初中人教版七年级不等式知识点总结
瑞昌市一中七年级数学下册第九章不等式与不等式组知识点总结素材新版新人教版

不等式与不等式组一.知识框架二、知识概念1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。
7.定理与性质不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。
浅谈因式分解多项式的因式分解是代数式中一部分重要内容,它与前一章整式和后一章分式联系极为密切.因式分解方法的理论依据是多项式乘法的逆变形,它是后一章分式的通分、约分的基础,进而直接影响分式的四则运算.本章的重点是因式分解的四种基本方法──提公因式法、运用公式法、分组分解法、十字相乘法,但这些方法并不是整式乘法的简单逆反,而是具有特定的规律和模式.因式分解的方法多,变化技巧性高,就本章学习的总体目标来看,灵活运用各种方法分解因式,是学习这部分内容的基本要求,也是难点.因此,在重视基本方法教学的同时,还应使学生掌握选择方法的技巧和思维及其运算过程中遵循的原则,以促进学生对因式分解知识的系统掌握和准确综合地运用各种方法解题的能力提高.1.关于方法选择的技巧因式分解的方法选择技巧,是指根据被分解多项式的形式特征,考虑选择特定的因式分解方法,并形成规律性的认识,掌握它,可以避免学生出现思维上的混乱和解题过程中走弯路.具体详见下表:2.关于思维及其运算的一些原则(1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式.如果忽视了这一点,就很容易造成解题的困难和分解结果不正确.如:把3x3+24分解因式,如果不提取公因式“3”,简单的题目反而觉得无从下手.又如,把4x2y2-4xy2+y2分解因式,若不提出公因式y2,分解结果(2xy-y)2是不正确的.(2)分解彻底的原则.即分解因式必须进行到每一个多项式因式都再不能分解为止.从教学的实践看,学生最容易“得意忘形”,半途而废,教学中要注意这方面的指导和强化训练.如x4+x2-20=(x2+5)(x2-4),(x2+2x)2-11(x2+2x)+24=(x2+2x-3)(x2+2x-8),这两式都没有分解彻底,结果是不正确的.(3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则.如-1-a3=-(1+a3)=-(1+a)(1-a+a2).同时,在运用分组分解法进行因式分解时,若组内首项系数为负,也应遵循此原则.如:5ax+7ay-5bx-7by=(5ax+7ay)-(5bx+7by)=…….(4)相同因式以幂的形式表达的原则.即分解结果中的相同因式,要表达成该因式幂的形式.如x3-x2y-xy2+y3=(x3-x2y)-(xy2-y3)=x2(x-y)-y2(x-y)=(x-y)(x2-y2)=(x-y)(x+y)(x-y)=(x-y)2(x+y)(5)因式内部化简的原则.即当分解后因式内部含有整式加减运算时,应去括号并合并同类项.如:9(a+b)2-4(a-b)2=[3(a+b)]2-[2(a-b)]2=[3(a+b)+2(a-b)][3(a+b)-2(a-b)]=(3a+3b+2a-2b)·(3a+3b-2a+2b)=(5a+b)(a+5b).因式分解的结果关于因式分解的结果,在表述上主要有三条:1.分解因式必须进行到每一个多项式因式都不能再分解为止。
人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)

探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.
人教版七年级数学下册_9.1.1不等式及其解集

A.5
B.4
C.3
D.2
感悟新知
知识点 3 不等式的解集的表示方法
在数轴上表示不等式的解集:
特别提醒 在数轴上表示不等式的解集时,
大于向右画, 小于向左画;界点处 用空心圆圈圈住该点.
知3-讲
感悟新知
知3-讲
不等式的解集表示的是未知数的取值范围,所以不等
式的解集可以在数轴上直观地表示出来. 一般地,利用数
C. 3
D. 2
感悟新知
例2 用不等式表示: (1)a 的一半与3 的和大于5; (2)x 的3 倍与1 的差小于2; (3)a 的 1 与1 的差是正数;
2
(4)m 与2 的差是负数.
知1-练
解题秘方:紧扣不等关系中的关键词语列出不等式.
感悟新知
解:(1) 1 a+3>5.
2
(2)3x-1<2.
第9章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
学习目标
1 课时讲解 2 课时流程
不等式 不等式的解与解集 不等式的解集的表示方法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 不等式
知1-讲
1. 定义:用符号“<”或“>”表示大小关系的式子叫做不等
式. 用符号“≠”表示不等关系的式子也是不等式.
轴表示不等式的解集通常有以下四种情况(设a>0):
不等式的解集 x>a
x>-4a
x<a
x<-a
数轴表示
感悟新知
知3-练
例4 在数轴上表示下列不等式的解集: (1)x>2 (2)x<-2 解题秘方:紧扣不等式解集在数轴上的表示方法, 看清不等号和端点值是解决问题的关键.
人教版七年级数学下第九章 一元一次不等式归类总结

流 第九章 一元一次不等式【基础知识梳理】一、 一元一次不等式1.不等式的基本性质:(1)不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c.(2)不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,用式子表示:如果a>b ,c>0,那么ac>bc 或a c >b c. (3)不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向① ,用式子表示:a>b ,c<0,那么,ac ② bc 或a c ③b c. 2.解一元一次不等式的一般步骤:去分母,去括号,移项,合并 ④ ,把系数化为1.3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:注意:表示4的点上画空心圆圈,表示不包括这一点.温馨提示:不等式的性质是解不等式的重要依据.在解不等式时,值得注意的是在不等式的两边除以一个负数时,不等号的方向一定要改变.二、一元一次不等式组一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集;求不等式组解集的过程,叫做解不等式组.⑴ 温馨提示:求几个一元一次不等式组的解集的公共部分,通常是利用数轴来确定.公共部分是指数轴上被两条不等式解集的区域都覆盖住的部分.⑵ 求解不等式组的关键是求一元一次不等式的解集.由于一元一次不等式都可转化为x >a 或x <a 的最简形式,因此只要分为两种情形讨论其解集即可(不妨设a>b):① 当不等号的方向一致时(称同向不等式),即:流对这类不等式组可按“同大取大;同小取小”的法则,即取公共部分为它的解(如图1).图1 图2所以在图1中,不等式组的解集为x>a, 在图2中,不等式组的解集为⑤.②当不等号的方向相反时(称异向不等式),即:则若未知数的取值比大数小,比小数大时,不等式组的解集在两数之间,取公共部分(如图3);图3所以在图3中,不等式组的解集为⑥.若未知数的取值比大数还大,比小数还小,不等式组的解集是空集,即没有公共部分(如图4).图4所以在图3中,不等式组的解集为空集,即无解.上述不等式组的解集用一句顺口溜表示为” 同大取大, 同小取小,小大大小中间找, 大大小小解不了(答:无解).三、不等式(组)的应用1.列不等式解应用题的基本步骤:①审题;②设未知数;③列不等式;④解不等式;⑤检验并写出答案.2.列不等式组解决实际问题与列一次方程组解决实际问题的步骤大致相同,不同的是前者寻找不等量关系,后者建立的是等量关系,并且解不等式组所得的结果通常为一解集,需从解集中找出符合题意的答案.流【考点例析】一、不等式的基本性质例1、若a<b<0,则下列式子:①a+1<b+1; ②a b >1;③a+b<ab ;④1a <1b 中,正确的有( )A .1个B .2个C .3个D .4个分析与解:本题就是不等式性质的应用.对于①是在不等式两边都加上1,根据不等式性质1,该不等式成立;对于②是在不等式两边同时除以b,因为b 是负数, 根据不等式的基本性质,同乘同除一个负数时,不等号的方向要改变,所以②也正确;对于③,因为a<b<0,所以a+b<0,ab>0,所以③正确;对于④是在不等式的两边同乘以1ab >0,可得1a >1b ,故④不正确,故选C. 点拨:不等式的基本性质是不等式的核心,特别要注意不等式的性质3的利用,不等号的方向要改变.二、不等式解的表示方法例2. 解集在数轴上表示为如图5所示的不等式组是( )A .32x x >-⎧⎨⎩≥B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤ 分析与解:不等式(组)的解集在数轴上表示的形状是一条射线,小于向左画,大于向右画,无等号的画空心圆圈,有等号的画实心圆点,因此判断不等式的解集为.32x x >-⎧⎨⎩≤,故选D.点拨:利用数轴表示不等式(组)的解,关键要熟知不等号的表示方法.尤其是空心和实心的区别.三、不等式(组)解法步骤例3. 解不等式组,并把它的解集表示在数轴上:23-图5流 3(1)7251.3x x x x --⎧⎪⎨--<⎪⎩≤, ① ②分析与解:解不等式①,得2x -≥;解不等式②,得12x <-.在同一条数轴上表示不等式①②的解集,如图: 或者根据“同大取大;同小取小;小大大小中间找,大大小小解不了”的原则,可以得到:原不等式组的解集是122x -<-≤. 点拨:会解不等式(组)是一个基本要求,关键是利用好不等式的基本性质,同时要注意解的范围的确定方法.四、不等式(或组)的整数解问题例4. 解不等式组 ⎪⎩⎪⎨⎧->--≤-4315221x x x x 并求其整数解的和.分析:欲求整数解的和,就要求出它的整数解,而要求出整数解,就要先求出不等式组的解集,然后根据解集求出符合条件的整数解.解:解①,得23->x ;解②,得x ≤4,故不等式组的解是x <-23≤,4故它的 整数解是-1,0,1,2,3,4,从而整数解的和是-1+0+1+2+3+4=9.点拨:解这类问题的一般步骤为:①求出一元一次不等式(组)的解集;②找出适合解集范围内的特殊解,如整数解、自然数解等.就本题而言,求出整数解后不要忘了求整数解的和.五、不等式式(或组)中待定字母范围的确定例5. (1)若不等式组2123x a x b -<⎧⎨->⎩的解集为—1<x<1,则(a+1)(b —1)的值是__________;2-1-01流 (2)若不等式3x-a ≤0的正整数解为1、2、3,则a 的取值范围是__________.分析:(1)先求出不等式组的解集,再与已知解集对照比较,确定a 、b 的值;(2)先求出不等式的解集,再利用数轴确定a 的取值范围. 解:(1)解原不等式组中的各个不等式得:1232a x x b+⎧<⎪⎨⎪>+⎩依题意知,解集为3+2b<x<a+12,又∵不等式组的解集为-1<x<1.∴ 112321a b +⎧=⎪⎨⎪+=-⎩(1)(2)由(1)得:a+1=2,由(2)得:b=—2,则b —1=—3,∴(a+1)(b —1)=2×(-3)=-6;(2)不等式的解集为x ≤a 3,如右图所示,解集为x ≤3到x<4范围内时,满足原不等式的正整数解恰好为1,2,3.故有:3≤a 3<4,解得9≤a<12.所以a 的取值范围是9≤a<12.点拨:确定不等式组中的字母的取值范围,主要有三种方法:(1)运用不等式的解集确定 ;(2)从反面求解确定;(3)借助数轴来确定。
人教版七年级数学下第9章不等式与不等式组9

名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
知识点 1:一元一次不等式的简单应用
1.小明准备用 22 元钱买笔和笔记本,已知每支笔 3 元,每本笔记本 2
元,他买了 3 本笔记本后,用剩余的钱来买笔,那么他最多可以买( C )
A.3 支笔
B.4 支笔
C.5 支笔
D.6 支笔
名师点拨
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
10.(益阳中考)某职业高中机电班共有学生 42 人,其中男生人数比女生 人数的 2 倍少 3 人. (1)该班男生和女生各有多少人? (2)某工厂决定到该班招录 30 名学生,经测试,该班男、女生每天能加 工的零件数分别为 50 个和 45 个,为保证他们每天加工的零件总数不少 于 1 460 个,那么至少要招录多少名男学生?
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
解:设 A 酒店本月对这种水果的需求量为 x kg, 由题意得 10x-6(2 600-x)≥22 000,解得 x≥2 350. 答:当 A 酒店本月对这种水果的需求量至少为 2 350 kg 时,该水果店销 售这批水果所获的利润不少于 22 000 元.
(2)所列的不等式解完后,应根据题意,把实际问题的解取出来.
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
2.用一元一次不等式解决实际问题的关键是:找出题中各量之间的 不等关系,列出正确的不等式.
名师点拨
预习反馈
人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
人教版七年级数学下册《不等式的性质》不等式与不等式组PPT优秀课件

第九章 不等式与不等式组
不等式的性质
学习目标
1.(课标)探索不等式的基本性质. 2.掌握不等式的三个性质并且能正确应用. 3.理解解不等式的概念. 4.(课标)能解数字系数的一元一次不等式.
知识要点
知识点一:不等式的性质 (1)不等式的性质1 文字语言:不等式两边加(或减)同一个数(或式子),不等号的方 向 不变 . 符号语言:如果a>b,那么a±c > b±c.
4.(人教7下P119)用不等式表示下列语句并写出解集,并在数 轴上表示解集: (1)x的3倍大于或等于1; (2)x与3的和不小于3; (3)y与1的差不大于0;
(4)y 的1小于或等于-2.
4
(1)3x≥1,即 x≥1
3
(3)y-1≤0,即 y≤1
数轴略.
(2)x+3≥3,即 x≥0 (4)1y≤-2,即 y≤-8
★.(新题速递)(人教7下P121改编)根据等式和不等式的基本 性质,我们可以得到比较两数大小的方法: 若a-b>0,则a>b;若a-b=0,则a=b; 若a-b<0,则a<b.反之也成立. 这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题: 比较4+3a2-2b+b2与3a2-2b+1的大小. 解:∵4+3a2-2b+b2-(3a2-2b+1)=b2+3>0, ∴4+3a2-2b+b2>3a2-2b+1.
数轴略.
(2)6x<5x-1;
x<-1
(4)1-1x≥x-2.
3
x≤9
4
8.【例4】(创新题)四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,则他们的体重大小关系是( D )
A.P>R>S>Q C.S>P>Q>R
B.Q>S>P>R D.S>P>R>Q
七年级数学下册第九章不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图 二、知识要点 (一、)不等式的概念 1、不等式:一般地,用不等符号(“<”“>"“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围).4、解不等式:求不等式的解集的过程,叫做解不等式.5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 .用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式.(注:①传递性:若a >b ,b >c ,则a >c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式(组 )
一、不等式的概念
1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的
解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法
二、不等式基本性质
1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,
那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
三、一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,
这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
四、一元一次不等式组
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法
(1)分别求出不等式组中各个不等式的解集
(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
7、不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
8、常见题型
一、选择题
在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( )
A.-1<m<3 B.m>3 C.m<-1D.m>-1
已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A.B. C. D.
四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是( D )
A、 B、 C、 D、
把不等式组的解集表示在数轴上正确的是()
不等式的解集是()
A.B.C.D.
若不等式组有实数解,则实数的取值范围是()
A.B.C.D.
若,则的大小关系为()
A.B.C. D.不能确定
不等式—x—5≤0的解集在数轴上表示正确的是()
不等式<的正整数解有( )
(A)1个(B)2个(C)3个(D)4个
把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.
不等式组,的解集是()
A. B. C. D.无解
不等式组的解集在数轴上可表示为()
A B C D
实数在数轴上对应的点如图所示,则,,的大小关系正确的是()
A.B.C. D.
如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()
A.a>c>b B.b>a>c C.a>b>c D.c>a>b
不等式组的解集在数轴上表示正确的是()
把不等式组的解集表示在数轴上,正确的为图3中的()
A. B. C. D.
用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为()
不等式组的解集在数轴上可表示为()
在数轴上表示不等式组的解集,正确的是()
二、填空题
已知3x+4≤6+2(x-2),则的最小值等于________.
如图,已知函数和的图象交点为,则不等式的解集为.
答案:
不等式组的解集为.答案:
不等式组的整数解的个数为.答案:4
6.已知关于的不等式组的整数解共有3个,则的取值范围是.
答案:
9.不等式组的解集是.答案:
10.直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为.
答案:<-1
13.已知不等式组的解集为-1<x<2,则(m+n)2008=__________.答案:1
三、简答题
解不等式组
解:解不等式(1),得.解不等式(2),得.
原不等式组的解是.
解不等式组并写出该不等式组的最大整数解.
解:解不等式x+1>0,得x>-1 解不等式x≤,得x≤2 ∴不等式得解集为-1<x≤2 ∴该不等式组的最大整数解是2
若不等式组的整数解是关于x的方程的根,求a的值。
解:解不等式得,则整数解x=-2代入方程得a=4。
解方程。
由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值。
在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图(17)可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3
参考阅读材料,解答下列问题:
(1)方程的解为
(2)解不等式≥9;
(3)若≤a对任意的x都成立,求a的取值范围
解:(1)1或.(2)和的距离为7,
因此,满足不等式的解对应的点3与的两侧.
当在3的右边时,如图(2),易知.
当在的左边时,如图(2),
易知.原不等式的解为或
(3)原问题转化为:大于或等于最大值.
当时,,
当,随的增大而减小,
当时,,即的最大值为7.
故.
解不等式组并把解集表示在下面的数轴上.
解:的解集是:
的解集是:
所以原不等式的解集是:………………………………………(3分)解集表示如图…………………………………………………………………(5分)
解不等式组
解:
由不等式(1)得:<5
由不等式(2)得:≥3
所以:5>x≥3
解不等式组:并判断是否满足该不等式组.
解:原不等式组的解集是:,满足该不等式组.
解不等式组,并把解集在数轴上表示出来.
解:解不等式①,得x<2, …………………………………………………2分
解不等式②,得x≥-1. ………………………………………………4分
所以,不等式组的解集是-1≤x<2. ……………………………………5分
不等式组的解集在数轴上表示如下:
解不等式组,并把解集在数轴上表示出来.
解:解①得x>-2……4分
解②得x<3……5分
所以,这个不等式组的解集是-2<x<3……6分
解集在数轴上表示正确.……7分
解不等式组:,并将其解集在数轴上表示出来.
解:由得,
不等式组的解集为-5<x≤2.解集在数轴上表示略.
解不等式,并把它的解集在数轴上表示出来.
解:去括号,得.移项,得.合并,得.系数化为1,得.不等式的解集在数轴上表示:
解不等式组,并将解集在数轴上表示出来.
[解]由①得,由②得,
原不等式组的解集是.
在数轴上表示为:
解不等式组
解:由①,得;
由②,得.
原不等式组的解集为.
解不等式:2(x+)-1≤-x+9
解:2x+1-1≤-x+9
2x+x≤9
3x≤9
x≤3
解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.
解:3x-2<7
3x<7+2
3x<9
x<3
解不等式组
解:由,得
由,得
所以,不等式组的解集是
解不等式组
解:由①式得:,
由②式得:,
∴原不等式组的解集为.
解不等式组,并写出它的所有整数解.
解:
解不等式组并求出所有整数解的和.解:解不等式①,得,
解不等式②,得.
原不等式组的解集是.
则原不等式组的整数解是.
所有整数解的和是:
解不等式组:
解:由①得,
由②得,
不等式组的解集为
解不等式组
解:解不等式(1),得
解不等式(2),得
∴原不等式无解
解不等式组:,并把它的解集在数轴上表示出来。
解:解不等式,得
解不等式,得
所以,不等式组的解集为
在数轴上表示为:。