二维随机变量函数的概率分布.ppt
合集下载
第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

前面我们介绍了二维随机变量的概 念, 二维随机变量的分布函数及其性质。
二维随机变量也分为离散型和连续型, 下面我们分别讨论它们。
三、二维离散型随机变量 及其概率分布
如果二维随机变量(X,Y)的每个分 量都是离散型随机变量,则称(X,Y)是 二维离散型随机变量.
二维离散型随机变量(X,Y)所有可 能取的值也是有限个或可列无穷个.
求: 二维随机变量(X,Y)的概率分布和其边缘分 布.
解: (X,Y)所有可能取的值是
(0,0),(0,1),(1,0,),(1,1).
P{X=0,Y=0}
=P{第一次取到正品且第二次也取到正品},
利用古典概型,得: P{X=0,Y=0}=(76)/(109)=7/15
同理求得:
P{X=0,Y=1}=(73)/(109)=7/30
第三章
多维随机变量及其分布
一般地,我们称n个随机变量的整体
X=(X1, X2, …,Xn)为n维随机变量或随
机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
第三章 第一节
二维随机变量及其分布函数
一、二维随机变量
设随机试验E的样本空间是Ω,X=X() 和Y=Y()是定义在Ω上的随机变量, 由它们 构成的向量(X,Y),称为二维随机变量(向量)。
而把F(x,y)称为X和Y的联合分布函数。
注意
X与Y的边缘分布函数,实质上就是一维随 机变量X或Y的分布函数。称其为边缘分布函数 的原因是相对于(X,Y)的联合分布而言的。
同样地,(X,Y)的联合分布函数F(x, y)是相 对于(X,Y)分量X与Y的分布而言的。
求法
FX(x)=P{X≤x}=P{X≤x,Y<∞}=F(x,∞) FY(y)=P{Y≤y}=P{X<∞,Y≤y}=F(∞,y)
概率论二维随机变量及其分布 ppt课件

二维随机变量的分布函数
F ( x , y ) P { X x , Y y } 就是随机点 (X,Y)落入区域
{t,s ( )|t x ,s y }
的概率(如图1).
由概率的加法法则,随机点(X,Y)落入矩形域
{ x 1 x x 2 ,y 1 y y 2 }
的概率
P { x 1 x x 2 ,y 1 y y 2 } F ( x 2 ,y 2 ) F ( x 2 ,y 1 )
F (x ,y)1 2 2arc 2 x t 2a anrc 3 y .ta
(2)由 (1)式得
P { 2 X , 0 Y 3 } F ( , 3 ) F ( , 0 ) F ( 2 , 3 ) F ( 2 , 0 ) 1/1.6
完 21
三、二维离散型随机变量及其概率分布
Pi1
i
Pi 2
Pij
i
27
联合概率分布表
对离散型随机变量而言,联合概率分布不仅比联合
分布函数更加直观,而且能够更加方便地确定(X,Y)
取值于任何区域 D上的概率. 设二维离散型随机变
量的概率分布为
P { X x i , Y y j } p i ( i j , j 1 , 2 , )
二维离散型随机变量及其概率分布
分布:
p i ( i 1 , 2 , )p , j( j 1 , 2 ).
p i P {X x i} p i,ji 1 ,2 , j
p j P { Y y j}p i,jj 1 ,2 ,25 i
二维离散型随机变量及其概率分布
分布: p i ( i 1 , 2 , )p , j( j 1 , 2 ).
F X ( x ) P { X x } P { X x , Y } F(x, )
《概率论与数理统计》课件3-1二维随机变量及其联合分布

P{a X b} = F(b) − F(a) + P{X = a}
二维随机变量联合分布函数
F(x,y) = P{X x,Y y}
(1) 有界性 0 F(x,y) 1,且有F(− ,y) = lim F(x,y) = 0
x→−
F(x,− ) = lim F(x,y) = 0 F(− ,− ) = lim F(x,y) = 0 ,
1
F(
) 1 F( y) 0 F(x ) 0
F ( , ) A(B )(C ) 1
2
2
F ( , y) A(B )(C arctan y) 0 2
F ( x,
) A( B arctan x) ( C
)0
2
A
F (x, y) y).
1
2
,
B
1
2 (2
C.
2
arctan x)( 2
arctan
(2) P 0 X , 0 Y 1 F( ,1) F(0,1) F( , 0) F(0, 0) .
则〈
l
0,
它
P 恳1 < X 共 2,3 < Y 共 5}
x > 0, y > 0 其
= F(2,5) − F(1,5) − F(1,3) + F(2,3)
A) V
B) 根
A
B
提交
1 F(x, y) A(B arctan x)(C arctan y).
1
A, B,C 2 P 0 X , 0 Y 1
A.
B.
C.
D.
A
C
B
D
提交
1. F(x, y) P{X x,Y y}.
2.
二维随机变量联合分布函数
F(x,y) = P{X x,Y y}
(1) 有界性 0 F(x,y) 1,且有F(− ,y) = lim F(x,y) = 0
x→−
F(x,− ) = lim F(x,y) = 0 F(− ,− ) = lim F(x,y) = 0 ,
1
F(
) 1 F( y) 0 F(x ) 0
F ( , ) A(B )(C ) 1
2
2
F ( , y) A(B )(C arctan y) 0 2
F ( x,
) A( B arctan x) ( C
)0
2
A
F (x, y) y).
1
2
,
B
1
2 (2
C.
2
arctan x)( 2
arctan
(2) P 0 X , 0 Y 1 F( ,1) F(0,1) F( , 0) F(0, 0) .
则〈
l
0,
它
P 恳1 < X 共 2,3 < Y 共 5}
x > 0, y > 0 其
= F(2,5) − F(1,5) − F(1,3) + F(2,3)
A) V
B) 根
A
B
提交
1 F(x, y) A(B arctan x)(C arctan y).
1
A, B,C 2 P 0 X , 0 Y 1
A.
B.
C.
D.
A
C
B
D
提交
1. F(x, y) P{X x,Y y}.
2.
二维随机变量的函数的分布

即 pij pi p j .
(2) 设连续型随机变量( X ,Y )的概率密度为f ( x, y) , 边缘概率密度分别为f X ( x) , fY ( y) ,则有
X 和Y 相互独立 f ( x, y) f X ( x) fY ( y).
在f ( x, y) , f X ( x) , fY ( y)的一切连续点(x, y)处
Z=X+Y的概率密度。
解
fX (x)
1
x2
e 2,
2
fY ( y)
1
y2
e 2 ,( x, y )
2
fZ (z) fX ( x) fY (z x)dx
t 2(x z ) 2
1
x2
e2
2
1 e dx
(
z x 2
0.1 0.3 0.3 0.1 0.2
X与Y独立,X,Y取0,1,2,…,则Z=X+Y Z=max(X,Y)
的分布律
设X与Y独立,分别服从参数为 1 ,2 的泊松分布, 证明Z=X+Y服从参数为 1 2 的泊松分布。
【注】分布具有可加性
二项分布的可加性(P89)
二、 连续型随机变量的函数的分布
例2 设随机变量X和Y相互独立,且X和Y都是(0,a) 上的均匀分布,求Z=X+Y的概率密度。
例2 在一简单电路中,两电阻R1和R2串联联接,设
R1, R2相f (互x)独 立1,050它x 们, 的0 概x率密10度, 均为 z
0,
其 它.
求总电阻R=R1+R2的概率密度.
z=x+10 z=x
0,
, x 0, 其它.
(2) 设连续型随机变量( X ,Y )的概率密度为f ( x, y) , 边缘概率密度分别为f X ( x) , fY ( y) ,则有
X 和Y 相互独立 f ( x, y) f X ( x) fY ( y).
在f ( x, y) , f X ( x) , fY ( y)的一切连续点(x, y)处
Z=X+Y的概率密度。
解
fX (x)
1
x2
e 2,
2
fY ( y)
1
y2
e 2 ,( x, y )
2
fZ (z) fX ( x) fY (z x)dx
t 2(x z ) 2
1
x2
e2
2
1 e dx
(
z x 2
0.1 0.3 0.3 0.1 0.2
X与Y独立,X,Y取0,1,2,…,则Z=X+Y Z=max(X,Y)
的分布律
设X与Y独立,分别服从参数为 1 ,2 的泊松分布, 证明Z=X+Y服从参数为 1 2 的泊松分布。
【注】分布具有可加性
二项分布的可加性(P89)
二、 连续型随机变量的函数的分布
例2 设随机变量X和Y相互独立,且X和Y都是(0,a) 上的均匀分布,求Z=X+Y的概率密度。
例2 在一简单电路中,两电阻R1和R2串联联接,设
R1, R2相f (互x)独 立1,050它x 们, 的0 概x率密10度, 均为 z
0,
其 它.
求总电阻R=R1+R2的概率密度.
z=x+10 z=x
0,
, x 0, 其它.
二维正态分布.ppt

第三节 二维正态分布
数学与信息技术系
定义 设二维连续随机变量(X,Y)的联合概率密度为
f (x, y)
1
2 x y 1 r2
2
1 (1
r
2
)
(
x
x
2 x
)2
2
r
(
xx
)( y x y
y
)
(
y
y
2 y
)2
e 其中 x , y , x 0, y 0, r r 1 是分布参数
这种分布叫做二维正态分布。
x
)
t,得到
I(x) y1 r2来自t1r2
r(x x) x
t2 e 2 dt
y 1 r2
te
t2 2
dt
r
y
(x
x
)
1 r2
t 2
e 2 dt
x
r y (x x )
1 r2
t 2
e 2 dt
x
r y (x x ) 2 1 r2 x
t2
e 2 dt 2 ,
当z≤0时,显然, FZ(z)=0;当z>0时,
1
x2 y2
FZ (z)
2
e
x2 y2 z
2 dxdy
1
2
d
z
2
e2
d
1
z
e2
2 0
0
所以 Z的分布函数为
FZ
(z)
1
e
z 2
,
z
0
0, z 0
由此Z的概率密度为
fZ
(z)
1 2
e
z 2
,
z
0
数学与信息技术系
定义 设二维连续随机变量(X,Y)的联合概率密度为
f (x, y)
1
2 x y 1 r2
2
1 (1
r
2
)
(
x
x
2 x
)2
2
r
(
xx
)( y x y
y
)
(
y
y
2 y
)2
e 其中 x , y , x 0, y 0, r r 1 是分布参数
这种分布叫做二维正态分布。
x
)
t,得到
I(x) y1 r2来自t1r2
r(x x) x
t2 e 2 dt
y 1 r2
te
t2 2
dt
r
y
(x
x
)
1 r2
t 2
e 2 dt
x
r y (x x )
1 r2
t 2
e 2 dt
x
r y (x x ) 2 1 r2 x
t2
e 2 dt 2 ,
当z≤0时,显然, FZ(z)=0;当z>0时,
1
x2 y2
FZ (z)
2
e
x2 y2 z
2 dxdy
1
2
d
z
2
e2
d
1
z
e2
2 0
0
所以 Z的分布函数为
FZ
(z)
1
e
z 2
,
z
0
0, z 0
由此Z的概率密度为
fZ
(z)
1 2
e
z 2
,
z
0
二维连续随机变量及其概率分布

P{x1 X x2, y1 Y y2} P{x1 X x2}P{y1 Y y2}
定理2 二维随机变量(X,Y)的两个分量独立的充 分必要条件是: 对任意实数x, y有
P{X x,Y y} P{X x}P{Y y}
定理3 若(X , Y ) 是离散型随机变量,则X与Y相 互独立的充分必要条件是
lim F ( x, y) 0
x
lim F ( x, y) 0
y
lim F ( x, y) 1
x, y
性质3 对于x 和y,F(x, y)都是右连续的,即对任意 的实数x0和y0,均有
Lim xx0 F(x, y)=F(x0 , y), Lim yy0 F( x, y )=F(x, y0 )
(3) f (x, y)与 fX (x), fY (y)之间的关系
f X (x)
f (x, y)dy
fY ( y) f (x, y)dx.
例3 设随机变量X 和Y 具有联合分布
f
(
x,
y)
6, 0,
求X 和Y 边缘密度
x2 y x 其他
解:
f X (x)
f (x, y)dy
x
6dy x2
0
x 0, y 0 其它
求 (X, Y )的边缘分布函数。
解: X的边缘分布函数为
FX
(x)
F
( x,)
lim
y
F ( x,
y)
1 ex x 0
0 x0
1 ex ey exyxy x 0, y 0
(X ,Y) ~ F(x, y)
0
其它
Y的边缘分布函数为
FY
(
y)
F
(,
定理2 二维随机变量(X,Y)的两个分量独立的充 分必要条件是: 对任意实数x, y有
P{X x,Y y} P{X x}P{Y y}
定理3 若(X , Y ) 是离散型随机变量,则X与Y相 互独立的充分必要条件是
lim F ( x, y) 0
x
lim F ( x, y) 0
y
lim F ( x, y) 1
x, y
性质3 对于x 和y,F(x, y)都是右连续的,即对任意 的实数x0和y0,均有
Lim xx0 F(x, y)=F(x0 , y), Lim yy0 F( x, y )=F(x, y0 )
(3) f (x, y)与 fX (x), fY (y)之间的关系
f X (x)
f (x, y)dy
fY ( y) f (x, y)dx.
例3 设随机变量X 和Y 具有联合分布
f
(
x,
y)
6, 0,
求X 和Y 边缘密度
x2 y x 其他
解:
f X (x)
f (x, y)dy
x
6dy x2
0
x 0, y 0 其它
求 (X, Y )的边缘分布函数。
解: X的边缘分布函数为
FX
(x)
F
( x,)
lim
y
F ( x,
y)
1 ex x 0
0 x0
1 ex ey exyxy x 0, y 0
(X ,Y) ~ F(x, y)
0
其它
Y的边缘分布函数为
FY
(
y)
F
(,
《概率论与数理统计》第3章 二维随机变量及其分布

23 April 2012
第三章 多维随机变量及其分布
注意点
第32页
(1) X 与Y是独立的其本质是: 任对实数a, b, c, d,有
Pa X b, c Y d Pa X b Pc Y d
(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.
23 April 2012
0
=A/6
所以, A=6
23 April 2012
第三章 多维随机变量及其分布
第22页
例3.3.2
若
(X,
Y)
~
p( x,
y)
6e(2x3y) , 0,
x 0, y 0 其它
试求 P{ X< 2, Y< 1}.
23 April 2012
第三章 多维随机变量及其分布
第23页
y
解: P{ X<2, Y<1} p(x, y)dxdy
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
23 April 2012
第三章 多维随机变量及其分布
x1 x2 … xi …
23 April 2012
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
第三章 多维随机变量及其分布
第9页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)
3.1 二维随机变量及其分布

可得
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即Y的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即X的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
由 概率密度函数性质 4,得
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
三、二维连续型随机变量及其概率分布
两个常见二维连续型概率分布
三、二维连续型随机变量及其概率分布
关于二维正态分布的说明 (1)服从二维正态分布的密度函数的典型图形见下图; (2)二维正态分布的两个边缘分布是一维正态分布。
解:(1)由二维随机变量分布函数的性质, 可得
一、二维随机变量及其分布函数
例:设二维随机变量(X, Y)的分布函数为
解:由(1)式可得
第一节 二维随机变量及其分布
二维随机变量及其分布函数
二维离散型随机变量及其概率分布 二维连续型随机变量及其概率密度
二、二维离散型随机变量及其概率分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 x 1, 其 它.
fY
y
e y 0,
,
y 0, y 0.
设随机变量Z=X+Y的密度函数fZ(z),则有
fZ z f X x fY z xdx 0 x 1, z x 0
随机变量函数的分布
f Z z f X x fY z xdx, z
不可能事件的0概率x等于10,. z x 0 1
随机变量函数的分布
在实际问题中,常常会遇到需要求随机变量函数的
分布问题。例如:在下列系统中,每个元件的寿命
分别为随机变量 X,Y ,它们相互独立同分布。我们 想知道系统寿命 Z 的分布。
1)
Z min(X ,Y )
2)
Z max(X ,Y )
3)
Z X Y
这就是求随机变量函数的分布问题。
离散型随机变量、
x
FZ z PZ z PX Y z
O
f x, ydxdy
x yzz ຫໍສະໝຸດ zxdddxxu fffx,xx,,uuyxdxdyudx
作变换:y u x,
随机变量函数的分布
z
F (z) du f x, u xdx
利用分布函数与密度函数的关系,对FZ(z)求导, 得Z=X+Y的密度函数:
1 4
0
82
1 8
5 8
由此得 Z=X+Y的分布律
Z123 P 1/4 1/8 5/8
随机变量函数的分布
2.连续型随机变量和的分布
设(X,Y)是二维连续型随机变量,其联合概率密度
函数为f (x , y), 令:Z=X+Y.试求随机变量Z的密度函
数fZ(z).
y
1.计算随机变量Z=X+Y的分布函数FZ(z).
我们称上式为函数fX(x)与 fY(y) 的卷积.记为: fX(x)* fY(y).
fZ z fX x* fY y
随机变量函数的分布
例2 设随机变量X和Y相互独立,X服从区间(0,1)上 的均匀分布,Y服从λ=1的指数分布.令Z=X+Y,试求 随机变量Z的密度函数.
解 由题意知:
f
X
x
1, 0,
§4.5 多维随机变量函数的分布
一般情形求随机变量函数分布 的方法
和的分布 最值分布
随机变量函数的分布
一、二维随机变量函数的概念
定义:设Z=g(X,Y)是定义在随机变量(X,Y)一切可能取值(x,y)
的集合上的函数,如果对于(X,Y)每一对取值(x,y),另一个 随机变量Z相应地取值为z=f (x , y),于是确定一个随机变量 Z,称Z为(X,Y)的函数。记为:Z=g(X,Y).
说明:二维随机变量(X,Y)的函数Z=g(X,Y)是一维随机变量,
若设(X,Y)的联合概率密度函数为z=f (x, y),则二维随机变量 (X,Y)的函数Z=g(X,Y)是一维连续型随机变量.
随机变量函数的分布
解题步骤: 已知二维随机变量(X,Y)的联合密度为f (x, y),
g(x , y)是二元连续函数,欲求随机变量 Z=g (X,Y)的 概率密度。
e 2 e 2 dx
2
1 e 1 e du 1
z2
e 1 e dx 4
2
z2 2
2
x
z
2
2
u2 2
u
x z du dx
22 2 2z2 2
2
22
1
e 2
2
2
2 2
Z ~ N 0, 2.
随机变量函数的分布
结论1: 如果随机变量与Y相互独立,且X~N(μ1, σ12), Y~N(μ2, σ22),令Z=X+Y,则Z ~N(μ1 +μ2,σ12 +σ22).
令: Z=X+Y, 试求随
1 1/4 0
机变量Z的分布律.
2 1/8 5/8
解 由随机变量X,Y的取值,知Z的可能取值是1,2,3.
PZ 1 PX 1, Y 0 1 ; 4
随机变量函数的分布
PZ 2 PX 1, Y 1 PX 2, Y 0
0 1 1; 88
Y X
0
1
PZ 3 PX 2, Y 1 5 ; 1
设(X,Y)是二维独立随机变量,其联合分布函数 为F(x,y),边缘分布函数分别为FX(x)和FY(y).
1.M maxX ,Y的分布.
FM z PM z PX z,Y z F z, z
FX zFY z
X与Y相互独立
2.N minX ,Y的分布.
FN z PN z 1 PN z 1 PX z,Y z
1.求 Z gX, Y 的分布函数FZ z,
FZ z PZ z f ( x, y)dxdy gx, yz
2, 求 Z gX, Y 的密度函数 fZ z FZ z.
随机变量函数的分布
二、和Z=X+Y的分布
1.离散型随机变量和的分布
例 1 设二维离散型随机变量(X,Y)的联合分布律为
Y
X
01
1 1 FX z1 FY y
X与Y相互独立
随机变量函数的分布
f Z z FZ z f x, z xdx (1)
同理可得
f Z z f z y, ydy (2)
随机变量函数的分布
如果随机变量X,Y相互独立,则有
f x, y f X x fY y.
于是,(1)(2)式可写为:
fZ z fX x fY z xdx ; fZ z fX z y fY ydy
结论2:如果随机变量X1, X2,…, Xn相互独立,且
Xi~N(μi,σi2) (i=1,2,…,n), 又a1, a2,…, an为n个
实常数,令
n
Z ai X i,则
i 1
Z
~
N
n
a
i
,
i
i 1
i
n 1
a
i2
2 i
随机变量函数的分布
三、极值分布 M maxX ,Y, N minX ,Y
0
随机变量函数的分布
例3: 设随机变量X和Y相互独立,X~N(0,1),Y~N(0,1)
令Z=X+Y,试求随机变量Z的密度函数.
解
由题意知:
fX x fY x
1
x2
e2
2
x ,
设随机变量Z=X+Y的密度函数fZ(z),则有
fZ
z fX
x
fY
z x dx
1
x2 z x 2
zx0
(于1)是若得z≤随0机,则变f量Z(zX)=+0Yz的密度函数为
(2) 若0<z<1, f Z z 1 e (zx)dx
0
1
x
00 z
z0
(3)
fZ z
若z≥1,
fZe
1 eez z e 10
zz1 ee(zz
x
dx01ze1
x)dxz 1
z
01
e z e x dx e z1 e z