

悬挂系统的安装和维修应该简单易操作,且可以方便的进行检修和维修。

1. 优化弹簧性能和减震器的优化。

通过改变弹簧和减震器的参数来改变悬挂系统的振动特性和稳定性,达到最佳减震效果。

2. 优化悬挂系统的结构设计。

通过优化悬挂系统的结构设计,如改变部件的刚度、强度和形状等,也可达到减震效果的最佳状态。

加装全球定位系统、车载数据记录系统等,达到更好的控制和调节效果,保证悬挂系统的最佳工作状态。

同时,可以提高与动力总成的协同效果,进一步增强车辆的性能。

发动机悬置设计

发动机悬置设计

动力总成悬置系统的设计是很复杂的。

一般来说对于悬置系统是一个6自由度的系统,要求对动力总成在各个方向上解耦。

但是也要控制一定的位移。

悬置是将发动机的震动(扭矩变化,发动机离心惯性力,往复惯性力等)尽量隔离,将路面对发动机的激励和急加速急减速以及急转弯造成的发动机的位移与震动尽量降低。

一般说来,动力总成悬置的正向设计是复杂的,要对动力总成的质心,转动惯量,主惯性轴等参数获得,通过一定的计算对发动机悬置的布置点进行布置,当然要考虑到发动机舱的实际情况。

将悬置在3个方向的弹性轴与动力总成三个方向的主惯性轴重合就能使动力总成在6个方向上解耦(似乎是这样的)。

对于发动机舱而言,要控制动力总成相对发动机舱的距离,有文献说要控制在20mm以上,建议在25mm 以上,在各个方向上的绕轴旋转控制在6度,推荐3~4度,在三个方向的位移控制在正负15mm以内。

对悬置的位置,和个数(3个以上)确定之后才是设计悬置单个件,橡胶悬置的静刚度曲线一般是3刚度曲线,需要在一定的方向上有限位,限位处为静刚度曲线的拐点。

动刚度曲线在低频大幅震动刚度基本是随着频率增大而增大,高频时容易出现动态硬化的现象,即刚度值理论上非常大。

液压悬置在动刚度曲线的走向上比较而言好控制,因为他的工作原理不同,有点像单筒式液压减震器,通过液体(乙二醇)在惯性通道或者节流管道的阻尼力减少振动,将振动的能量转化成内能。

液压悬置的静刚度曲线与橡胶悬置没什么区别,也就是说漏液的液压悬置与好的液压悬置静刚度曲线相同。

动刚度曲线就截然不同,一般说来,在最大阻尼角附近,动刚度曲线突然升高,在一定频率之后,动刚度曲线呈下降趋势,不会出现橡胶悬置随频率增大而增大,出现动态硬化。

悬置设计主要是考虑高频低幅振动和低频大幅振动的工况。

减少发动机高频的噪声和低频的振动,同时使发动机不会出现过大的位移,造成发动机舱内零件干涉以致于破坏零件,使零件失效。

建议在设计时进行ADMAS分析。

汽车发动机悬置设计

汽车发动机悬置设计

汽车发动机悬置设计的目标有哪些?发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。

引起零部件的损坏和乘坐的不舒适等。

所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。

成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。

一般来讲对发动机悬置系统有如下要求。

1,能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。

2,固定并支承汽车动力总成的重量,每个悬置上分配的重量尽可能均匀;3,承受动力总成内部因发动机旋转和平移质量产生的往复惯性力及力矩;4,隔离由于发动机激励而引起的车架或车身的振动,降低振动噪声5,隔离由于路面不平度以及车轮所受路面冲击而引起的车身振动向动力总成的传递。

,降低振动噪声6,保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。

,如何进行发动机悬置设计?发动机悬置系统设计流程可用下图表示:确定动力总成物理参数及所受激振力确定悬置点数目及布置型式计算悬置元件的静、动态载荷计算发动机机体与飞轮壳接合面上的静态弯矩确定安装点位置与方位的变动范围并确定初始值确定悬置元件刚度变化范围并确定初始值分析此悬置系统固有频率、振型、振动解耦水平优化设计弯矩值是否在许可范围内是否设计、校核悬置支架并选定悬置元件设计定型校核悬置元件静、动态载荷及静、动态变形校核各零部件空间位置是否干涉满足要求满足要求不满足要求道路试验验证满足要求不满足要求不满足要求发动机悬置对整车平顺性有哪些影响?悬置是将发动机的震动(扭矩变化,发动机离心惯性力,往复惯性力等)尽量隔离,将路面对发动机的激励和急加速急减速以及急转弯造成的发动机的位移与震动尽量降低。

减少发动机高频的噪声和低频的振动,减少振动向车架的传递,降低车内噪声,提高乘坐舒适性,同时使发动机不会出现过大的位移,造成发动机舱内零件干涉以致于破坏零件,使零件失效。

发动机-悬置参数设计要求

发动机-悬置参数设计要求

发动机-悬置参数设计要求根据人体生理学的研究,人体对振动最敏感的频率范围为4~8Hz,车辆的振动特性要保证人的乘坐舒适性,就要避开4~8Hz时的振动。

在车辆设计中,车身-悬挂系统的设计频率一般在1.9~3Hz,簧下质量的振动频率即轴头跳动频率一般在11~15Hz左右,发动机-悬置系统作为一个振动子系统,它其中的悬置是连接发动机和车身的唯一部件,它不但要支承发动机的重量,而且还起到在发动机和车身之间隔振的作用。

悬置的刚度太大,就起不到有效的隔振作用,太软又会降低其使用寿命。

根据隔振原理,发动机-悬置系统振动的频率要大于车身-悬挂频率的1.4倍,才能起隔振作用。

最理想的是2倍以上。

(最大不大于2.5倍) ,因此发动机-悬置系统振动的最低频率要保证不小于3×2=6Hz,其次,发动机动力总成作为整车动力减振器,其垂向振动频率应为轴头跳动频率的0.8~0.9倍,换成频率就是12~13.5Hz,另外,发动机怠速时的转速约为750~800转∕分,对应激励频率为28Hz(四缸机),它要大于发动机动力总成绕曲轴轴线转动频率的2倍,即28∕2=14Hz。

所以,发动机-悬置系统的设计频率就是6~14Hz。

在这个范围内,频率设计区间越小越好。

根据这个设计原理,如果把发动机-悬置系统的频率固定在6~14Hz的话,就要求车架的最低阶频率(一般即为扭转频率)要保证在大于3Hz和小于6Hz之间。

或者大于15Hz以上。

这要根据车辆设计具体的要求而定。

没有统一的模式;但如果发动机悬置的参数达到合理设计(如刚度、布置角度,安装位置等),能够使发动机动力总成-悬置系统的振动频率在6~14Hz内区间更缩小的话,如8~12Hz,那么对车架的频率要求就会宽松一些。

因此,这是一个系统参数优化与合理匹配的问题。

在汽车研究领域,国内还没有成熟的经验和有用的参考数据,还需作长期、大量的工作来解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二:发动机悬置系统设计简介
4.发动机悬置系统输入条件: 4.1 发动机规格型号, XX L,XX缸,活塞排列方式,最高转速,最大扭矩,怠速转 速,点火顺序,重量等. 4.2 变速箱型号,重量,X档,传动比等. 4.3 动力总成安装倾角以及移动转动的约束量. 4.4 动力总成的重心和转动惯量(在发动机坐标系下). 4.4 动力总成和悬置在前仓允许的安装位置以及悬置的弹性中心在发动机 坐标系下的坐标. 4.5 发动机悬置系统的工作温度范围. 4.6 发动机悬置的耐腐蚀要求. 4.7 动力总成所受到的最大冲击加速度. 4.8 动力总成悬置系统的要求的布置形式(三点或四点,橡胶或液压),以及动 力总成的安装位置(前置或后置,纵置或横置等).
二:发动机悬置系统设计简介
8.发动机悬置系统的六阶固有频率的计算: 目前一般有两种方法得到发动机悬置系统的六阶固有频率,一种是模态 分析,一种是直接测量(专用的测试实验台架和激振器)
9.发动机悬置系统的解耦设计: 解耦设计一般的是指动力总成在受到激励时,因为动力总成我们一般把 它看成一个刚体,它有六个方向的运动,我们在设计发动机悬置系统的时 尽量使各个方向上的运动相互解耦.
二:发动机悬置系统设计简介
10.发动机悬置系统的优化选择和验发动机悬置的NVH 结果,并通过调整悬置弹性中心的位置坐标和悬置的刚度,阻尼来进行调 整系统,使之能够达到最优化的结果.
三:整车NVH性能评估
1.车身. 2.子系统. 3.车门. 4.玻璃. 5.发动机前仓盖. 6.悬架. 7.轮胎. 8.内饰件. 9.方向盘. 10.发动机和边变速箱. 11.传动轴. 12.排气系统. 13.连接件. 14.风扇和空调压缩机,液体. 15.司机 16.载荷(人员和行李)
二:发动机悬置系统设计简介
3.刚体重心和转动惯量的测量:
对于一个规则的刚体,我们能够很容易 得到刚体的重心和转动惯量,但对于一 个非常复杂且不规则的刚体,我们却很 难得到这些参数,对于发动机,通过计算 机的模型虽然我们也可以得到,但由于 制造误差和材料的均匀性等其他因素 的 影响,得到的数据往往有一些差异(根据 我们对CHERY实际检测数据),目前发 动机一般有三种测量方法可以得到重 心 和转动惯量:单线摆,双线摆,三线摆,相 对来说三线摆是一种比较简单但误差 很 小的方法,我们公司现在已经具备这种 检测设备和检测能力,可以为客户检测
发动机悬置系统的功能: ● 隔离所有的振动。 ● 支持发动机的重量。 ● 在加速,制动,转弯时控制 发动机的移动
的要求 发动机悬置系统的振动来源:发动机内 部燃烧和往复运动不平衡惯性, 以及从路面传递的任意振动, 由于曲轴的运动造成的扭转.
在0到25赫兹范围内,发动机动力总成表 现为一个刚体,在高频时,由于发动机动 力总成与其他的部件连接在一起,则表 现 出弹性体.
二:发动机悬置系统设计简介
2.刚体运动: 任意一个刚体有自己的重心和两两正交的惯性轴,所以刚体在空间中有六 个自由度,分别是沿三各轴的移动和三个轴的转动.如果一个外部的激励作 用于刚体的中心,刚体就只有移动没有转动,但如果激励不是作用于刚体的 重心位置,则刚体不仅有移动还有转动.在这种情况下,就有一个中心也就是 冲击”中心”,这个中心的位置是不受力的,因此,如果有一个激励作用于发 动 机的前悬置,这个中心就位于在发动机后悬置的附近,如果我们在这点放置 一个悬置,则由于激励产生的力就不会传递到车身上.我们可以通过下面的 公式来得到这个中心的位置: A*B=J/M 其中: A为前悬置到重心的距离. B为后悬置到重心的距离. J 为发动机相对于某一个惯性轴的转动惯量. M 为发动机的重量.
Thank You ! 谢谢!
二:发动机悬置系统设计简介
5.发动机悬置的发展趋势:
主动悬置 成本和复杂程度
半主动悬置 液压悬置
传统悬置
橡胶悬置
以 前 现 在 将 来
二:发动机悬置系统设计简介
6.发动机悬置的隔振原理和理论:
被传递到基础的力 激励力
激励频率 系统固有频率
隔振水平
二:发动机悬置系统设计简介
7.发动机悬置重在前仓中的布置方案:
四点(三点)
三点
实际上,我们在为客户开发发动机悬置系统时,往往发动机已经制造完成. 前仓中其他附件的形状和位置也已经固定,所以留给发动机悬置点的位 置已没有太多的选择.所以我们希望在为客户开发发动机悬置系统的时 候,在设计新车型的前仓空间和设计发动机时,我们就要于客户一起工作 便于以后发动机容易按要求布置,得到好的NVH性能.
发动机悬置系统设计
Stan/ Dec. 18. 2006
连接世界的解决方案 Your link to global solution
一:发动机悬置系统的设计流程
二:发动机悬置系统设计简介
1.外部需求:
◆ 人体,包括心脏,胃 等身体各器官在垂 直4-8HZ,水平1-2HZ范围内会出项 明 显的共振现象,这也是人体对震动最敏 感的频率范围。 ◆ 政府对车辆通过噪声,驾驶室内噪声
相关文档
最新文档