双向可控硅触发电路的设计方案
双向可控硅触发电路的设计方案

双向可控硅触发电路的设计方案双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。
双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。
为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。
过零触发是指在电压为零或零附近的瞬间接通。
由于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。
1 过零检测电路电路设计如图1 所示,为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。
当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。
在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。
过零检测电路A、B 两点电压输出波形如图2 所示。
2 过零触发电路电路如图3 所示,图中MOC3061 为光电耦合双向可控硅驱动器,也属于光电耦合器的一种,用来驱动双向可控硅BCR 并且起到隔离的作用,R6 为触发限流电阻,R7 为BCR 门极电阻,防止误触发,提高抗干扰能力。
当单片机80C51 的P1. 0 引脚输出负脉冲信号时T2 导通,MOC3061 导通,触发BCR 导通,接通交流负载。
另外,若双向可控硅接感性交流负载时,由于电源电压超前负载电流一个相位角,因此,当负载电流为零时,电源电压为反向电压,加上感性负载自感电动势el 作用,使得双向可控硅承受的电压值远远超过电源电压。
proteus双向可控硅触发电路

proteus双向可控硅触发电路
Proteus双向可控硅触发电路可用于实现双向可控硅控制器。
双向可控硅触发电路的主要作用是从微控制器或其他逻辑电路接收输入信号,然后根据输入信号的状态控制双向可控硅触发器的导通和断开。
以下是一个基本的Proteus双向可控硅触发电路的示例设计步骤:
1. 打开Proteus软件,并选择一个新的电路设计项目。
2. 在工具栏中选择所需的元件。
在搜索栏中输入“双向可控硅触发器”并将其添加到电路板上。
3. 连接所需的电路元件。
使用连线工具将双向可控硅触发器的控制端与其他元件连接起来。
4. 添加适当的输入信号源。
例如,您可以添加一个按钮或开关作为输入信号源。
5. 对Proteus电路进行仿真。
运行仿真以测试双向可控硅触发电路的功能。
您可以模拟不同的输入信号状态来验证电路的正确性。
请注意,具体的电路设计步骤可能因使用的具体双向可控硅触发器型号和所需的电路功能而有所不同。
因此,在设计电路之
前,建议参考双向可控硅触发器的数据手册以了解其正确的使用方法和特性。
单向-双向可控硅触发电路设计原理

单向/双向可控硅触发电路设计原理
1. 可以用直流触发可控硅装置。
2. 电压有效值等于U等于开方{(电流有效值除以2派的值乘以SIN二倍电阻)加上(派减去电阻的差除以派)}。
3. 电流等于电压除以(电压波形的非正弦波幅值半波整流的两倍值)。
触摸式台灯的控制原理
这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。
一、电路设计原理
人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。
电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。
二、降压稳压电路
由R3、VDl、VD4、C4组成。
输出9V直流电,供给BA2101,由③⑦脚引入。
三、触发电路
由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,经cl、R1加至可控硅VS的G极,VS导通,电灯H点亮。
第二次触摸,可改变触发脉冲前沿的到达时间,而使电灯亮度改变。
反复触摸,可按弱光、中光、强光和关闭四个动作状态循环,达到调节亮度的目的。
可控硅VS在动作中其导通角分别为120度、86度、17度。
双向可控硅过零触发 51单片机

双向可控硅过零触发 51单片机双向可控硅过零触发器是一种电子器件,其用途是控制交流电的电流。
该器件可在双向传导状态下控制交流电源,因此广泛应用于电机控制、照明、电炉控制等领域。
在本文中,我们将介绍如何使用51单片机来控制双向可控硅过零触发器。
首先,我们需要了解一下双向可控硅(BTA)的工作原理。
BTA的结构简单,由四个主要结构组成:PNPN开关、控制电极、阴极和阳极。
当控制电极施加正脉冲时,PNPN开关关闭,电流流向阳极。
当控制电极施加负脉冲时,PNPN开关关闭,电流流向阴极。
通过控制电极施加不同的正、负脉冲,我们可以控制BTA在交流电源中的通断状态。
双向可控硅过零触发器由三个组成部分组成:BTA、电容和电阻。
电容和电阻串联在一起,形成一个RC电路,用于控制BTA的触发时间。
当交流电源的波形经过零点时,BTA 被触发工作,将电流带入负载。
同时,电容将电压快速充放电,准备下一个过零点的触发。
现在,让我们以一个简单的控制电机的例子来说明如何使用51单片机来控制双向可控硅过零触发器。
首先,我们需要定义一个端口来控制BTA。
我们可以使用P2端口的一个输出引脚,比如P2.1或P2.2。
然后,我们需要编写一个函数来控制BTA的触发。
该函数的基本思路如下:1. 将控制引脚设置为输出模式。
2. 将控制引脚输出低电平,等待一段时间。
7. 重复步骤1到步骤6,直到需要关闭BTA。
在该函数中,我们需要确定以下参数:控制引脚的端口和引脚号;低电平输出的时间和高电平输出的时间;循环次数和等待时间。
最后,我们需要将该函数与控制电机的程序结合起来。
在主程序中,我们需要使用中断函数来检测交流电源的过零点,并在每个过零点时调用BTA触发函数。
可以使用定时器中断或外部中断来检测过零点。
在本文中,我们提供了一种用51单片机控制双向可控硅过零触发器的方法。
当然,这仅是一种基本方法,还有很多可以改进的地方。
例如,可以使用更先进的控制算法来实现更高级的控制功能,或使用更高效的电机驱动方法来提高电机控制的效率。
可控硅触发电路设计

可控硅触发电路设计一、可控硅的工作原理可控硅是一种具有双向导通特性的半导体器件。
它由一个P型半导体和两个N型半导体组成,当控制端施加一个触发脉冲时,可控硅的导通状态会变化。
可控硅的导通状态可以通过施加极性相反的触发脉冲来关闭,因此可控硅触发电路一般采用门极触发方式。
二、可控硅触发电路的设计步骤1.确定可控硅的型号和工作电压范围。
根据实际需求选择合适的可控硅,确定其额定电压和额定电流。
2.确定触发脉冲的参数。
触发脉冲的宽度、幅值和极性等参数需要根据具体情况进行确定,一般采用正脉冲触发。
3.设计驱动电路。
根据所需的触发脉冲参数设计相应的电路,包括脉冲发生器、隔离器、放大器等。
同时还要考虑电源的稳定性和可靠性。
4.进行电路连接。
将可控硅与驱动电路进行连接,注意正确连接各个端口,确保电路正常工作。
5.进行电路测试。
使用测试仪器对电路进行测试,观察可控硅的导通状态和触发脉冲的波形是否符合要求。
6.优化电路设计。
根据测试结果进行电路优化,提高电路的性能和可靠性。
三、可控硅触发电路设计的常见问题1.触发脉冲不稳定。
触发脉冲的幅值、宽度和极性等参数可能会受到外界干扰而波动,导致可控硅无法正常工作。
解决方法是加入滤波电路来抑制干扰。
2.可控硅无法正常导通。
可控硅的导通状态可能受到温度、电流、电压等因素的影响而无法正常导通。
解决方法是加入保护电路,例如过温保护、过流保护等。
3.大功率可控硅的散热问题。
大功率可控硅可能会产生较多的热量,在设计时需要考虑散热问题,合理设计散热装置。
4.电源噪声影响。
电源噪声可能会对可控硅的触发电路产生干扰,导致可控硅无法正常工作。
解决方法是使用稳定的电源,并加入滤波电路。
以上是关于可控硅触发电路设计的一些基本内容,设计可控硅触发电路需要考虑可控硅的工作原理、设计步骤和常见问题等因素。
合理设计电路并进行测试和优化,可以保证可控硅的正常工作。
双向可控硅控制电路

双向可控硅控制电路引言:双向可控硅(Bidirectional Thyristor),简称BTT,是一种半导体器件,常用于交流电源的开关控制电路。
本文将介绍双向可控硅控制电路的工作原理、应用领域以及设计要点。
一、工作原理双向可控硅是一种四层或五层PNPN晶体管结构,具有双向导电特性。
它通过控制控制极和门极之间的电压,实现对电流的控制。
双向可控硅的工作原理与单向可控硅相似。
当控制极为正向,或门极和控制极间有正向的压力时,双向可控硅将变为正向导通的状态。
当控制极为反向,或门极和控制极间有反向的压力时,双向可控硅将变为反向导通的状态。
双向可控硅在交流电路中的应用较为广泛。
其常见的控制模式有两种:半波控制和全波控制。
在半波控制中,只有交流电的一个半周期通过可控硅;而在全波控制中,交流电的两个半周期均能通过可控硅。
二、应用领域1. 交流电调光双向可控硅在家庭照明和舞台灯光等场合中被广泛应用于交流电调光控制。
通过改变双向可控硅的导通时长和导通角,可以实现对灯光亮度的调整,满足不同场合的照明需求。
2. 交流电机调速由于典型的交流电机是不能直接调速的,因此需要通过双向可控硅控制电路来实现调速。
通过改变双向可控硅的导通和断开时间,可以控制交流电机的转速。
3. 交流电能控制双向可控硅在交流电能控制领域有着广泛应用。
通过双向可控硅控制电路,可以实现对交流电能的开关调节,提高电能的利用效率,并能够实现电网的防护和电能质量控制。
三、设计要点1. 选择适当的双向可控硅根据实际需求和控制要求,选择合适的双向可控硅,包括最大电流、最大电压和最大功率等参数。
2. 控制电路设计双向可控硅的控制电路通常由触发电路、门电流限制电路和保护电路等组成。
触发电路用于控制双向可控硅的导通和断开,门电流限制电路用于限制门极电流的大小,保护电路用于保护双向可控硅免受过流、过热和过压等不利因素的影响。
3. 热管理在设计双向可控硅控制电路时,需要考虑散热问题。
比例控制双向可控硅触发电路设计

比例控制双向可控硅触发电路设计
零电压开关控制器集成电路可用作控制电阻性加热器负载。
这类控制器在市电过零时产生输出脉冲、来触发与加热器串接在一起的双向可控硅,因而有最低化的射频干扰和市电电压瞬变。
温度或功率零电压开关控制器有许多品种和型号,本文仅以飞利浦公司生产的TDA1023 为例,来说明此类IC 的工作原理及应用。
一、TDA1023 的基本结构、引脚功能及其特点
TDA1023 采用16 引脚DIL 封装,引脚排列如图1 所示。
TDA1023 芯片电路主要由电源电路、输入缓冲器、定时电路、故障一安全电路、过零检测器和输出脉冲放大器组成,如图2 所示。
TDA1023 的引脚功能如附表所列。
1.电源电压Vcc 直接从市电线路上获得,典型值是13.7V,平均电源电流(IRX)为10mA,并为外部温度传感桥路提供8V 的稳定电压(Vz);
2.触发脉冲宽度tw(典型值为200μs)、触发脉冲串重复时间Tb(在
CT=68μF 下的典型值是41s)及比例区间宽度均可调节,输出电流不大于150mA(平均电流不大于30mA);
3.滞后电压及相应的滞后温度可以调节。
二、工作原理
1.电源及其操作
TDA1023 的电源电路及外部元件连接如图3 所示。
220V 市电经二极管D1 和电阻RD 加至IC 脚16 与脚13 之间,其中IC 脚13(VEE)连接市电零线。
在市电正半周,通过RD 的电流对外部平滑电容器CS 充电,直到IC 脚16 从内部稳压二极管获得稳定电压为止。
RD 的选择应能为IC 正常工作提供电流。
两个可控硅反并联触发电路

两个可控硅反并联触发电路好嘞,今天咱们聊聊一个有趣的电路,两个可控硅反并联触发电路,听起来是不是挺复杂的?别急,我来给你捋一捋。
想象一下,你在家里搞一些电器,可能有时候会需要调节一下电流,嗯,这就是我们的主角出场的时刻了。
可控硅,顾名思义,它可是个调皮的家伙,能控制电流的流动,简直是电路界的“隐形手”。
说到两个可控硅反并联,那就有点像两个小伙伴一起玩耍,但他们有点儿不太一样。
一个负责正电流,另一个负责负电流。
这就好比一个人在阳光下晒太阳,而另一个人则在阴影里享受凉爽。
他们虽然各自忙着,但合作起来,能让整个电路运转得如同一台精密的机器。
这两个可控硅之间就像是电流的调音师,让电流在你想要的范围内舞动,哎呀,真是太厉害了。
你知道吗?这两个小家伙的触发方式也很有意思。
简单来说,就是你给它们一点小小的信号,它们就会响应,像小狗听到主人叫一样,咕咚一下就上来了。
比如你想让电器开起来,只需给其中一个可控硅送去一个触发脉冲,它就像是按下了开关,电流立马就开始流动,像河水一样汩汩而出,别提多带劲了。
反过来,当你想要电流停下来,只需要给另一个可控硅发个信号,它就会“咔嚓”一下把电流关掉,简直是个电流的“忍者”。
再说说这电路的优势,哎,真是说也说不完。
控制精确,能调节的范围广,不管你是想要大电流还是小电流,它都能帮你搞定。
反并联的设计使得电流的稳定性大大增强,不容易出现那种电压飙升的情况,像坐过山车一样,让人心惊胆战。
最重要的是,故障率低,平时用起来更是省心省力。
简直就像是你身边那个靠谱的朋友,永远在你需要的时候出现。
咱们也得提提它的应用场景。
可控硅反并联的电路可不是只在实验室里转悠,它在工业控制、家电调节等领域都大显身手。
比如说你家里的空调,调节温度的时候,里面就可能有这样的电路在默默奉献。
再比如说电动工具,它们运转得那么流畅,也多亏了这种电路的帮忙。
看吧,生活中随处可见,真是无处不在的英雄。
哎,虽然这玩意儿看上去高深莫测,其实用起来也是挺简单的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双向可控硅触发电路的设计方案
双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。
双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。
为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。
过零触发是指在电压为零或零附近的瞬间接通。
由于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。
1 过零检测电路
电路设计如图1 所示,为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。
当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。
在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。
过零检测电路A、B 两点电压输出波形如图2 所示。
2 过零触发电路
电路如图3 所示,图中MOC3061 为光电耦合双向可控硅驱动器,也属于光电耦合器的一种,用来驱动双向可控硅BCR 并且起到隔离的作用,R6 为触发限流电阻,R7 为BCR 门极电阻,防止误触发,提高抗干扰能力。
当单片机80C51 的P1. 0 引脚输出负脉冲信号时T2 导通,MOC3061 导通,触发BCR 导通,接通交流负载。
另外,若双向可控硅接感性交流负载时,由于电源电压超前负载电流一个相位角,因此,当负载电流为零时,电源电压为反向电压,加上感性负载自感电动势el 作用,使得双向可控硅承受的电压值远远超过电源电压。
虽然双向可控硅反向导通,但容易击穿,故必须使双向可控硅能承受这种反向电压。
一般在双向可控硅两极间并联一个RC阻容吸收电路,实现双向可控硅过电压保护,图3 中的C2 、R8 为RC 阻容吸收电路。
3 结束语
双向可控硅过零触发电路主要应用于单片机控制系统的交流负载控制电路,可以控制电炉、交流电机等大功率交流设备,经过实践证明工作安全、可靠。
本文重点介绍了过零检测、触发电路。
至于软件设计比较简单,当过零检测电路检测到过零时产生中断请求,只要在中断服务程序中通过单片机80C51 的P1. 0 引脚发出触发脉冲即可触发双向可控硅导通,限于篇幅,在这里就不再赘述。