成都七中万达学校必修第一册第二单元《一元一次函数,方程和不等式》检测(有答案解析)
(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(1)

一、选择题1.已知a >0,b >0,a +b =1,则下列等式可能成立的是( ) A .221a b += B .1ab = C .212a b +=D .2212a b -=2.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .63.设1a b +=,0b >,则2244||ab b a a b++的最小值为( )A .14B .34C .54D .744.已知函数()24x x af x x++=,若对于任意[)1,x ∈+∞,()0f x >恒成立,则实数a的取值范围为( )A .[)5,+∞B .()5,-+∞C .()5,5-D .[]5,5-5.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙6.若不等式210x ax -+≥对一切[2,)x ∈+∞恒成立,则实数a 的最大值为( ) A .0B .2C .52D .37.下列命题中是真命题的是( )A .y =的最小值为2;B .当a >0,b >0时,114a b++; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.8.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .19.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .2110.如图,平行四边形ABCD 的对角线相交于点O ,过点O 的直线与AB ,AD 所在直线分别交于点M ,N ,若AB =m AM ,AN =n AD (m >0,n >0),则mn的最大值为( )A .22B .1C .2D .211.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .612.若直线20(,1)ax by a b +-=>始终把圆222220x y x y +---=的周长分为1:2.则11a b+的最大值为( ) A .423-B .22-C 21D 2二、填空题13.设0b >,21a b -=,则242a a b+的最小值为_________.14.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.15.设A .B 分别为双曲线22221x y a b-=(a >0,b >0)的左.右顶点,P 是双曲线上不同于A .B的一点,直线AP .BP 的斜率分别为m .n ,则当3b a 取最小值时,双曲线的离心率为__________.16.已知0x >,0y >,满足2126x y x y+++=,存在实数m ,对于任意x ,y ,使得2m x y ≤+恒成立,则m 的最大值为____________.17.ABC 中,点M ,N 在线段AB 上,且满足AM BM =,2BN AN =,若6C π=,||4CA CB ⋅=∣∣,则CM NC ⋅的最大值为________.18.已知关于x 的不等式()()22454130m m x m x +---+>对一切实数x 恒成立,则实数m 的取值范围为_____________. 19.已知0a >,0b >,若不等式212ma b a b+≥+恒成立,则m 的最大值为______. 20.若正数a ,b 满足2ab =,则11112M a b=+++的最小值为________. 三、解答题21.已知函数2()21f x kx kx =+-.(1)若不等式()0f x <的解集为3,12⎛⎫- ⎪⎝⎭,求实数k 的值;(2)若方程()0f x =在[]12,有解,求实数k 的取值范围. 22.2020年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x ()0x >万元,且每万元创造的利润变为原来的()10.25x +倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为()0.150.875a x -万元,其中0a >. (1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x 的取值范围; (2)若网店销售的利润始终不高于技术指导后养羊的利润,求a 的最大值. 23.已知2,()23a f x ax x ∈=+-R .(Ⅰ)关于x 的方程()0f x =有且只有正根,求实数a 的取值范围; (Ⅱ)若()30f x a -≥对[1,0]a ∈-恒成立,求实数x 的取值范围.24.已知关于x 的不等式()22600kx x k k -+<≠.(1)若不等式的解集是{3x x <-或}2x >-,求k 的值;(2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.25.已知函数()|21||2|f x x x =---,M 为不等式()1f x <-的解集. (1)求M ;(2)当,a b M ∈且1a b +=时,4a b tab +≥恒成立,求t 的最大值.26.设2()(1)1f x m x mx m =+-+-.(1)当1m =时,解关于x 的不等式()0f x >;(2)若关于x 的不等式()0f x m ->的解集为()1,2,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立. 【详解】001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立; 2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D2.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b > ()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】利用1a b +=,0b >,10b a =->,1a ∴>且0a ≠; 对a 进行分类讨论,分为10a >>和0a >,进行讨论,然后,求解即可得到2244||ab b a a b++的最小值【详解】1a b +=,0b >,10b a =->,1a ∴>且0a ≠;当10a >>,22224414||444ab b a ab b a b a a b ab a b ++++==++1544≥+=;当且仅当4b aa b =,又1b a =-,解得1a =-或13a =,又由10a >>,得13a =时,此时,23b =,2244||ab b a a b ++的最小值54;当0a >,222244134||4444ab b a ab b a b a a b ab a b ++++⎛⎫⎛⎫==-+-+-≥ ⎪ ⎪-⎝⎭⎝⎭,当且仅当4b aa b -=-时,解得1a =-或13a =,又由0a >,得1a =-,此时,2b =,2244||ab b a a b ++的最小值34;综上,2244||ab b a a b ++的最小值34;故选:B 【点睛】关键点睛:解题的关键在于利用1a b +=,0b >,10b a =->,可得1a >且0a ≠,对a 进行分类讨论,难点在于利用基本不等式进行求最值,本题属于中档题4.B解析:B 【分析】根据条件将问题转化为“24a x x >--在[)1,+∞上恒成立”,再根据()2max4a x x>--求解出a 的范围. 【详解】因为对于任意[)1,x ∈+∞,()0f x >恒成立,所以240x x a ++>对[)1,x ∈+∞恒成立, 所以()2max4a x x>--,[)1,x ∈+∞,又因为24y x x =--的对称轴为2x =-,所以24y x x =--在[)1,+∞上单调递减, 所以()()2max4145x x --=--=-,所以5a >-,故选:B. 【点睛】方法点睛:一元二次不等式在指定区间上恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的大小关系.5.B解析:B 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证6.C解析:C 【分析】采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值. 【详解】因为不等式210x ax -+≥对一切[)2,x ∈+∞恒成立,所以对一切[)2,x ∈+∞,21ax x ≤+,即21x a x+≤恒成立.令()[)()2112,x g x x x x x+==+∈+∞.易知()1g x x x=+在[)2,+∞内为增函数. 所以当2x =时,()min 52g x =,所以a 的最大值是52.故选C . 【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发); (2)参变分离法(考虑新函数与参数的关系).7.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C 选项可设,a b αα==,利用三角函数的值域求范围. 【详解】A 选项,222x +≥0>,∴2y=≥==,即221x+=±时成立,又222x≥+,故A错;B选项,当a>0,b>0时,1124a b+++≥⨯=,当且仅当1a b=⎧=,即1a b==时等号成立,B正确;C选项,设,a bαα==,则2sin24a bπααα⎛⎫+==+≤⎪⎝⎭,C正确;D选项,2a b+=,()212192a b⎡⎤⎛⎫∴+++=⎪⎢⎥⎝⎭⎣⎦,则()121252229291111++4+22442+2242a b a baba ba b⎛⎫+⎪⎡⎤+⎛⎫⎛⎫+++=⨯++⎪⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛≥⨯+=⎝⎭,当且仅当122422aba b++=++且2a b+=时等号成立,解得1a b==,故D正确.故选:BCD【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.8.C解析:C【分析】将11tan tanB C+化为关于tan A的式子,然后利用基本不等式可以求出最小值.【详解】在ABC中,()tan tanC A B=-+,111111tan tantan tan tan tan tan tan tanA BB C B A B B A B,tan 2tan B A =, 211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.9.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P(,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.10.B解析:B 【分析】根据向量共线的推论,结合向量的线性运算求得12m n+=,再用基本不等式即可求得结果. 【详解】 因为1122AO AB AD =+,又AB =m AM ,AN =n AD , 故可得 122m AO AM AN n=+,又,,O M N 三点共线, 故可得1122m n +=,即12m n+=. 故211114m m m n n n ⎛⎫=⨯≤+= ⎪⎝⎭,当且仅当1m n ==时取得最大值. 故选:B . 【点睛】本题考查平面向量共线定理的推论以及基本不等式的应用,属综合中档题.11.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.12.B解析:B 【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即1=,化简整理后,再结合基本不等式的性质可得ab 的最小值,再求出11a b+的最大值. 【详解】把圆222220x y x y +---=化成标准形式为22(1)(1)4x y -+-=,其中圆心为(1,1),半径为2.设直线与圆交于A 、B 两点,圆心为C , 因为直线把圆的周长分为1:2,所以13601203ACB ∠=⨯︒=︒, 所以圆心(1,1)C 到直线20ax by +-=的距离为12221a b a b+-=+,因为a ,1b >,所以202()a ab b -++=,由基本不等式的性质可知,22()4ab a b ab +=+, 当且仅当a b =时,等号成立,此时有2(22)ab +,所以21(2)1111122222(22)ab a b a b ab ab ab+++===++=+. 所以11a b +的最大值为22- 故选:B . 【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.二、填空题13.4【分析】两次应用基本不等式验证等号能同时成立即得【详解】由题意当且仅当即时上述不等式中等号同时成立故答案为:4【点睛】本题考查了基本不等式求最值考查了运算求解能力逻辑推理能力在连续运用基本不等式求解析:4 【分析】两次应用基本不等式,242a a b +≥12b b +≥,验证等号能同时成立即得. 【详解】由题意211a b =+≥,2442a a b +≥===≥, 当且仅当2142b baa b⎧=⎪⎪⎨⎪=⎪⎩,即21a b =⎧⎨=⎩时上述不等式中等号同时成立. 故答案为:4. 【点睛】本题考查了基本不等式求最值,考查了运算求解能力,逻辑推理能力,在连续运用基本不等式求最值时,要注意等号能否同时成立.14.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于解析:8 【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值. 【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy ∴,当且仅当3232x y ==时,取等号. 则32233838y xx y xy++==, 故答案为:8. 【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.15.【分析】先根据点的关系确定mn 再根据基本不等式确定最小值最后根据最小值取法确定双曲线的离心率【详解】设则因此当且仅当时取等号所以离心率是故答案为:【点睛】本题考查双曲线离心率和基本不等式求最值的简单 【分析】先根据点的关系确定mn ,再根据基本不等式确定最小值,最后根据最小值取法确定双曲线的离心率. 【详解】设11(,)P x y ,则 22111222111y y y b mn x a x a x a a =⋅==+--,因此3b a+3b a a b =+≥= 当且仅当3a b 时取等号,所以离心率是c e a ===.【点睛】本题考查双曲线离心率和基本不等式求最值的简单综合问题,属于基础题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式ce a=求解;2.公式法:c e a ===3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.16.2【分析】首先根据题意得到从而得到即再根据恒成立即可得到的最大值【详解】因为所以所以即解得因为恒成立所以即所以的最大值为故答案为:【点睛】本题主要考查基本不等式同时考查了不等式的恒成立问题属于中档题解析:2 【分析】首先根据题意得到()228x y xy +≤,从而得到()8622x y y x≤+++,即224x y ≤+≤,再根据2m x y ≤+恒成立,即可得到m 的最大值.【详解】因为0x >,0y >,所以()()22221122248x y x y xy x y ++=⋅≤⨯=, 所以()()()22122862222228y x y x x y x y x y x y x y xy y x x y ++=+++=++≥++=++++. 即()8622x y y x≥+++, ()()226280x y x y +-++≤,解得224x y ≤+≤.因为2m x y ≤+恒成立,所以()min 2m x y ≤+,即2m ≤. 所以m 的最大值为2. 故答案为:2 【点睛】本题主要考查基本不等式,同时考查了不等式的恒成立问题,属于中档题.17.;【分析】由平面向量数量积的运算可知再根据平面向量的线性运算可分别得到故由基本不等式的性质可知将所得结论均代入的表达式即可得解【详解】解:根据题意作出如下图形由基本不等式的性质可知的最大值为故答案为解析:4233--; 【分析】由平面向量数量积的运算可知23CA CB =,再根据平面向量的线性运算可分别得到1()2CM CA CB =+,1(2)3NC CA CB =-+,故221(23)6CM NC CA CB CA CB =-++,由基本不等式的性质可知,22222||||CA CB CA CB +,将所得结论均代入CM NC 的表达式即可得解. 【详解】解:根据题意,作出如下图形,6C π=,||||4CA CB =,∴4cos236CA CB π=⨯=AM BM =,∴1()2CM CA CB =+,2BN AN =,∴111()(2)333NC AC AN AC AB CA CB CA CA CB =-=-=---=-+,∴22111()[(2)](23)236CM NC CA CB CA CB CA CB CA CB =+-+=-++,由基本不等式的性质可知,222222||||22||||82CA CB CA CB CA CB +=+=,∴142(82323)36CM NC -⨯⨯=∴CM NC 的最大值为423-故答案为:423- 【点睛】本题考查平面向量的线性运算和数量积运算、基本不等式的性质,熟练掌握平面向量的加法、减法、数乘和数量积的运算法则是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.18.【分析】分和两种情况讨论结合题可得出关于实数的不等式组由此可解得实数的取值范围【详解】当时可得或①当时可得合乎题意;②当时可得解得不合乎题意;当时由题意可得解得综上所述实数的取值范围是故答案为:【点 解析:1,19【分析】分2450m m +-=和2450m m +-≠两种情况讨论,结合题可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】当2450m m +-=时,可得1m =或5m =-. ①当1m =时,可得30>,合乎题意;②当5m =-时,可得2430x +>,解得18x >-,不合乎题意;当2450m m +-≠时,由题意可得()()22245016112450m m m m m ⎧+->⎪⎨∆=--+-<⎪⎩,解得119m <<.综上所述,实数m 的取值范围是1,19. 故答案为:1,19. 【点睛】本题考查利用一元二次不等式在实数集上恒成立求参数,考查计算能力,属于中等题.19.9【分析】将题目所给不等式分离常数利用基本不等式求得的最大值【详解】由得恒成立而故所以的最大值为【点睛】本小题主要考查不等式恒成立问题求解策略考查利用基本不等式求最值考查化归与转化的数学思想方法属于解析:9. 【分析】将题目所给不等式分离常数m ,利用基本不等式求得m 的最大值. 【详解】 由212m a b a b +≥+得()212m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,而()212225a b a b a b b a ⎛⎫++=++ ⎪⎝⎭5549≥+=+=,故9m ≤,所以m 的最大值为9. 【点睛】本小题主要考查不等式恒成立问题求解策略,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.20.【分析】求出设(当且仅当时成立)求出的最小值即可【详解】解:设(当且仅当时成立)的最小值为故答案为:【点睛】本题考查了基本不等式的性质考查转化思想属于中档题解析:23【分析】求出23154a M a a =-++,设254445259a a N a a a a a++==+++=(当且仅当2a =时“=”成立),求出M 的最小值即可. 【详解】 解:2ab =,0a >,0b >,2b a∴=, 21111114311411211414541a a M a b a a a a a a a a∴=+=+=+=+-=-++++++++++,设254445259a a N a a a a a++==+++=(当且仅当2a =时“=”成立), 1109N ∴<,1303N--<,23113N -<, 11112M a b ∴=+++的最小值为23, 故答案为:23. 【点睛】本题考查了基本不等式的性质,考查转化思想,属于中档题.三、解答题21.(1)13;(2)11,103⎡⎤⎢⎥⎣⎦. 【分析】 (1)由题意可得32-、1是方程2210kx kx +-=的两个根,利用两根之积列方程即可求解;(2)方程()0f x =在[]12,有解,可得212k x x=+在[]12,有解,利用二次函数的性质求出22y x x =+的范围,即可求解. 【详解】(1)因为2210kx kx +-<的解集是3,12⎛⎫- ⎪⎝⎭, 所以32-、1是方程2210kx kx +-=的两个根, 由根与系数的关系可得:31122k -⨯=-,解得:13k =, (2)因为方程()0f x =在[]12,有解, 所以2210kx kx +-=在[]12,有解, 212k x x=+在[]12,有解, 因为22y x x =+对称轴为14x =-,在[]12,上单调递增, 所以[]223,10y x x =+∈,可得2111,2103k x x ⎡⎤=∈⎢⎥+⎣⎦,所以实数k 的取值范围11,103⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解22.(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5. 【分析】(1)由题意得()()0.1510.25100.1510x x +-≥⨯,解不等式可得结果;(2)由题意得()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,分离出参数a 得510 1.58x a x ≤++恒成立,只要利用基本不等式求出5108x x +的最小值即可 【详解】 解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯, 整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤. (2)由题意知网店销售的利润为()0.150.875a x x -万元, 技术指导后,养羊的利润为()()0.1510.2510x x +-万元, 则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,又010x <<,∴5101.58x a x≤++恒成立, 又51058x x+≥,当且仅当4x =时等号成立, ∴0 6.5a <≤,即a 的最大值为6.5.答:(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5.【点睛】关键点点睛:此题考查利用数学知识解决实际问题,考查不等式的解法,第2问解题的关键是由()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,转化为5101.58x a x≤++恒成立,然后利用基本不等式求5108x x+的最小值即可,属于中档题 23.无 24.无 25.无 26.无。
最新人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》检测卷(包含答案解析)

一、选择题1.已知0a >,0b >,2ab =,则42a b +的最小值为( )A .22B .4C .42D .82.已知12x >,则2321x x +-的最小值是( ) A .32 B .332+C .32+D .3232+3.当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为( ) A .7B .8C .9D .104.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( ) A .0B .3C .94D .15.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .26.如图,在ABC 中,23BD BC =,E 为线段AD 上的动点,且CE xCA yCB =+,则13x y+的最小值为( )A .16B .15C .12D .107.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15 C .a <15D .a ≤158.若a 、b 、c >0且a (a +b +c )+bc =4-3,则2a +b +c 的最小值为( ) A . 3 1 B . 31 C .3 2D .329.已知1x >,则41x x +-的最小值为A .3B .4C .5D .610.若关于x 的不等式20x px q ++<的解集为{|23}x x <<,则关于x 的不等式22028x px qx x ++>--的解集是( ) A .()2,3 B .()(),24,-∞-+∞C .()()2,23,4-D .()()(),22,34,-∞-+∞11.已知,a b R +∈,2229ab b a b +++=,则+a b 的最小值( ) A .1B .2C .52D .312.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .3-B .1C 1D 1参考答案二、填空题13.已知函数()243()46,,f x mx m tm x tm t m R =+-++∈,若[2,3]m ∃∈,使得对123,,,22t t x m t m x m m ⎡⎤⎡⎤∀∈++∀∈+⎢⎥⎢⎥⎣⎦⎣⎦均有()()12f x f x ≤,则正数t 的最小值为__________14.已知实数0a >,0b >是2a 与2b 的等比中项,则13a b+的最小值是______. 15.设x ,y 为正实数,若2241x y xy ++=,则266x yxy++的最大值是______.16.设2020a b +=,0b >,则当a =____________时,12020a a b+取得最小值.17.一批救灾物资随51辆汽车从某市以/vkm h 的速度匀速直达灾区,已知两地公路线长400km ,为了安全起见,两辆汽车的间距不得小于2800v km ,那么这批物资全部到达灾区,最少需要______.h18.已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为__________.19.已知正实数x ,y 满足x +y =1,则1412x y +++的最小值为________ . 20.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠, (1)若不等式()0f x >的解集(1,3)-.求a ,b 的值; (2)若()12f =,0a >,0b >,求14a b+的最小值.22.设函数()()()2230f x ax b x a =+-+≠.(1)若(1)4f =,且,a b 均为正实数,求14a b+的最小值,并确定此时实数,a b 的值; (2)若b R ∀∈满足()222(1)32b f x a x a ab >--+-+在x ∈R 上恒成立,求实数a 的取值范围.23.已知函数()()()224f x x a x a R =-++∈.(1)解关于x 的不等式()42f x a ≤-;(2)若对任意的[]0,4x ∈,()10f x a ++≥恒成立,求实数a 的取值范围.24.已知函数()22f x x ax =-,x ∈R ,a R ∈.()1当1a =时,求满足()0f x <的x 的取值范围; ()2解关于x 的不等式()23f x a <;()3若对于任意的()2,x ∈+∞,()1f x >均成立,求a 的取值范围.25.如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设km AB y =,并在公路同侧建造边长为km x 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知1AB AC =+,且60ABC ∠=︒.(1)求y 关于x 的函数;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:该公司建中转站围墙和两条道路总造价M 最低为多少?26.在平面直角坐标系xOy 中,已知射线OP :4y x =(0x ≥),过点()3,2M 的直线l 与x 轴正半轴、射线OP 分别相交于A ,B 两点,设AM MB λ=(0λ>). (1)当λ为何值时,OAB 的面积取得最小值?并求出此时直线l 的方程; (2)当λ为何值时,MA MB ⋅取得最小值?并求出MA MB ⋅的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由于0a >,0b >且2ab =,则利用基本不等式可得244242228a b a b a b ++⋅=≥=≥,从而可得答案【详解】因为0a >,0b >且2ab =,所以2224422422222228a b a b a b ab++⋅=≥==≥,当且仅当2a b =时,即1a =,2b =时取等号.故选:D. 【点睛】关键点点睛:该题考查的是有关利用基本不等式求最值的问题,正确解题的关键是要明确等号成立的条件.2.D解析:D【分析】由2111333311212222x x x x x x ⎛⎫+=+=-++⎪-⎝⎭--,利用均值不等式可得答案. 【详解】21113333331121222222x x x x x x ⎛⎫+=+=-++≥= ⎪-⎝⎭-- 当且仅当113122x x ⎛⎫-= ⎪⎝⎭-,即12x = 时,取得等号. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.3.C解析:C 【分析】 分离参数化为41414m x x≤+-恒成立,再利用基本不等式求出不等式右边的最小值即可得解. 【详解】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立, 因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.D解析:D 【分析】利用22340x xy y z -+-=可得143xy x y z y x =+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴2211434432?xy xy x y zx xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.5.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解. 【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥, 综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题6.A解析:A 【分析】由已知可得A ,D ,E 三点共线,结合平面向量基本定理可得31x y +=,0x >,0y >,再利用基本不等式即可求解. 【详解】 解:∵23BD BC =, ∴3CB CD =,3CE xCA yCB xCA yCD =+=+,因为A ,D ,E 共线,所以31x y +=, 则()3313333101016x y x y y x x y x y x y +++=+=++≥+. 当且仅当33y x x y =且31x y +=即14x y ==时取等号, 故选:A.【点睛】本题主要考查三点共线的向量表示,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.7.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号,所以113x x++的最大值为15, 所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.8.D解析:D 【解析】由a (a +b +c )+bc =4-得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a+b +c =1)=-2. 故选D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误9.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.解析:D 【分析】根据关于x 的不等式20x px q ++<的解集为{|23}x x <<,利用韦达定理得到5,6p q =-=,则不等式22028x px q x x ++>--转化为 2256028x x x x -+>--,再利用穿根法求解.【详解】因为关于x 的不等式20x px q ++<的解集为{|23}x x <<, 所以由韦达定理得:5,6p q =-=,所以22028x px q x x ++>--,即为2256028x x x x -+>--,即为()()()()23042x x x x -->-+,即为()()()()23420x x x x ---+>用穿根法得不等式的解集为:()()(),22,34,-∞-+∞,故选:D 【点睛】本题主要考查一元二次不等式的解集的应用以及穿根法求高次不等式,属于中档题.11.C解析:C 【分析】令z a b =+,得a z b =-,代入2229ab b a b +++=,化简后利用判别式列不等式,解不等式求得+a b 的最小值. 【详解】令z a b =+,得a z b =-,代入2229ab b a b +++=并化简得()212290b z b z +--+=,关于b 的一元二次方程有正解,所以首先()()2124290z z ∆=---+≥, 即()()27250z z +-≥,由于,a b 是正实数,所以250z -≥,即52z ≥,也即+a b 的最小值为52. 此时对称轴1221120222z z z ---==-≥>,所以关于b 的一元二次方程()212290b z b z +--+=有正解,符合题意.故选:C 【点睛】本小题主要考查判别式法求最值,考查一元二次不等式的解法,属于中档题.解析:B 【分析】把要求的式子变形为21x y y x++,再利用基本不等式求得它的最小值. 【详解】已知0x >,0y >,23x y +=,则22223(2)2221211x y x x y y x xy y x y x yxy xy xy y x y x+++++===+++=,当且仅当222x y = 时,即当3x =-,且y ,等号成立,故23x y xy+的最小值为1+故选:B . 【点睛】本题考查基本不等式的运用,考查常数代换法,注意最值取得的条件,考查运算能力,属于中档题.二、填空题13.【分析】根据二次函数的性质结合存在任意的性质构造法换元法对钩函数的性质进行求解即可【详解】函数的对称轴为:要想对均有只需成立化简得:设令显然当时函数是单调递增函数故因此有显然该函数在单调递减函数故因 解析:10321【分析】根据二次函数的性质,结合存在、任意的性质、构造法、换元法、对钩函数的性质进行求解即可. 【详解】函数()243()46f x mx m tm x tm =+-++的对称轴为:4342m tm x m-+=-,要想对123,,,22t t x m t m x m m ⎡⎤⎡⎤∀∈++∀∈+⎢⎥⎢⎥⎣⎦⎣⎦均有()()12f x f x ≤,[2,3]m ∈ 只需43433441()()()2222m tm m tm m t m t m m -+-++--≤--+成立,化简得:423242m m t m m ++≥-,设42324()2m m g m m m++=-,[2,3]m ∈,242234224()22m m m m g m m m m m++++==--,令2a m m =-,显然当[2,3]m ∈时,函数2a m m =-是单调递增函数,故7[1,]3a ∈, 因此有266()a h a a a a+==+,7[1,]3a ∈,显然该函数在7[1,]3t ∈单调递减函数, 故min 7103()()321h a h ==,因此要想423242m m t m m++≥-在[2,3]m ∈有解,只需10321t ≥. 故答案为:10321 【点睛】关键点睛:解决本题的关键是根据二次函数的性质得到43433441()()()2222m tm m tm m t m t m m -+-++--≤--+这个不等式,然后运用构造函数进行求解.14.【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比中项公解析:4+【分析】2a 与2b 的等比中项,求得1a b +=,化简13133()()4b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >2a 与2b的等比中项,可得2222a b a b +=⨯=,得1a b +=,所以13133()()44b a a b a b a b a b +=++=++≥+= 当且仅当3b a a b =时,即a b == 所以13a b+的最小值是4+.故答案为:4+【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力,属于中档题.15.【分析】先得到当且仅当时接着得到当且仅当时从而化简得到再求取最小值最后求出的最大值【详解】解:∵即∵当且仅当即时取等号∴当且仅当时取等号∵即∴当且仅当时取等号令则∴∵当时取最小值此时最大为:故答案为【分析】先得到当且仅当2x y =时15xy ≤,接着得到当且仅当2x y =时2x y +=≤266x y xy ++得到142m m+,再求42m m +取最小值,最后求出266x y xy++的最大值. 【详解】解:∵2241x y xy ++=,即2241x y xy =-+∵22414xy x x y y ≥=-=+,当且仅当224x y =即2x y =时,取等号, ∴15xy ≤,当且仅当2x y =时,取等号, ∵2241x y xy ++=,即2(2)31x y xy +-=∴2x y +=≤2x y =时,取等号,令2x y m +==≤231xy m =-, ∴221466242x y m xy m m m+==+++, ∵当m =42m m +取最小值5,此时266x y xy ++最大为:18故答案为:18. 【点睛】本题考查基本不等式求最值,是基础题. 16.【分析】根据题中所给的式子结合已知条件将式子进行整理结合绝对值的意义以及基本不等式求得结果【详解】由已知有:当且仅当时等号成立即故答案为:【点睛】该题考查的是有关求最值的问题涉及到的知识点有基本不等解析:20202019-【分析】 根据题中所给的式子,结合已知条件,将式子进行整理,结合绝对值的意义以及基本不等式求得结果.【详解】由已知有:22212020202020202020a a a a b a b a b a b a a b++=+=++212020≥-+ 221140392202020202020=-+⨯=, 当且仅当0a <,22020a b a b=时,等号成立. 即222202020192020a a b ⇒=-=. 故答案为:20202019-. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有基本不等式,属于简单题目. 17.10【分析】用速度v 表示时间结合基本不等式计算最小值即可【详解】当最后一辆车子出发第一辆车子走了小时最后一辆车走完全程共需要小时所以一共需要小时结合基本不等式计算最值可得故最小值为10小时【点睛】考 解析:10【分析】用速度v 表示时间,结合基本不等式,计算最小值,即可.【详解】 当最后一辆车子出发,第一辆车子走了25080016v v v ⋅=小时,最后一辆车走完全程共需要400v 小时,所以一共需要40016v v +小时,结合基本不等式,计算最值,可得4001016v v +≥=,故最小值为10小时 【点睛】考查了基本不等式计算函数最值问题,关键利用a b +≥中等.18.或【解析】试题分析:当x>0时不等式f (x )>x 转化为由函数是奇函数图像关于原点对称因此当时不等式f (x )>x 的解集为综上不等式的解为(-50)∪(5+∞)考点:函数奇偶性解不等式解析:{|5x x >或50}x -<<【解析】试题分析:当x>0时,不等式f (x )>x 转化为245xx x x ->∴>,由函数是奇函数,图像关于原点对称,因此当0x <时不等式f (x )>x 的解集为50x -<<,综上不等式的解为(-5,0)∪(5,+∞)考点:函数奇偶性解不等式19.【分析】由可得且则利用基本不等式可求出的最小值【详解】由可得且则(当且仅当即时取=)故的最小值为故答案为:【点睛】利本题考查基本不等式求最值注意用基本不等式求最值必须具备三个条件:①各项都是正数;② 解析:94【分析】由1x y +=,可得(1)(2)4x y +++=且10,20x y +>+>,则()()()112411411412412214142y x x y x y x y x y ⎛⎫⎛⎫+=+=+++⎡⎤ ⎪+ +⎪⎣⎦++++++⎝+⎭⎝+⎭+,利用基本不等式可求出1412x y +++的最小值. 【详解】由1x y +=,可得()()124x y +++=且10,20x y +>+>, 则()()114114124122x y x y y x ⎛⎫+=+⎡⎤ ⎪⎣⎦++++⎝+⎭++ ()11914541244412x y y x =+⎛⎛⎫ +++≥+= ⎪ ++⎝⎭⎝+,(当且仅当()24121x y x y =++++即12,33x y ==时取“=”). 故1412x y +++的最小值为94. 故答案为:94. 【点睛】利本题考查基本不等式求最值,注意用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件,属于中档题.20.【分析】设BC=x 连结OC 求出OB 得到矩形面积表达式然后利用基本不等式求出函数的最值即可【详解】设BC=x 连结OC 得OB=所以AB =2所以矩形面积S =2x ∈(04)S =2即x2=16﹣x2即x =2时解析:16【分析】设BC=x,连结OC ,求出OB ,得到矩形ABCD 面积表达式,然后利用基本不等式求出函数的最值即可.【详解】设BC=x,连结OC ,得OB=216x -,所以AB =2216x -,所以矩形ABCD 面积S =22x 16x -,x ∈(0,4),S =2()22222x 162161616x x x x x -=-≤+-= .即x 2=16﹣x 2,即x =22时取等号,此时y max =16故答案为16【点睛】本题考查函数解析式的求法,考查利用基本不等式求函数最值问题,考查计算能力.三、解答题21.无22.无23.无24.无25.无26.无。
新课程必修第一册《一元二次函数、方程和不等式》检测题及答案解析

新课程必修第一册《一元二次函数、方程和不等式》检测题及答案解析时间:120分钟,满分:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a <0,-1<b <0,则( )A .-a <ab <0B .-a >ab >0C .a >ab >ab 2D .ab >a >ab 2解析: ∵a <0,-1<b <0,∴ab >0,a <ab 2<0,故A ,C ,D 都不正确,正确答案为B. 故选B2.不等式14-5x -x 2<0的解集为( )A .{x |-7<x <2}B .{x |x <-7或x >2}C .{x |x >2}D .{x |x <-7}解析:选B.原不等式等价于x 2+5x -14>0,所以(x +7)·(x -2)>0,即x <-7或x >2. 故选B.3.设M =2a (a -2),N =(a +1)(a -3),则( )A .M >NB .M ≥NC .M <ND .M ≤N解析: ∵M -N =2a (a -2)-(a +1)(a -3)=(2a 2-4a )-(a 2-2a -3)=a 2-2a +3=(a -1)2+2>0.∴M >N . 故选 A.4.若x >0,则y =12x +13x的最小值为( )A .2B .22C .4D .8解析:选C.因为x >0,所以y =12x +13x≥212x ·13x =4,当且仅当12x =13x,即x =16时等号成立.故选C. 5.不等式x -2x +1≤0的解集是( ) A .{x |x <-1或-1<x ≤2}B .{x |-1≤x ≤2}C .{x |x <-1或x ≥2}D .{x |-1<x ≤2}解析: 原不等式同解于⎩⎪⎨⎪⎧x +1≠0(x -2)(x +1)≤0,解得-1<x ≤2.故选D.6.在R 上定义运算☆:a ☆b =ab +2a +b ,则满足x ☆(x -2)<0的实数x 的取值范围为( )A .{x |0<x <2}B .{x |-2<x <1}C .{x |x <-2或x >1}D .{x |-1<x <2}解析: 根据定义得:x ☆(x -2)=x (x -2)+2x +(x -2)=x 2+x -2<0,解得-2<x <1,所以所求的实数x 的取值范围为{x |-2<x <1}.故选 B.7.若0<a <1,则不等式x 2-3(a +a 2)x +9a 3≤0的解集为( )A .{x |3a 2≤x ≤3a } B .{x |3a ≤x ≤3a 2} C .{x |x ≤3a 2或x ≥3a } D .{x |x ≤3a 或x ≥3a 2}解析:选A.因为0<a <1,所以0<3a 2<3a ,而方程x 2-3(a +a 2)x +9a 3=0的两个根分别为3a 和3a 2,所以不等式的解集为{x |3a 2≤x ≤3a }.8.若不等式ax 2+ax +1>0的解集为R ,则a 的取值范围是( )A .{a |0≤a <4}B .{a |0<a <4}C .{a |a >4或a <0}D .{a |a ≥4或a ≤0}解析:选A.当a =0时,原不等式等价于1>0,符合题意;当a ≠0时,若原不等式的解集为R ,则⎩⎪⎨⎪⎧a >0,Δ<0, 解得0<a <4.综上可知0≤a <4.故选A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.在△ABC 中,三边长分别为a ,b ,c ,且abc =4,则下列结论正确的是( )A .a 2b <4+ab 2B .ab +a +b >4C .a +b 2+c 2>4D .a +b +c <4解析:A 选项,因为a ,b ,c 为三角形三边,所以a -b <c ,则a 2b -ab 2<abc =4,即a 2b <4+ab 2,故A 正确;B 选项,根据三角形的性质可得,a +b >c ,则ab +a +b >ab +c ≥2abc =4,当且仅当ab =c 时,等号成立,因此ab +a +b >4,故B 正确;C 选项,a +b 2+c 2≥a +2bc ≥22abc =42>4,当且仅当⎩⎪⎨⎪⎧b =c ,a =2bc ,即⎩⎪⎨⎪⎧b =c =42,a =2bc =22时,等号成立,此时b +c <a ,不满足三角形的性质,故等号不同时成立,a +b 2+c 2>4,故C 正确;D 选项,若⎩⎪⎨⎪⎧a =1,b =c =2,则能构成三角形,且满足abc =4,但此时a +b +c =5>4,即D错误.故选A 、B 、C.10.下列结论中正确的是( )A .若a ,b 为正实数,a ≠b ,则a 3+b 3>a 2b +ab 2B .若a ,b ,m 为正实数,a <b ,则a +m b +m <abC .若a c 2 >b c2 ,则a >bD .当x >0时,x +2x的最小值为22解析:对于A ,因为a ,b 为正实数,a ≠b ,所以a 3+b 3-(a 2b +ab 2)=(a -b )2(a +b )>0,所以a 3+b 3>a 2b +ab 2正确;对于B ,若a ,b ,m 为正实数,a <b ,则a +m b +m -a b =m (b -a )b (b +m )>0,所以a +mb +m >ab,故B 错误; 对于C ,若a c2 >b c2 ,则a >b ,故C 正确;对于D ,当x >0时,x +2x的最小值为22 ,当且仅当x =2 时等号成立,故D 正确.故选ACD.11.已知不等式ax 2+bx +c >0的解集为⎝ ⎛⎭⎪⎫-12,2 ,则下列结论中正确的是( )A .a >0B .b >0C .c >0D .a +b +c >0解析:因为不等式ax 2+bx +c >0的解集为⎝ ⎛⎭⎪⎫-12,2 ,故相应的二次函数f (x )=ax 2+bx +c 的图象开口向下,所以a <0,故A 错误;易知2和-12是方程ax 2+bx +c =0的两个根,则有c a =-1<0,-b a =32>0.又a <0,故b >0,c >0,故B ,C 正确;由二次函数的图象可知f (1)=a +b +c >0,故D 正确.故选BCD.12.下列函数中,最小值是2的是( )A .y =m +4m +2(m >-2) B .y = x 2+2+1x 2+2C .y =x 2+1x2D .y =x 2+2x解析: 对于A ,因为m +2>0,所以y =m +4m +2=m +2+4m +2-2≥2m +2×4m +2-2=2,当且仅当m +2=4m +2,即m =0时,等号成立,所以该函数的最小值是2,故A 正确; 对于B ,y = x 2+2+1x 2+2≥2x 2+2×1x 2+2=2,当且仅当x 2+2=1x 2+2,即x 2=-1时,等号成立,显然x 2=-1不可能成立,故B 不符合题意;对于C ,y =x 2+1x2≥2x 2×1x 2=2,当且仅当x 2=1x2,即x =±1时,等号成立,所以该函数的最小值是2,故C 正确;对于D ,当x <0时,y =x 2+2x<0,即该函数的最小值不是2,故D 不符合题意.故选AC三、填空题:本题共4小题,每小题5分,共20分. 13.如果a >b ,ab >0,那么1a 与1b的大小关系是________.解析:因为a >b ,ab >0,所以a ab>b ab,即1b>1a.答案:1a < 1b14.设点(m ,n )在一次函数y =-x +1位于第一象限内的图象上运动,则mn 的最大值是________.解析:∵点(m ,n )在一次函数y =-x +1位于第一象限内的图象上运动,∴m +n =1且m >0,n >0.∴mn ≤⎝⎛⎭⎪⎫m +n 22=14,当且仅当m =n 时等号成立.答案:1415.若不等式ax 2+bx +c >0的解集是(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为 (用区间表示).解析: 由不等式ax 2+bx +c >0的解集为(-4,1)知a <0,-4和1是方程ax 2+bx +c =0的两根.∴-4+1=-b a ,-4×1=c a,即b =3a ,c =-4a .故所求解的不等式为3a (x 2-1)+a (x +3)-4a >0,即3x 2+x -4<0,解得-43<x <1.答案: ⎝ ⎛⎭⎪⎫-43,1 16.某公司有20名技术人员,计划开发A ,B 两类共50件电子器件,每类每件所需人员和预计产值如下:万元.解析:设总产值为y 万元,应开发A 类电子器件x 件,则应开发B 类电子器件(50-x )件.根据题意,得x 2 +50-x3≤20,解得x ≤20.由题意,得y =7.5x +6×(50-x )=300+1.5x ≤330,当且仅当x =20时,y 取最大值330,所以欲使总产值最高,A 类电子器件应开发20件,最高产值为330万元.答案:20 330四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分))解关于x 的不等式56x 2+ax -a 2<0.解:原不等式可化为(7x +a )(8x -a )<0, 即⎝ ⎛⎭⎪⎫x +a 7⎝ ⎛⎭⎪⎫x -a 8<0.①当-a 7<a 8,即a >0时,-a 7<x <a8;②当-a 7=a8,即a =0时,原不等式解集为∅;③当-a 7>a 8,即a <0时,a 8<x <-a7.综上知,当a >0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-a 7<x <a 8 ;当a =0时,原不等式的解集为∅;当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a 8<x <-a7 .18.(12分)设集合A ={x |4-x 2>0},B ={x |-x 2-2x +3>0}.(1)求集合A ∩B ;(2)若不等式2x 2+ax +b <0的解集为B ,求a ,b 的值.解:(1)A ={x |4-x 2>0}={x |-2<x <2},B ={x |-x 2-2x +3>0}={x |-3<x <1},故A ∩B ={x |-2<x <1}.(2)因为2x 2+ax +b <0的解集为B ={x |-3<x <1},所以-3和1为方程2x 2+ax +b =0的两个根.所以有⎩⎪⎨⎪⎧2×(-3)2-3a +b =0,2×12+a +b =0, 解得⎩⎪⎨⎪⎧a =4,b =-6.19.(12分)已知正数x ,y 满足1x +9y=1.(1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥21x ·9y得xy ≥36,当且仅当1x =9y,即y =9x =18时等号成立,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y=19+2y x +9x y≥19+22y x ·9xy=19+62 ,当且仅当2y x =9x y,即9x 2=2y 2时等号成立,故x +2y 的最小值为19+62 .20.(12分)已知“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解:(1)由题意,知m =x 2-x =⎝ ⎛⎭⎪⎫x -122-14.由-1<x <1,得-14≤m <2,故M =⎩⎨⎧⎭⎬⎫m ⎪⎪⎪-14≤m <2. (2)由x ∈N 是x ∈M 的必要条件,知M ⊆N .①当a >2-a ,即a >1时,N ={x |2-a <x <a }, 则⎩⎪⎨⎪⎧2-a <-14,a ≥2,a >1,解得a >94.②当a <2-a ,即a <1时,N ={x |a <x <2-a },则⎩⎪⎨⎪⎧a <1,a <-14,2-a ≥2,解得a <-14.③当a =2-a ,即a =1时,N =∅,不满足M ⊆N .综上可得,实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a <-14或a >94 .21.(12分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3000⇒5x -14-3x≥0,又1≤x ≤10,可解得3≤x ≤10.(2)设利润为y 元,则y =900x·100⎝ ⎛⎭⎪⎫5x +1-3x=9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛⎭⎪⎫1x -162+6112,故x =6时,y max =457500元.22.( 12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b },(1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)由题意知,1和b 是方程ax 2-3x +2=0的两根,则⎩⎪⎨⎪⎧3a =1+b2a =b,解得⎩⎪⎨⎪⎧a =1b =2.(2)不等式ax 2-(ac +b )x +bc <0,即为x2-(c+2)x+2c<0,即(x-2)(x-c)<0.①当c>2时,2<x<c;②当c<2时,c<x<2;③当c=2时,原不等式无解.综上知,当c>2时,原不等式的解集为{x|2<x<c};当c<2时,原不等式的解集为{x|c<x<2};当c=2时,原不等式的解集为∅.。
最新人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(有答案解析)

一、选择题1.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .32.若正数x ,y 满足2440x xy +-=,则x y +的最小值是( )A B C .2D 3.已知正数x ,y 满足2021x y xy +=,则2120x y+的最小值为( ) A .2 B .3C .4D .54.已知12x >,则2321x x +-的最小值是( )A .32 B 32C 2D .325.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等,假设今明两年该物品的价格分别为1p 、2p ()12p p ≠,则这两种方案中平均价格比较低的是( )A .甲B .乙C .甲、乙一样D .无法确定6.已知不等式222ax y xy +≥,若对于任意[1,2],[2,3]x y ∈∈,该不等式恒成立,则实数a 的取值范围是( ). A .3a ≥-B .1a ≥-C .18a ≥D .118a -≤≤7.已知正实数,a b 满足1a b +=,则11b a b ⎛⎫+ ⎪⎝⎭的最小值是( )A .112B .5C .2+D .3+8.已知2m >,0n >,3m n +=,则112m n+-的最小值为( )A .3B .4C .5D .69.若实数,x y 满足0xy >,则的最大值为( ) A .22B .22+C .422+D .422-10.下列命题正确的是( ) A .若a bc c>,则a b > B .若22a b >,则a b > C .若2211a b >,则a b < D a b <a b <11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则3a b 的最小值为( ) A .4B .423+C .8D .823+12.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( )A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤- ⎥⎝⎦D .(][),22,-∞+∞二、填空题13.已知正实数,x y 满足48x y +=,则xy 的最大值为_______________. 14.当0x >时,不等式2210x ax ++≥恒成立,则实数a 的取值范围是______. 15.已知正实数a ,b 满足21ab a b ++=,则188a b a b+++的取值范围为_________. 16.若a ,b 为实数,且12,12a b ≤≤≤≤,则21a b ab+的最小值是________. 17.已知0a >,b R ∈,当0x >时,()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,则+a b 的最小值是_____________.18.某企业开发一种产品,生产这种产品的年固定成本为3600万元,每生产x 千件,需投入成本c (x )万元,c (x )=x 2+10x .若该产品每千件定价a 万元,为保证生产该产品不亏损,则a 的最小值为_____.19.若不等式256x xt <--对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,则实数t 的取值范围是______.20.如图:已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树_________米时,看A 、B 的视角最大.三、解答题21.解关于x 的不等式2(2)210()a x x a R -+-≥∈.22.已知函数()21f x x bx =+-有两个零点1x ,2x ,且1x ,2x 的倒数和为1-.(1)求函数()f x 的解析式;(2)若在区间[]2,1-上,不等式()2->-f x x m 恒成立,求实数m 的取值范围.23.设函数()()()2230f x ax b x a =+-+≠.(1)若(1)4f =,且,a b 均为正实数,求14a b+的最小值,并确定此时实数,a b 的值; (2)若b R ∀∈满足()222(1)32b f x a x a ab >--+-+在x ∈R 上恒成立,求实数a 的取值范围.24.已知函数()22f x x ax =-,x ∈R ,a R ∈.()1当1a =时,求满足()0f x <的x 的取值范围; ()2解关于x 的不等式()23f x a <;()3若对于任意的()2,x ∈+∞,()1f x >均成立,求a 的取值范围.25.如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设km AB y =,并在公路同侧建造边长为km x 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知1AB AC =+,且60ABC ∠=︒.(1)求y 关于x 的函数;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:该公司建中转站围墙和两条道路总造价M 最低为多少?26.当a 为何值时,不等式22(1)(1)10a x a x ----<的解集是全体实数?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误; 对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则22b a b aa b a b+≥⨯=,当且仅当22a b =时取等号,显然成立,②正确; 对于③,22221323233y x x x x =+≥+⨯=++,2233x x +=+231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以4343x x+≥ 函数()4230y x x x=-->的最大值为243-,所以结论不正确,④错误.故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】首先条件变形为2404x y x-=>,代入x y +后利用基本不等式求最小值.【详解】0,0x y >>,22444004x x xy y x-+-=⇒=>,解得:02x <<243144x x x y x x x -∴+=+=+≥=,当314x x =,即x =即x y + 故选:A 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方3.C解析:C 【分析】由已知得20211y x +=,再202121202120x y x y y x ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式可得选项. 【详解】由2021x y xy +=得20211y x+=,2021202122224212021202120x y x y x y y x y x ⎛⎫⎛⎫+=++=++≥+=+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当20212120x y y x=且20211y x +=,即42,40x y ==.时,等号成立. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.D解析:D 【分析】由2111333311212222x x x x x x ⎛⎫+=+=-++⎪-⎝⎭--,利用均值不等式可得答案. 【详解】21113333331121222222x x x x x x ⎛⎫+=+=-++≥= ⎪-⎝⎭-- 当且仅当113122x x ⎛⎫-= ⎪⎝⎭-,即132x =+ 时,取得等号. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.5.B解析:B 【分析】分别计算出两种方案的平均价格,然后利用作差法可得出结论. 【详解】对于甲方案,设每年购买的数量为x ,则两年的购买的总金额为12p x p x +, 平均价格为121222p x p x p p x ++=; 对于乙方案,设每年购买的总金额为y ,则总数量为12y yp p +, 平均价格为12121222p p yyy p p p p =++.因为()()()()221212121212121212420222p p p p p p p p p p p p p p p p +--+-==>+++,所以,12121222p p p p p p +>+. 因此,乙方案的平均价格较低. 故选:B. 【点睛】方法点睛:比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,作差法的主要步骤为:作差——变形——判断正负.在所给不等式是积、商、幂的形式时,可考虑比商6.B解析:B 【分析】 将a 分离出来得22()y ya x x ≥-,然后根据[1x ∈,2],[2y ∈,3]求出y x的范围,令yt x=,则22a t t ≥-在[1,3]上恒成立,利用二次函数的性质求出22t t -的最大值,即可求出a 的范围. 【详解】 解:由题意可知:不等式222ax y xy +≥对于[1,2],[2,3]x y ∈∈恒成立, 即:22()y ya x x≥-,对于[1,2],[2,3]x y ∈∈恒成立, 即:x 2ma 2()yy a xx ⎡⎤⎢⎥⎣⎦≥-,对于[1,2],[2,3]x y ∈∈恒成立,令y t x =,结合图形可知yx的取值范围是(1,3),则13t ≤≤, 22a t t ∴≥-在[1,3]上恒成立,221122()48y t t t =-+=--+,13t ≤≤,∴当1t =时,1max y =-,1a ∴≥-. 故选:B.【点睛】关键点点睛:本题考查的是不等式与恒成立的综合类问题,利用分离参数法、换元法和将恒成立问题转化为二次函数最值问题是解题的关键,还需要注意换元时新元的范围,属于中档题.7.C解析:C 【分析】将原式变形为()2211b a b b a b ab++⎛⎫+= ⎪⎝⎭,再利用基本不等式计算可得; 【详解】解:()222111b a b b b a b ab ab+++⎛⎫+== ⎪⎝⎭ )()22222222222222b a abab b a ab ababab++++==≥=,当且仅当2a b =时取等号,即22a =21b =时等号成立,故选:C . 【点睛】本题考查基本不等式的应用,属于中档题.8.B解析:B 【分析】由2m >,0n >,3m n +=,所以21m n -+=,结合“1”的代换,结合基本不等式,即可求解. 【详解】因为2m >,0n >,3m n +=,所以21m n -+=, 则()1111222224222n m m n m n m n m n-⎛⎫+=+-+=++≥+= ⎪---⎝⎭,当且仅当22n m m n-=-且3m n +=,即51,22m n ==时取等号,故选:B. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答合理构造基本不等式的条件“一正、二定、三相等”,结合“1”的代换技巧是解答的关键,着重考查推理与运算能力.9.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m =-=-,则2222224()424222x y m n n m n m n mx y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n mm n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.10.D解析:D 【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小. 【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D a b <定有a b <,故D 项正确. 故选:D 【点睛】本题主要考查不等关系与不等式,属于基础题.11.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到13tan b α=ABC 中,有tan a b α=⋅,然后将3a b +转化为4ta n a αα=++利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号, 故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.12.C解析:C 【分析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选C . 【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.二、填空题13.4【分析】由基本不等式求解【详解】因为所以所以当且仅当即时等号成立故答案为:4【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)二解析:4 【分析】由基本不等式求解. 【详解】因为0,0x y >>,所以48x y +=≥=, 所以4xy ≤,当且仅当4x y =,即1,4x y ==时等号成立. 故答案为:4. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】本题首先可根据将不等式转化为然后利用基本不等式得出即可得出结果【详解】因为所以即因为不等式恒成立所以恒成立因为当且仅当时取等号所以实数的取值范围是故答案为:【点睛】易错点睛:利用基本不等式求解析:)⎡-+∞⎣【分析】本题首先可根据0x >将不等式转化为12a x x ⎛⎫≥-+⎪⎝⎭,然后利用基本不等式得出12x x +≥. 【详解】因为0x >,所以2210x ax ++≥,即12a x x ⎛⎫≥-+⎪⎝⎭, 因为不等式2210x ax ++≥恒成立,所以12a x x ⎛⎫≥-+ ⎪⎝⎭恒成立,因为1122x x x x ⎛⎫+≥=⇒-+≤- ⎪⎝⎭,当且仅当2x =时取等号,所以a ≥-,实数a 的取值范围是)⎡-+∞⎣,故答案为:)⎡-+∞⎣. 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】先根据正实数ab 满足找到ab 的关系及ab 的范围然后把通换元法转化为函数求值域【详解】由得∴且∵∴∴∴则令则在上递减(因为)∴令则∴=在上单增∴故答案为:(69)【点睛】利用基本不等式求最值时 解析:()6,9【分析】先根据正实数a ,b 满足21ab a b ++=找到a ,b 的关系及a ,b 的范围,然后把188a b a b+++通换元法转化为函数求值域. 【详解】由21ab a b ++=得21ab a b ++=,∴121ab a -=+,且(1)(2)3a b ++=. ∵0,0a b >>,∴120a ->,∴12a <∴102a <<.则3321311a b a a a a +=+-=++-++, 令31,1,2u a u ⎛⎫=+∈ ⎪⎝⎭则33a b u u+=+-在31,2⎛⎫⎪⎝⎭上递减,(因为32<),∴112a b ⎛⎫+∈ ⎪⎝⎭,. 令=+t a b ,则112t ⎛⎫∈ ⎪⎝⎭,, ∴188a b a b +++=18t t +在112⎛⎫⎪⎝⎭,上单增, ∴()1886,9a b a b++∈+. 故答案为:(6,9). 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.16.【分析】利用基本不等式得到通过求出进而求解【详解】由得又因为所以当时此时成立可得时满足条件所以的最小值是;故答案为:【点睛】关键点睛:解题的关键在于基本不等式后得到的求最值得到进而求解解析:2【分析】利用基本不等式,得到21a b ab +≥=,通过求出min2⎡=⎢⎣,进而求解 【详解】由12,12a b ≤≤≤≤得,21a b ab +≥=,又因为12b ≤≤,所以,当2b =时,min2⎡=⎢⎣,此时21a b ab =成立,可得,2a b =,a =2b =时,满足条件,所以,21a b ab +的最小值是2;【点睛】关键点睛:解题的关键在于基本不等式后得到的min⎡=⎢⎣,进而求解17.【分析】根据题中条件先讨论根据不等式恒成立求出;再讨论根据不等式恒成立求出结合题意得到再由基本不等式即可求出结果【详解】因为(1)当时;不等式恒成立可化为在上恒成立即在上恒成立因为在上显然单调递增所【分析】根据题中条件,先讨论10x a<<,根据不等式恒成立求出12a b a ≥-;再讨论1x a ≥,根据不等式恒成立,求出12a b a ≤-,结合题意,得到12ab a =-,再由基本不等式,即可求出结果. 【详解】 因为0a >,(1)当10x a <<时,10ax ;不等式()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,可化为102x b x --≤在10,a ⎛⎫⎪⎝⎭上恒成立,即12b x x ≥-在10,a ⎛⎫ ⎪⎝⎭上恒成立, 因为12y x x =-在10,a ⎛⎫⎪⎝⎭上显然单调递增,所以1122a x x a -<-, 因此只需12a b a ≥-; (2)当1x a ≥时,10ax -≥;不等式()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,可化为102x b x --≥在1,a ⎛⎫+∞ ⎪⎝⎭上恒成立,即12b x x ≤-在1,a ⎛⎫+∞ ⎪⎝⎭上恒成立, 因为12y x x =-在1,a ⎛⎫+∞ ⎪⎝⎭上显然单调递增,所以1122a x x a ->-, 因此只需12a b a ≤-; 综上,只能12a b a =-,所以12a b a a b =+≥==+ 当且仅当12a a=,即a =.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方18.130【分析】本题先根据题意建立函数与不等式关系再运用参变分离化简最后运用基本不等式求最值即可【详解】解:有题意建立利润函数关系:()整理得:为保证生产该产品不亏损则()即当且仅当即取最小值130此解析:130 【分析】本题先根据题意建立函数与不等式关系,再运用参变分离化简,最后运用基本不等式求最值即可. 【详解】解:有题意建立利润函数关系:2()(103600)f x ax x x =-++,(0x >) 整理得:2()(10)3600f x x a x =-+--,为保证生产该产品不亏损,则2()(10)36000f x x a x =-+--≥,(0x >)即36001010130a x x ≥++≥=, 当且仅当3600x x=即60x =,a 取最小值130,此时产品不亏损 故答案为:130. 【点睛】本题考查函数与不等式关系、参变分离法,基本不等式解决实际问题中的最值问题,是基础题.19.【分析】整理已知条件得到对于恒成立利用二次函数的特点求解范围即可【详解】由得则对于恒成立令则;令则;综上:故答案为:【点睛】本题主要考查了绝对值不等式和一元二次不等式属于中档题解析:57,22⎛⎫⎪⎝⎭【分析】整理已知条件得到2211010x xt x xt ⎧+-<⎨-+<⎩对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,利用二次函数的特点求解范围即可. 【详解】由256x xt <--,得22265565xt x x xt x -<-⇒-<-<-,则2211010x xt x xt ⎧+-<⎨-+<⎩对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,令()211f x x xt =+-,则()431072272202t f t t f ⎧⎧⎛⎫<⎪<⎪⎪ ⎪⇒⇒<⎝⎭⎨⎨⎪⎪<<⎩⎪⎩;令()21g x x xt =-+,则()51052252202t g t t g ⎧⎧⎛⎫>⎪<⎪⎪⎪⇒⇒>⎝⎭⎨⎨⎪⎪><⎩⎪⎩;综上:5722t <<. 故答案为:57,22⎛⎫⎪⎝⎭. 【点睛】本题主要考查了绝对值不等式和一元二次不等式.属于中档题.20.6【分析】过点作设根据已知中树顶距地面米树上另一点距地面米人眼离地面米我们易求出即的表达式进而根据基本不等式求出的范围及取最大值时的值进而得到答案【详解】如图过点作则设由图可知:当且仅当时等号成立即解析:6 【分析】过点C 作CD AB ⊥,设CD x =,根据已知中树顶A 距地面212米,树上另一点B 距地面112米,人眼C 离地面32米.我们易求出tan ACB ∠,即tan()ACD BCD ∠-∠的表达式,进而根据基本不等式,求出tan ACB ∠的范围及tan ACB ∠取最大值时x 的值,进而得到答案. 【详解】 如图,过点C 作CD AB ⊥,则213922AD =-=,113422BD =-=, 设CD x =,由图可知:94tan tan 555tan tan()94361tan ?tan 26121?ACD BCD x x ACB ACD BCD ACD BCD x x x x-∠-∠∠=∠-∠====+∠∠⨯++,当且仅当6x =时,等号成立.即6x =时,tan ACB ∠有最大值,此时ACB ∠最大. 故答案为: 6 【点睛】本题考查的知识点是三角函数的实际应用,两角差的正切公式,及基本不等式,其中构造适当的三角形,将问题转化为一个三角函数问题是解答本题的关键.三、解答题 21.无 22.无 23.无 24.无 25.无 26.无。
人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》检测卷(答案解析)

一、选择题1.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等,假设今明两年该物品的价格分别为1p 、2p ()12p p ≠,则这两种方案中平均价格比较低的是( )A .甲B .乙C .甲、乙一样D .无法确定2.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( )A .a v <<B .v <C 2a bv +<< D .2abv a b=+ 3.当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为( ) A .7B .8C .9D .104.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为( ) A .1B .38C .37 D .135.若不等式210x ax -+≥对一切[2,)x ∈+∞恒成立,则实数a 的最大值为( ) A .0B .2C .52D .36.下列命题中是真命题的是( )A .y =的最小值为2;B .当a >0,b >0时,114a b++; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.7.若集合{}2|10A x ax ax =-+<=∅,则实数a 的取值范围是 ( ) A .{}|04a a << B .{|04}a a ≤< C .{|04}a a <≤D .{|04}a a ≤≤8.对于实数a 、b 、m ,下列说法:①若22am bm >,则a b >;②若a b >,则a ab b ;③若0b a >>,0m >,则a m ab m b+>+;④若0a b >>且ln ln a b =,则2a b +的最小值是,正确的个数为( ) A .1B .2C .3D .49.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd <10.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( )A . 1B .1C . 2D .211.若关于x 的不等式0ax b ->的解集是(),2-∞-,关于x 的不等式201ax bxx +>+的解集为( )A .(,1)(1,2)-∞-⋃B .(1,0)(2,)-+∞C .(,1)(0,2)-∞-⋃D .(0,1)(2,)+∞12.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则2a c ac a c+-+的最小值( ) A .12B .2C .14D .4二、填空题13.当0x >时,不等式2210x ax ++≥恒成立,则实数a 的取值范围是______. 14.已知a 、b 都是正数,且0a b ab +-=,则1911b a b +--的最小值是__________. 15.已知0,0x y >>,且1x y ⋅=,则11422x y x y+++的最小值为______________________ 16.当1x >时,11x x +-的最小值为___________. 17.设0b >,21a b -=,则242a a b+的最小值为_________.18.已知“命题2:()3()p x m x m ->-”是“命题2:340q x x +-<”成立的必要不充分条件,则实数m 的取值范围为________.19.某学习小组,调查鲜花市场价格得知,购买2支玫瑰与1支康乃馨所需费用之和大于8元,而购买4支玫瑰与5支康乃馨所需费用之和小于22元.设购买2支玫瑰花所需费用为A 元,购买3支康乃馨所需费用为B 元,则A 、B 的大小关系是______________ 20.不等式x 2-2x +3≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是______.三、解答题21.已知命题:p 实数x 满足28200x x --≤,命题:q 实数x 满足222(1)0(0)x x m m -+-≤>,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.22.已知二次函数()2f x ax bx c =++,若不等式()20f x +>的解集为()1,2,且方程()0f x x +=有两个相等的实数根.(1)求()f x 的解析式;(2)若()1,x ∃∈+∞,()0f x mx +>成立,求实数m 的取值范围.23.已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)解不等式()2220x a x a +-->;(2)b 为何值时,230ax bx ++≥的解集为R ?24.设函数()21f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求m 的取值范围; (2)若对于[1,3]x ∈,()1f x m x >-+-恒成立,求m 的取值范围.25.在锐角ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos 2sin 2a c b Bac A +-=. (1)求角A ;(2)若2a =,求ABC ∆的面积的最大值.26.(1)已知2x <,求()92f x x x =+-的最大值; (2)已知x 、y 是正实数,且9x y +=,求13x y+的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】分别计算出两种方案的平均价格,然后利用作差法可得出结论. 【详解】对于甲方案,设每年购买的数量为x ,则两年的购买的总金额为12p x p x +, 平均价格为121222p x p x p p x ++=; 对于乙方案,设每年购买的总金额为y ,则总数量为12y yp p +, 平均价格为12121222p p yyy p p p p =++.因为()()()()221212121212121212420222p p p p p p p p p p p p p p p p +--+-==>+++,所以,12121222p p p p p p +>+. 因此,乙方案的平均价格较低. 故选:B. 【点睛】方法点睛:比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,作差法的主要步骤为:作差——变形——判断正负.在所给不等式是积、商、幂的形式时,可考虑比商2.C解析:C 【分析】根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s sa b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.3.C解析:C 【分析】 分离参数化为41414m x x≤+-恒成立,再利用基本不等式求出不等式右边的最小值即可得解. 【详解】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立, 因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.D解析:D【分析】已知等式变形为411x y+=,然后用“1”的代换求出x y +的最小值即可得.【详解】∵x ,y 均为正数,40x y xy +-=,∴411x y+=,∴414()559y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当4y x x y =,即6,3x y ==时等号成立,∴33193x y ≤=+,所求最大值为13. 故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.C解析:C 【分析】采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值. 【详解】因为不等式210x ax -+≥对一切[)2,x ∈+∞恒成立,所以对一切[)2,x ∈+∞,21ax x ≤+,即21x a x+≤恒成立.令()[)()2112,x g x x x x x+==+∈+∞.易知()1g x x x=+在[)2,+∞内为增函数. 所以当2x =时,()min 52g x =,所以a 的最大值是52.故选C . 【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发); (2)参变分离法(考虑新函数与参数的关系).6.B解析:BCD 【分析】利用基本不等式分别判断A、B、D选项,C选项可设,a bαα==,利用三角函数的值域求范围.【详解】A选项,222x+≥0 >,∴2y=≥==,即221x+=±时成立,又222x≥+,故A错;B选项,当a>0,b>0时,1124a b+++≥⨯=,当且仅当1a b=⎧=,即1a b==时等号成立,B正确;C选项,设,a bαα==,则2sin24a bπααα⎛⎫+==+≤⎪⎝⎭,C正确;D选项,2a b+=,()212192a b⎡⎤⎛⎫∴+++=⎪⎢⎥⎝⎭⎣⎦,则()121252229291111++4+22442+2242a b a baba ba b⎛⎫+⎪⎡⎤+⎛⎫⎛⎫+++=⨯++⎪⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛≥⨯+=⎝⎭,当且仅当122422aba b++=++且2a b+=时等号成立,解得1a b==,故D正确.故选:BCD【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.7.D解析:D【分析】本题需要考虑两种情况,00a a =≠,,通过二次函数性质以及即集合性质来确定实数a 的取值范围. 【详解】设()21f x ax ax =-+当0a =时,()10f x =>,满足题意 当0a ≠时,()f x 时二次函数 因为{}2|10A x ax ax =-+<=∅ 所以()21f x ax ax =-+恒大于0,即0≤所以240a a -≤,解得04a ≤≤. 【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论.8.C解析:C 【解析】分析:由不等式性质对其判定 详解:对于①,若22am bm >,20m >,则a b >,故正确对于②,若a b >,则a a b b >,正确 对于③,若0b a >>,0m >,则a m ab m b+>+,故正确 对于④,若0a b >>且lna lnb =,则1ab =,1b a=122a b a a∴+=+≥当12a a =时等号成立,即12a =< 这与ab >矛盾,故错误 综上所述,正确的个数为3 故选C点睛:由不等式性质对其判定,若能举出反例即可判断其错误,注意数值的符号,对于④中利用基本不等式求出最小值需要满足一正二定三相等,本题在取等号时是取不到的,故错误.9.B解析:B 【分析】由题意利用不等式的性质逐一考查所给的四个选项中的结论是否正确即可.其中正确的命题可以用不等式的性质进行证明,错误的命题给出反例即可. 【详解】对于A ,若22ac bc >,则0c ≠,2222ac bc c c>,即a b >,故正确;对于B ,根据不等式的性质,若0a b <<,不妨取2,1a b =-=-,则22a b >,故题中结论错误;对于C ,若0a b >>,则a b ab ab>,即11a b <,故正确;对于D ,若0a b <<,0c d >>,则0a b ->->,故ac bd ->-,ac bd <,故正确.故选B. 【点睛】本题主要考查不等式的性质及其应用,属于中等题.10.D解析:D 【解析】由a (a +b +c )+bc =4-得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c=1)=-2. 故选D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误11.C解析:C 【分析】根据不等式及解集,可得2b a =-,将不等式201ax bxx +>+化简后,结合穿根法即可求得解集.【详解】关于x 的不等式0ax b ->变形可得ax b >,因为其解集为(),2-∞- 所以0a <,且2ba=-关于x 的不等式201ax bxx +>+变形可得201b a x x a x ⎛⎫+ ⎪⎝⎭>+ 即()2120a x x x >+-,所以()120ax x x >+-因为0a <,不等式可化为()120x x x <+- 可化为()()210x x x -+< 利用穿根法可得1x <-或02x << 即()(),10,2x ∈-∞-⋃ 故选:C 【点睛】本题考查了含参数的不等式解法,注意不等式的符号变化,属于中档题.12.A解析:A 【分析】由已知条件和三角形的面积公式得4ac =,再根据基本不等式可得+4a c ≥,令24a c y a c +=-+,+a c t =,24t y t =-(4t ≥),由此函数的单调性可得选项. 【详解】 由已知6B π=且1ABC S =△,得1sin 126ac π=,解得4ac =, 所以2+42a c ac ⎛⎫=≤ ⎪⎝⎭,即+4a c ≥,当且仅当a c =时取等号, 所以224a c a c ac a c a c ++-=-++,令24a c y a c +=-+,+a c t =,则24t y t=-(4t ≥), 而24t y t =-在[)4+∞,单调递增,所以24214442t y t =-≥-=,所以2a c ac a c+-+的最小值为12. 故选:A. 【点睛】本题考查三角形的面积公式,基本不等式的应用,以及运用函数的单调性求最值的问题,属于中档题.二、填空题13.【分析】本题首先可根据将不等式转化为然后利用基本不等式得出即可得出结果【详解】因为所以即因为不等式恒成立所以恒成立因为当且仅当时取等号所以实数的取值范围是故答案为:【点睛】易错点睛:利用基本不等式求解析:)⎡-+∞⎣【分析】本题首先可根据0x >将不等式转化为12a x x ⎛⎫≥-+ ⎪⎝⎭,然后利用基本不等式得出12x x+≥. 【详解】 因为0x >,所以2210x ax ++≥,即12a x x ⎛⎫≥-+ ⎪⎝⎭, 因为不等式2210x ax ++≥恒成立,所以12a x x ⎛⎫≥-+⎪⎝⎭恒成立,因为1122x x x x ⎛⎫+≥=⇒-+≤- ⎪⎝⎭,当且仅当x =时取等号,所以a ≥-,实数a 的取值范围是)⎡-+∞⎣,故答案为:)⎡-+∞⎣.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 14.【分析】由可得出根据已知条件得出将代入所求代数式可得出利用基本不等式可求得的最小值【详解】所以由解得则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必 解析:15【分析】由0a b ab +-=可得出1b a b =-,根据已知条件得出1b >,将1b a b =-代入所求代数式可得出()19919111b b a b b +=-++---,利用基本不等式可求得1911b a b +--的最小值. 【详解】0a b ab +-=,所以,()1a b b -=-,1b a b ∴=-, 由010b a b b ⎧=>⎪-⎨⎪>⎩,解得1b >,则10b ->, 所以,()()919191919915111111b b b b a b b b b -++=+=-++≥=------, 当且仅当4b =时,等号成立,因此,1911b a b +--的最小值为15. 故答案为:15.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】由代入化简为利用基本不等式即可求解【详解】因为且所以当且仅当即或时等号成立则的最小值为故答案为:【点睛】方法点睛:本题主要考查了利用基本不等式求最小值问题其中解答中熟记基本不等式的使用条件一 解析:【分析】 由1x y ⋅=,代入11422x y x y +++化简为+y 42x x y ++,利用基本不等式,即可求解. 【详解】因为0,0x y >>,且1x y ⋅=,所以1144222x y x y x y x y+++=+≥++ 当且仅当42x y x y+=+,即1,1x y ==或1,1y x ==时等号成立, 则11422x y x y+++的最小值为, 故答案为:【点睛】方法点睛:本题主要考查了利用基本不等式求最小值问题,其中解答中熟记基本不等式的使用条件“一正、二定、三相等”,以及合理应用“1”的代换求解是解答的关键,着重考查推理与运算能力.16.【分析】化简得到结合基本不等式即可求解【详解】由可得则当且仅当时即等号成立所以的最小值为故答案为:【点睛】利用基本不等式求最值时要注意其满足的三个条件:一正二定三相等:(1)一正:就是各项必须为正数 解析:3【分析】 化简得到111111x x x x +=-++--,结合基本不等式,即可求解. 【详解】由1x >,可得10x ->,则11111311x x x x +=-++≥=--, 当且仅当111x x -=-时,即2x =等号成立, 所以11x x +-的最小值为3. 故答案为:3.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.4【分析】两次应用基本不等式验证等号能同时成立即得【详解】由题意当且仅当即时上述不等式中等号同时成立故答案为:4【点睛】本题考查了基本不等式求最值考查了运算求解能力逻辑推理能力在连续运用基本不等式求 解析:4【分析】两次应用基本不等式,242a a b +≥12b b +≥,验证等号能同时成立即得. 【详解】由题意211a b =+≥,2442a a b +≥===≥,当且仅当2142b b a a b⎧=⎪⎪⎨⎪=⎪⎩,即21a b =⎧⎨=⎩时上述不等式中等号同时成立. 故答案为:4.【点睛】本题考查了基本不等式求最值,考查了运算求解能力,逻辑推理能力,在连续运用基本不等式求最值时,要注意等号能否同时成立.18.或【分析】设命题中的取值集合为命题中的取值集合为由题意可得可求的取值范围【详解】由不等式可得或记集合或解不等式得记集合命题是命题成立的必要不充分条件或即或故答案为:或【点睛】本题考查充分条件必要条件 解析:m 1≥或7m ≤-【分析】设命题p 中x 的取值集合为A ,命题q 中x 的取值集合为B .由题意可得B A ≠⊂,可求m 的取值范围.【详解】由不等式2()3()x m x m ->-,可得()()30x m x m --->. 3,3m m x m +>∴>+或x m <,记集合{3A x x m =>+或}x m <.解不等式2340x x +-<,得41x -<<,记集合{}41B x x =-<<.命题p 是命题q 成立的必要不充分条件,B A , 1m ∴≥或34m +≤-,即m 1≥或7m ≤-.故答案为:m 1≥或7m ≤-.【点睛】本题考查充分条件、必要条件和解一元二次不等式,属于基础题.19.A>B 【分析】设每支支玫瑰x 元每支康乃馨y 元则由题意可得:代入可得:根据不等式性质联立即可得解【详解】设每支支玫瑰x 元每支康乃馨y 元则由题意可得:代入可得:根据不等式性质可得:而可得故故答案为:【点 解析:A >B【分析】设每支支玫瑰x 元,每支康乃馨y 元,则2,3x A y B ==,由题意可得:284522x y x y +>⎧⎨+<⎩,代入可得:8352223B A B A ⎧+>⎪⎪⎨⎪+<⎪⎩,根据不等式性质,联立即可得解.【详解】设每支支玫瑰x 元,每支康乃馨y 元,则2,3x A y B ==,由题意可得:284522x y x y +>⎧⎨+<⎩, 代入可得:8352223B A B A ⎧+>⎪⎪⎨⎪+<⎪⎩, 根据不等式性质可得:6B <, 而83B A >-,可得6A >, 故A B >,故答案为:A B >.【点睛】 本题考查了利用不等式解决实际问题,考查了不等式性质,同时考查了转化思想和计算能力,属于中档题.20.(-13)【解析】由题意得解析:(-1,3)【解析】由题意得222min (23)2122113x x a a a a a -+>--∴>--⇒-<<三、解答题21.无22.无23.无24.无25.无26.无。
人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试(包含答案解析)(2)

一、选择题1.已知0x >,0y >,且1x y xy +=-,则( )A .xy 的最大值为3+B .xy 的最大值为6C .2x y +的最小值为3+D .2x y +的最小值为72.已知0a >,0b >,若不等式122m a b a b+≥+恒成立,则实数m 的最大值为( ) A .10 B .9 C .8 D .73.已知关于x 的不等式210mx mx ++>恒成立,则m 的取值范围为( ).A .()0,4B .[)0,4C .[]0,4D .(](),04,-∞⋃+∞4.对于任意实数x ,不等式210ax ax -+>恒成立,则实数a 的取值范围是( )A .(]0,4B .[)0,4C .(][),04,-∞+∞ D .()(),04,-∞+∞5.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2463450x x -+<成立的x 的取值范围是( ) A .[)1,15B .[]2,8C .[)2,8D .[)2,15 6.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙7.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .18.若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .4-B .14C .10-D .109.若关于x 的不等式20x px q ++<的解集为{|23}x x <<,则关于x 的不等式22028x px qx x ++>--的解集是( ) A .()2,3 B .()(),24,-∞-+∞C .()()2,23,4-D .()()(),22,34,-∞-+∞10.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则3a b +的最小值为( ) A .4B .423+C .8D .823+11.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->-D .若a b >,c d <,则a b c d> 12.集合{}2230A x x x =--≤,{}1B x x =>,则A B =( ).A .()1,3B .(]1,3C .[)1,-+∞D .()1,+∞二、填空题13.设m ,a R ∈,()()211f x x a x =+-+,2()24mg x mx ax =++,若“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,则实数m 的取值范围是___________.14.已知正数,x y 满足10xy y -+=,则4y x+的最小值为___________. 15.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b+++++的最小值是_________. 16.已知函数121()22x x f x +-+=+,如果对任意t ∈R ,f (3t 2+2t )+f (k 2﹣2t 2)<0恒成立,则满足条件的k 的取值范围是_____.17.设2020a b +=,0b >,则当a =____________时,12020a a b+取得最小值.18.已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为__________. 19.函数()10y x x x=->的图象上一点到坐标原点的距离的平方的最小值为________. 20.若关于x 的方程的两根都大于2,则m 的取值范围是________三、解答题21.对于四个正数x y z w ,,,,如果xw yz <,那么称()x y ,是()z w ,的“下位序对”. (1)对于23711,,,,试求()27,的“下位序对”; (2)设a b c d ,,,均为正数,且()a b ,是()c d ,的“下位序对”,试判断c a a cd b b d++,,之间的大小关系.22.已知函数2()(,)f x x bx c b c =++∈R ,且()0f x ≤的解集为[1,2]-. (1)求函数()f x 的解析式;(2)设函数()f x 在[,1]x t t ∈+上的最小值为()g t ,求()g t 的表达式.23.(1)解不等式24502x x x --≥-;(2)解关于x 的不等式:210()x ax a a R -+-<∈ .24.已知正实数x ,y 满足等式2520x y +=. (1)求lg lg u x y =+的最大值;(2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围.25.解关于x 的不等式:()2220ax x ax a -≥-<.26.若关于x 的不等式(1-a )x 2-4x +6<0的解集是x| x<-3或x> 1}. (1)求实数a 的值;(2)解关于x 的不等式2x 2+(2-a )x -a>0.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用公式x y +≥,将等式转化为不等式,求xy 的范围;由条件转化为11x y x +=-,代入2x y +后,利用基本不等式求最小值.【详解】0,0x y >>,x y +≥1xy ∴-≥210-≥,10x y xy +=->1>1t =>,即2210t t --≥,解得:1t ≥或1t ≤1≥,(213xy ≥=+,所以xy 的最小值是3+AB 不正确;10,0,1011x x y x y xy y x x +>>+=-⇒=>⇒>- ()11222222121111x x x y x x x x x x +-++=+=+=-+++---()2213371x x =-++≥=-,当()2211x x -=-时,即2x =时等号成立,所以2x y +的最小值是7,故D 正确. 故选:D 【点睛】关键点点睛:本题考查根据条件等式,利用基本不等式求最值,条件等式除了基本变形,同时也需注意变量的范围,比如本题中的1,1xy x >>等条件.2.C解析:C 【分析】 由已知可得()122m a b a b ⎛⎫≤++ ⎪⎝⎭,即求()122a b a b ⎛⎫++ ⎪⎝⎭的最小值,由基本不等式可得答案. 【详解】因为0a >,0b >,则()122m a b a b ⎛⎫≤++ ⎪⎝⎭,所以()1242448b a a b a b a b ⎛⎫++=++≥+⎪⎝⎭,当且仅当4b aa b=即2b a =等号成立,要使不等式恒成立,所以8m ≤ 所以实数m 的最大值为8.故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】分0m =和0m ≠两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】因为关于x 的不等式210mx mx ++>恒成立,分以下两种情况讨论: (1)当0m =时,可得10>,合乎题意; (2)当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,实数m 的取值范围是[)0,4. 故选:B. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则0a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则0a <⎧⎨∆≤⎩. 4.B解析:B 【分析】讨论0a =和0a ≠情况,再根据一元二次不等式与二次函数的关系,解不等式得解. 【详解】 关于x 的不等式210ax ax -+>恒成立,当0a =时,10>恒成立,满足题意当0a ≠时,即函数()21f x ax ax =-+恒在x 轴上方即可, 所以00a >⎧⎨∆<⎩,即2040a a a >⎧⎨-<⎩,解得04a <<,所以实数a 的取值范围是[0,4).故选:B 【点睛】本题考查了一元二次不等式恒成立求参数的取值范围,考查了一元二次不等式的解法,属于基础题.5.A解析:A 【分析】先由不等式[][]2463450x x -+<得出[]x 的取值范围,再由[]x 的定义得出x 的取值范围. 【详解】不等式[][]2463450x x -+<即为[]()[]()43150x x --<,解得[]3154x <<, 则[]{}1,2,3,,14x ∈,因此,115x ≤<,故选A.【点睛】本题考查一元二次不等式的解法,同时也考查了取整函数的定义,解题的关键要结合不等式得出[]x 的取值,考查计算能力,属于中等题.6.B解析:B 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证7.C解析:C 【分析】将11tan tan B C +化为关于tan A 的式子,然后利用基本不等式可以求出最小值. 【详解】在ABC 中,()tan tan C A B =-+,111111tan tan tan tan tan tan tan tan tan A BB C B A B B A B,tan 2tan B A =,211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.8.C解析:C 【分析】由题意可知方程220ax bx ++=的根为11,23-,结合根与系数的关系得出12,2a b =-=-,从而得出-a b 的值.【详解】由题意可知方程220ax bx ++=的根为11,23- 由根与系数的关系可知,11112,2323b a a-+=--⨯= 解得12,2a b =-=- 即12210a b -=-+=- 故选:C 【点睛】本题主要考查了根据一元二次不等式的解集求参数的值,属于中档题.9.D解析:D 【分析】根据关于x 的不等式20x px q ++<的解集为{|23}x x <<,利用韦达定理得到5,6p q =-=,则不等式22028x px q x x ++>--转化为 2256028x x x x -+>--,再利用穿根法求解.【详解】因为关于x 的不等式20x px q ++<的解集为{|23}x x <<, 所以由韦达定理得:5,6p q =-=,所以22028x px q x x ++>--,即为2256028x x x x -+>--,即为()()()()23042x x x x -->-+,即为()()()()23420x x x x ---+>用穿根法得不等式的解集为:()()(),22,34,-∞-+∞,故选:D 【点睛】本题主要考查一元二次不等式的解集的应用以及穿根法求高次不等式,属于中档题.10.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4ta n a αα=++利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号,故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.11.A解析:A 【分析】对于选项A ,由不等式性质得该选项正确;对于选项B ,11b a a b ab--=符号不能确定,所以该选项错误;通过举反例说明选项C 和选项D 错误. 【详解】对于选项A ,若ac bc >22,所以20c >,则a b >,所以该选项正确;对于选项B ,11b aa b ab--=符号不能确定,所以该选项错误; 对于选项C ,设1,0,1,3,2,3a b c d a c b d ===-=--=-=,所以a c b d -<-,所以该选项错误;对于选项D ,设0,1,2,1,0,1,a b a ba b c d c d c d==-=-=-==∴<,所以该选项错误; 故选:A 【点睛】本题主要考查不等式的性质,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平.12.B解析:B 【分析】求得集合{}|13A x x =-≤≤,结合集合交集的概念及运算,即可求解. 【详解】由题意,集合{}{}2230|13A x x x x x =--≤=-≤≤,{}1B x x =>,根据集合交集的概念及运算,可得{}(]|131,3A B x x =<≤=.故选:B. 【点睛】本题主要考查了集合交集的概念及运算,其中解答中正确求解集合A ,结合集合交集的概念及运算求解是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】先求出和恒成立时的范围然后根据充分条件的定义求解【详解】在上恒成立则解得在上恒成立首先都不可能恒成立因此解得∵对于一切实数x 是对于一切实数x 的充分条件∴解得故答案为:【点睛】思路点睛:本题考 解析:[6,)+∞【分析】先求出()0f x >和()0>g x 恒成立时a 的范围,然后根据充分条件的定义求解. 【详解】()0f x >在R 上恒成立,则2(1)40a ∆=--<,解得13a -<<,()0>g x 在R 上恒成立,首先0m ≤都不可能恒成立,因此2240m a m >⎧⎨∆=-<⎩,解得22m ma -<<, ∵“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,∴12320mmm ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得6m ≥. 故答案为:[6,)+∞.【点睛】思路点睛:本题考查一元二次不等式恒成立问题,考查由充分条件求参数范围,一元二次不等式恒成立问题,注意讨论最高次项系数(若最高次项系数为0,则不等式不是二次不等式),充分条件与必要条件问题可以利用集合的包含关系进行求解.14.9【分析】由已知条件得出将代数式与相乘展开后利用基本不等式可求得的最小值【详解】因为正数满足所以即所以当且仅当即时等号成立故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条解析:9 【分析】 由已知条件得出11x y +=,将代数式1x y +与4y x+相乘,展开后利用基本不等式可求得4y x +的最小值. 【详解】因为正数,x y 满足10xy y -+=, 所以1xy y +=,即11x y+=,所以4144()()559y x y xy x y x xy +=++=++≥+=, 当且仅当2xy =,即3y =,23x =时,等号成立. 故答案为:9 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果.【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩, 所以11113139393862164216438432x y z x y z x y z a b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++- 6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164y x x y z x x z y z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立.故答案为:4748. 【点睛】易错点睛: 利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.k<-1或k>1【分析】利用定义先求出函数为单调减函数与奇函数然后化简得到然后利用不等式得恒成立条件求出答案【详解】对于函数定义域为且所以为奇函数且对求导可得则在时为减函数可得利用为奇函数化简得利用 解析:k <-1或k >1.【分析】利用定义,先求出函数()f x 为单调减函数与奇函数,然后化简()()2223220f t t f k t ++-<得到222t t k --<,然后利用不等式得恒成立条件求出答案【详解】对于函数()f x ,定义域为R ,且()12122x x f x ---+-=+1122222xx x x+-+=+()12122x x f x +-==-+,所以,()f x 为奇函数,且对()f x 求导可得()'0f x <,则()f x 在x ∈R 时为减函数, ()()2223220f t t f k t ++-<,可得()()222322f t t f k t +<--,利用()f x 为奇函数 化简得()()222322f t t f t k +-<,利用()f x 在x ∈R 时为减函数,得222322t t t k +->,化简得222t t k --<恒成立,令()22g t t t =--,则有()2max g t k <,而()()max 11g t g =-=,所以21k <,得到1k >或1k <-答案:1k >或1k <-【点睛】本题考查函数的单调性、奇偶性以及不等式的恒成立问题,属于中档题17.【分析】根据题中所给的式子结合已知条件将式子进行整理结合绝对值的意义以及基本不等式求得结果【详解】由已知有:当且仅当时等号成立即故答案为:【点睛】该题考查的是有关求最值的问题涉及到的知识点有基本不等解析:20202019-【分析】 根据题中所给的式子,结合已知条件,将式子进行整理,结合绝对值的意义以及基本不等式求得结果.【详解】由已知有:22212020202020202020a a a a b a b a b a b a a b++=+=++212020≥-+ 221140392202020202020=-+⨯=, 当且仅当0a <,22020a b a b=时,等号成立. 即222202020192020a a b ⇒=-=. 故答案为:20202019-. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有基本不等式,属于简单题目. 18.或【解析】试题分析:当x>0时不等式f (x )>x 转化为由函数是奇函数图像关于原点对称因此当时不等式f (x )>x 的解集为综上不等式的解为(-50)∪(5+∞)考点:函数奇偶性解不等式解析:{|5x x >或50}x -<<【解析】试题分析:当x>0时,不等式f (x )>x 转化为245xx x x ->∴>,由函数是奇函数,图像关于原点对称,因此当0x <时不等式f (x )>x 的解集为50x -<<,综上不等式的解为(-5,0)∪(5,+∞)考点:函数奇偶性解不等式19.【分析】设曲线上任一点坐标为求出它是原点距离的平方用基本不等式求得最小值【详解】设曲线上作一点的坐标为则当且仅当即时等号成立故答案为:【点睛】本题考查用基本不等式求最值属于基础题解析:2【分析】设曲线上任一点坐标为1,x x x ⎛⎫-⎪⎝⎭,求出它是原点距离的平方,用基本不等式求得最小值.【详解】 设曲线上作一点P 的坐标为1,(0)x x x x ⎛⎫-> ⎪⎝⎭,则2222211222OP x x x x x ⎛⎫=+-=+-≥ ⎪⎝⎭,当且仅当2212x x =,即142x -=时等号成立,故答案为:2.【点睛】本题考查用基本不等式求最值,属于基础题. 20.;【详解】令由条件可得:解得: 解析:(5,4]--;【详解】令2()(2)5f x x m x m =+-+-, 由条件可得:22(2)042(2)5022222(2)4(5)040f m m b m a m m b ac >+-+->⎧⎧⎪⎪-⎪⎪->⇒->⎨⎨⎪⎪---≥-≥⎪⎪⎩⎩ 解得:(5,4]--三、解答题21.无22.无23.无24.无25.无26.无。
(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(有答案解析)(1)

一、选择题1.如果两个正方形的边长之和为1,那么它们的面积之和的最小值是( ) A .14B .12C .1D .22.在弹性限度内,弹簧拉伸的距离与所挂物体的质量成正比,即md k=,其中d 是距离(单位cm ),m 是质量(单位g ),k 是弹簧系数(单位g/cm ).弹簧系数分别为1k ,2k 的两个弹簧串联时,得到的弹簧系数k 满足12111k k k =+,并联时得到的弹簧系数k 满足12k k k =+.已知物体质量为20g ,当两个弹簧串联时拉伸距离为1cm ,则并联时弹簧拉伸的最大距离为( ) A .1cm 4B .1cm 2C .1cmD .2cm3.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( ) A.a v <<B.v <C2a bv +<<D .2abv a b=+ 4.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为( ) A .1B .38C .37D .135.若正数a ,b 满足21a b +=,则下列说法正确的是( ) A .ab 有最大值12B .224a b +有最小值12C .ab 有最小值18 D .224a b +有最大值146.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2463450x x -+<成立的x 的取值范围是( ) A .[)1,15B .[]2,8C .[)2,8D .[)2,15 7.下列命题中是真命题的是( )A.y =的最小值为2;B .当a >0,b >0时,114a b++;C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.8.若关于x 的不等式20x px q ++<的解集为{|23}x x <<,则关于x 的不等式22028x px qx x ++>--的解集是( ) A .()2,3 B .()(),24,-∞-+∞C .()()2,23,4-D .()()(),22,34,-∞-+∞9.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则a 的最小值为( )A .4B .4+C .8D .8+10.若a >b ,则下列不等式一定成立的是( ). A .11a b< B .55a b > C .22ac bc >D .a b >11.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( ) A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤-⎥⎝⎦D .(][),22,-∞+∞12.若关于x 的不等式0ax b ->的解集是(),2-∞-,关于x 的不等式201ax bxx +>+的解集为( )A .(,1)(1,2)-∞-⋃B .(1,0)(2,)-+∞C .(,1)(0,2)-∞-⋃D .(0,1)(2,)+∞二、填空题13.已知3x <,则函数4()3f x x x =+-的最大值是________. 14.若0a >,0b >,且4a b +=,则下列不等式中恒成立的是_______.①112ab >;②228a b +≥;2≥;④111a b+≥. 15.已知32310x x k --+⋅->对任意实数x 恒成立,则实数k 的取值范围是________.16.已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.17.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 18.若ad bc ≠,则()()2222a b cd ++__________()2ac bd +.(选“≥”、“≤”、“>”、“<”其一填入)19.设函数1e exx y a =+-的值域为A ,若[)0,A ⊂+∞,则实数a 的取值范围是________.20.已知a ,b 均为正实数,且1a b +=,则231a ab+的最小值为__________,此时a 的值为__________.三、解答题21.设2()(1)2f x x a x a =--+-.(1)若不等式()2f x ≥-对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式()0f x <(a R ∈).22.已知二次函数()f x 满足(1)8f -=且(0)(4)3f f == (1)求()f x 的解析式;(2)若[],1x t t ∈+,试求()y f x =的最小值. 23.已知0,0x y >>,且440x y +=. (1)求xy 的最大值; (2)求11x y+的最小值.24.已知函数2(),(,)f x x ax b a b R =-+∈. (Ⅰ)不等式()0f x ≤的解集为[1,2]-,求a ,b 的值; (Ⅱ)令函数()()2xg x f =,对于任意的实数12,[1,2]x x∈,不等式()()125g x g x -≤恒成立,求a 的取值范围.25.设m ∈R ,不等式()()231210mx m x m -+++>的解集记为集合P .(1)若{}12P x x =-<<,求m 的值; (2)当0m >时,求集合P .26.设全集U =R ,集合2A={x|x -4x-12<0},B={x|(x-a)(x-2a)<0}. (1)当a=1时,求集合UA B ⋂;(2)若B A ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设两个正方形的边长分别为x 、y ,可得1x y +=,利用基本不等式可求得两个正方形的面积之和22x y +的最小值.【详解】设两个正方形的边长分别为x 、y ,则0x >,0y >且1x y +=,由基本不等式可得222x y xy +≥,所以,()()22222221x yxy xy x y +≥++=+=,所以,2212x y +≥,当且仅当12x y ==时,等号成立,因此,两个正方形的面积之和22x y +的最小值为12. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】先利用串联列关系()121220k k k k +=,结合基本不等式求得12k k +最小值,再利用并联关系得到12k k k '=+最小时求得弹簧拉伸的最大距离即可. 【详解】依题意设两个弹簧的弹簧系数分别为1k ,2k ,串联时弹簧系数为k ,并联时弹簧系数为k '. 两个弹簧串联时,由m d k =知,20201m k d ===,则12111k k k =+即12121211120k kk k k k +=+=, 即()()2121212204k k k k k k ++=≤,故1280k k +≥,当且仅当1240k k ==时等号成立,两个弹簧并联时,12k k k '=+,拉伸距离12m m d k k k '==+',要是d '最大,则需12k k k '=+最小,而1240k k ==时()12min 80k k +=,故此时d '最大,为284001m d k '==='cm. 故选:A. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)妙用“1”拼凑基本不等式求最值.3.C解析:C 【分析】根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s sa b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.4.D解析:D 【分析】已知等式变形为411x y+=,然后用“1”的代换求出x y +的最小值即可得.【详解】∵x ,y 均为正数,40x y xy +-=,∴411x y+=,∴414()559y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4y x x y =,即6,3x y ==时等号成立,∴33193x y ≤=+,所求最大值为13. 故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】利用基本不等式分析22,4ab a b +的最值,注意取等条件的分析,由此得到结果. 【详解】因为21a b +=,所以12a b =+≥18ab ≤,取等号时11,24a b ==, 所以ab 有最大值18,所以A ,C 错误; 又因为()22211241414824a b ab b a ab =+-=-≥-⨯=+,取等号时11,24a b ==, 所以224a b +有最小值12,所以B 正确,D 错误, 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6.A解析:A 【分析】先由不等式[][]2463450x x -+<得出[]x 的取值范围,再由[]x 的定义得出x 的取值范围. 【详解】不等式[][]2463450x x -+<即为[]()[]()43150x x --<,解得[]3154x <<, 则[]{}1,2,3,,14x ∈,因此,115x ≤<,故选A.【点睛】本题考查一元二次不等式的解法,同时也考查了取整函数的定义,解题的关键要结合不等式得出[]x 的取值,考查计算能力,属于中等题.7.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C选项可设,a b αα==,利用三角函数的值域求范围. 【详解】 A 选项,222x +≥0>,∴2y =≥==,即221x +=±时成立,又222x ≥+,故A 错;B 选项,当a >0,b >0时,1124a b +++≥⨯=,当且仅当1a b =⎧=,即1a b ==时等号成立,B 正确;C选项,设,a b αα==,则2sin 24a b πααα⎛⎫+==+≤ ⎪⎝⎭,C 正确;D 选项,2a b +=,()212192a b ⎡⎤⎛⎫∴+++= ⎪⎢⎥⎝⎭⎣⎦, 则()121252229291111++4+22442+2242a b a b a b a b a b ⎛⎫+ ⎪⎡⎤+⎛⎫⎛⎫+++=⨯++ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛ ≥⨯+= ⎝⎭,当且仅当122422a b a b ++=++且2a b +=时等号成立,解得1a b ==,故D 正确. 故选:BCD 【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.8.D解析:D 【分析】根据关于x 的不等式20x px q ++<的解集为{|23}x x <<,利用韦达定理得到5,6p q =-=,则不等式22028x px q x x ++>--转化为 2256028x x x x -+>--,再利用穿根法求解.【详解】因为关于x 的不等式20x px q ++<的解集为{|23}x x <<, 所以由韦达定理得:5,6p q =-=,所以22028x px q x x ++>--,即为2256028x x x x -+>--,即为()()()()23042x x x x -->-+,即为()()()()23420x x x x ---+>用穿根法得不等式的解集为:()()(),22,34,-∞-+∞,故选:D 【点睛】本题主要考查一元二次不等式的解集的应用以及穿根法求高次不等式,属于中档题.9.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4ta n a αα=++利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号,故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.10.B解析:B 【分析】利用函数的单调性、不等式的基本性质即可判断出结论. 【详解】 a >b ,则1a 与1b的大小关系不确定;由函数y =x 5在R 上单调递增,∴a 5>b 5; c =0时,ac 2=bc 2;取a =-1,b =-2,|a |>|b |不成立.因此只有B 成立. 故选B . 【点睛】本题考查了函数的单调性、不等式的基本性质,考查了推理能力与计算能力,属于基础题.11.C解析:C 【分析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选C .【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.12.C解析:C 【分析】根据不等式及解集,可得2b a =-,将不等式201ax bxx +>+化简后,结合穿根法即可求得解集.【详解】关于x 的不等式0ax b ->变形可得ax b >,因为其解集为(),2-∞- 所以0a <,且2ba=- 关于x 的不等式201ax bxx +>+变形可得201b a x x a x ⎛⎫+ ⎪⎝⎭>+ 即()2120a x x x >+-,所以()120ax x x >+-因为0a <,不等式可化为()120x x x <+-可化为()()210x x x -+< 利用穿根法可得1x <-或02x << 即()(),10,2x ∈-∞-⋃ 故选:C 【点睛】本题考查了含参数的不等式解法,注意不等式的符号变化,属于中档题.二、填空题13.【分析】配凑成再用利用均值不等式直接求解【详解】因为所以当且仅当即时等号成立故答案为:【点睛】此题考查利用基本不等式求最值属于基础题方法点睛:均值不等式成立的3个条件一正二定三相等一正:的范围要为正 解析:1-【分析】配凑成()4()333f x x x ⎡⎤=--+⎢⎥-⎣⎦,再用利用均值不等式直接求解. 【详解】 因为3x <,所以()()43333413f x x x ⎡⎤=--+≤-=-=-⎢⎥-⎣⎦.当且仅当43=3x x --,即1x =时等号成立, 故答案为: 1- 【点睛】此题考查利用基本不等式求最值,属于基础题.方法点睛:均值不等式a b +≥成立的3个条件“一正、二定、三相等”. 一正:,a b 的范围要为正值二定:当,a b 为大于零的变量,那么a b +、最值.三相等:验证均值不等式在给定的范围内能否满足取等号的条件.14.②④【分析】利用基本不等式和题设得到答案即可【详解】解:且即当且仅当时取等号故选项①错误;当且仅当时取等号选项②正确;即选项③错误;当且仅当时取等号选项④正确故答案为:②④【点睛】利用基本不等式求最解析:②④ 【分析】利用基本不等式和题设得到答案即可. 【详解】解:0a >,0b >,且4a b +=,42a b ab ∴+=,即4ab ,当且仅当2a b ==时取等号,∴114ab,故选项①错误; 222()82a b a b++=,当且仅当2a b ==时取等号,∴选项②正确;42a b ab +=,即2,∴选项③错误;1111111()()(2)(221444b a a b a b a b a b +=++=+++=,当且仅当2a b ==时取等号,∴选项④正确, 故答案为:②④. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.【分析】由题意可得利用基本不等式可求得的最小值由此可求得实数的取值范围【详解】由于不等式对任意实数恒成立则由基本不等式可得当且仅当时即当时等号成立所以因此实数的取值范围是故答案为:【点睛】本题考查利解析:(),1-∞【分析】由题意可得3231x x k -<+⋅-,利用基本不等式可求得3231x x -+⋅-的最小值,由此可求得实数k 的取值范围. 【详解】由于不等式32310x x k --+⋅->对任意实数x 恒成立,则3231x x k -<+⋅-,由基本不等式可得323111x x -+⋅-≥=,当且仅当323x x -=⋅时,即当31log 22x =时,等号成立,所以,1k <,因此,实数k 的取值范围是(),1-∞.故答案为:(),1-∞. 【点睛】本题考查利用基本不等式求解不等式恒成立问题,考查参变量分离法的应用,考查计算能力,属于中等题.16.10【分析】由得出利用基本不等式即可得出答案【详解】(当且仅当时取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用属于中档题【分析】由49abc a b =+得出94c a b=+,利用基本不等式即可得出答案. 【详解】49abc a b =+4994a b c ab a b+∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号) 故答案为:10 【点睛】本题主要考查了基本不等式的应用,属于中档题.17.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比解析:32 【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b aa b a b a b a b +=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.>【分析】作差分析差的正负即可求解【详解】因为又所以所以故答案为:>【点睛】本题主要考查了比较法判断两个式子的大小考查了运算能力属于解析:> 【分析】作差,分析差的正负即可求解. 【详解】 因为()()()22222a b c d ac bd ++-+()()2222222222222a c a d b c b d a c b d acbd +=+++-+22222b c a d abcd =+-20(bc ad )=-≥,又ad bc ≠所以2()0bc ad ->所以()()22222()a bcd ac bd ++>+,故答案为:> 【点睛】本题主要考查了比较法判断两个式子的大小,考查了运算能力,属于中档题.19.【解析】因为a 所以则 解析:(,2]-∞【解析】 因为1e 2exx y a =+-≥-a ,所以[)[)2,0,,A a =-+∞⊂+∞则20,2a a -≥≤. 20.6【分析】首先由条件变形为化简后利用基本不等式求最小值【详解】所以当时等号成立即解得:所以即的最小值为6此时故答案为:6;【点睛】本题考查基本不等式求最值重点考查转化思想计算能力属于基础题型本题的关解析:6 13【分析】首先由条件变形为()222331a a b a ab ab+++=,化简后利用基本不等式求最小值. 【详解】1a b +=,()21a b ∴+=所以()222223314242a a b a a b ab a b ab ab ab b a+++++===++,44a b b a +≥=,当4a b b a =时,等号成立,即120,0a b b a a b +=⎧⎪=⎨⎪>>⎩,解得:12,33a b ==, 所以231426a ab+≥+=,即231a ab+的最小值为6,此时13a =.故答案为:6;13【点睛】本题考查基本不等式求最值,重点考查转化思想,计算能力,属于基础题型,本题的关键是利用()21a b =+变形,化简.三、解答题21.(1)33a -≤≤+2)答案见解析. 【分析】(1)一元二次不等式恒成立问题,由判别式可得参数范围.(2)不等式变形为[(2)](1)0x a x ---<,根据2a -和1的大小分类讨论得解集. 【详解】解:(1)由题意,不等式()2f x ≥-对于一切实数x 恒成立,等价于2(1)0x a x a --+≥对于一切实数x 恒成立.所以20(1)40a a ∆≤⇔--≤⇔33a -≤≤+(2)不等式()0f x <等价于2(1)20[(2)](1)0x a x a x a x --+-<⇔---<.当21a ->即3a >时,不等式可化为12x a <<-,不等式的解集为{}12x x a <<-; 当21a -=即3a =时,不等式可化为2(10)x -<,不等式的解集为∅; 当21a -<即3a <时,不等式可化为21a x -<<,此时{}21x a x -<<. 综上所述:当3a <时,不等式的解集为{}21x a x -<<; 当3a =时,不等式的解集为∅;当3a >时,不等式的解集为{}12x x a <<-. 【点睛】本题考查解一元二次不等式.掌握三个二次伯关系是解题关键.对含参数的一元二次不等式求解时需分类讨论,分类讨论一般有三个层次:一是二次项系数是否为0,不为0时二次项系数的正负,二是一元二次方程的判别式,三是在判别式大于0时,方程两根的大小.注意灵活分类.22.(1)2()43f x x x =-+;(2)2min 243,2()1,122,1t t t f x t t t t ⎧-+≥⎪=-<<⎨⎪-≤⎩. 【分析】(1)设二次函数()f x 的解析式为:2()(0)f x ax bx c a =++≠,由(1)8f -=、(0)(4)3f f ==列方程组即可求出,,a b c 得值进而可得()f x 的解析式;(2)由(1)知2()43f x x x =-+,对称轴为2x =,分情况讨论对称轴和区间的关系即可求解. 【详解】(1)设二次函数()f x 的解析式为:2()(0)f x ax bx c a =++≠,因为(1)8f -=,且(0)(4)3f f ==,则有813416433a b c a c b a b c c -+==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪++==⎩⎩, 于是二次函数解析式为:2()43f x x x =-+(2)由(1)知2()43f x x x =-+,对称轴为2x =,若2t ≥,则()f x 在[],1t t +上单调递增,所以2min ()()43f x f t t t ==-+;若12t +≤,即1t ≤时,()f x 在[],1t t +上单调递减,所以22min ()(1)(1)4(1)32f x f t t t t t =+=+-++=-;若21t t <<+,即12t <<时,2min ()(2)24231f x f ==-⨯+=-综上,2min 243,2()1,122,1t t t f x t t t t ⎧-+≥⎪=-<<⎨⎪-≤⎩【点睛】方法点睛:求函数解析式的方法(1)待定系数法:已知函数类型,可用待定系数法求解,先设出()f x ,再利用题目中给的已知条件,列出关于待定系数的方程组,进而求出待定的系数;(2)换元法:主要用于解决已知复合函数()f g x ⎡⎤⎣⎦的表达式求()f x 的解析式的问题,令()g x t =,解出x ,然后代入()f g x ⎡⎤⎣⎦中即可求得()f t ,从而求得()f x ,要注意新元的取值范围;(3)配凑法:配凑法是将()f g x ⎡⎤⎣⎦右端的代数式配凑成关于()g x 的形式,进而求出()f x 的解析式;(4)构造方程组法(消元法):主要解决已知抽象函数关系式求解函数解析式的问题.方法是根据不同的变量之间的关系,利用变换形式构造不同的等式,通过解方程组求解. 23.无24.无25.无26.无。
成都七中必修第一册第二单元《一元一次函数,方程和不等式》检测题(含答案解析)

一、选择题1.已知0x >,0y >,且1x y xy +=-,则( )A .xy的最大值为3+B .xy 的最大值为6 C .2x y +的最小值为3+D .2x y +的最小值为72.已知,,a b c ∈R ,0a b c ++=,若2320(0)ax bx c a ++=≠的两个实根是1x ,2x ,则12112121x x +--的最小值是( ) A.6B.3CD.3.对于任意实数x ,不等式210ax ax -+>恒成立,则实数a 的取值范围是( )A .(]0,4B .[)0,4C .(][),04,-∞+∞ D .()(),04,-∞+∞4.已知m >0,xy >0,当x +y =2时,不等式4m x y +≥92恒成立,则m 的取值范围是( ) A .1,)2⎡+∞⎢⎣B .[1,)+∞C .](01,D .1(02⎤⎥⎦,5.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y-> D .ln x +ln y >06.若直线220ax by +-=(),a b R +∈平分圆222460x y x y +---=,则21a b+的最小值是( ). A .1B .5C.D.3+7.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .18.对于实数a 、b 、m ,下列说法:①若22am bm >,则a b >;②若a b >,则a ab b ;③若0b a >>,0m >,则a m ab m b+>+;④若0a b >>且ln ln a b =,则2a b +的最小值是,正确的个数为( ) A .1B .2C .3D .49.若不等式2210ax ax ++>对任意的x ∈R 恒成立,则实数a 的取值范围是( ) A .[)0,1B .[)0,+∞C .(](),01,-∞+∞ D .()0,110.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦11.若关于x 的不等式20x px q ++<的解集为{|23}x x <<,则关于x 的不等式22028x px qx x ++>--的解集是( ) A .()2,3 B .()(),24,-∞-+∞C .()()2,23,4-D .()()(),22,34,-∞-+∞12.集合{}2230A x x x =--≤,{}1B x x =>,则A B =( ).A .()1,3B .(]1,3C .[)1,-+∞D .()1,+∞二、填空题13.已知a ,b 为正实数,且39ab a b ++=,则3a b +的最小值为_________. 14.已知3x <,则函数4()3f x x x =+-的最大值是________. 15.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.16.若命题“对任意实数0a >,0b >且4a b +=,不等式41m a b+>恒成立”为假命题,则m 的取值范围为_______. 17.若0x >,则函数()164f x x x=+的最小值是______. 18.若对于(0,)2x π∈,不等式2219sin cos mx x+≥恒成立,则正实数m 的取值范围为__________19.已知函数3()3f x x x =-,若对任意的实数x ,不等式()()(0)f x t f x t t +>+≠恒成立,则实数t 的取值范围__________.20.已知a ,b 均为正实数,且1a b +=,则231a ab+的最小值为__________,此时a 的值为__________.三、解答题21.已知二次函数()223f x x ax =-+.(1)若()f x 在(],1-∞上单调递减,求实数a 的最小值;(2)存在[]4,2x ∈--,使得()f x a ≥有解,求实数a 的取值范围.22.已知函数()()223f x x bx b R =-+∈.(1)若()f x 在区间[22]-,上单调递减,求实数b 的取值范围; (2)若()f x 在区间[22]-,上的最大值为9,求实数b 的值.23.已知命题:p 实数x 满足28200x x --≤,命题:q 实数x 满足222(1)0(0)x x m m -+-≤>,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.24.若0,0x y >>,且满足280x y xy +-=. (1)求xy 的最小值及相应x ,y 的值; (2)求x y +的最小值及相应x ,y 的值.25.已知函数()()221f x ax a x b =-++-.(1)若2a =-,9b =,求函数()()0f x y x x=<的最小值; (2)若1b =-,解关于x 的不等式()0f x ≥.26.(理)已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >. (1)求实数a ,b 的值;(2)解关于x 的不等式()()0ax b x c -->(c 为常数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用公式x y +≥,将等式转化为不等式,求xy 的范围;由条件转化为11x y x +=-,代入2x y +后,利用基本不等式求最小值. 【详解】0,0 x y >>,x y+≥1xy∴-≥210-≥,10x y xy+=->1>1t=>,即2210t t--≥,解得:1t≥或1 t≤1≥,(213xy≥=+,所以xy的最小值是3+AB不正确;10,0,1011xx y x y xy y xx+>>+=-⇒=>⇒>-()11222222121111x xx y x x xx x x+-++=+=+=-+++---()2213371xx=-++≥=-,当()2211xx-=-时,即2x=时等号成立,所以2x y+的最小值是7,故D正确.故选:D【点睛】关键点点睛:本题考查根据条件等式,利用基本不等式求最值,条件等式除了基本变形,同时也需注意变量的范围,比如本题中的1,1xy x>>等条件.2.D解析:D【分析】根据12112121x x+--≥.【详解】因为2320(0)ax bx c a++=≠的两个实根是1x,2x,所以1223bx xa+=-,123cx xa=,所以12112121x x+--≥====,因为0a b c++=,所以=.即12112121x x+--≥122121x x-=-时,等号成立.所以12112121x x +--的最小值是 故选:D 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】讨论0a =和0a ≠情况,再根据一元二次不等式与二次函数的关系,解不等式得解. 【详解】 关于x 的不等式210ax ax -+>恒成立,当0a =时,10>恒成立,满足题意当0a ≠时,即函数()21f x ax ax =-+恒在x 轴上方即可,所以00a >⎧⎨∆<⎩,即2040a a a >⎧⎨-<⎩,解得04a <<,所以实数a 的取值范围是[0,4).故选:B 【点睛】本题考查了一元二次不等式恒成立求参数的取值范围,考查了一元二次不等式的解法,属于基础题.4.B解析:B 【分析】根据“乘1法”,可得()4142m m x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后,利用基本不等式可推出其最小值,则可得不等式(19422m ++≥,解不等式即可. 【详解】 解:xy >0,且x +y =2,0,0x y ∴>>,()(41414114442222m m y mx x y m m m x y x y x y ⎛⎛⎫⎛⎫∴+=++=+++≥++=++ ⎪ ⎪ ⎝⎭⎝⎭⎝当且仅当4y mx x y=2y =时,等号成立, 不等式4m x y +≥92恒成立,(19422m ∴++≥,化简得50m +≥ 解得m 1≥.∴m 的取值范围是[1,)+∞故选:B . 【点睛】本题考查利用基本不等式解决最值问题,熟练掌握“乘1法”是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题5.A解析:A 【分析】结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析: 对于选项A ,0x y ->,110y xx y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.6.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.7.C解析:C 【分析】将11tan tan B C +化为关于tan A 的式子,然后利用基本不等式可以求出最小值. 【详解】在ABC 中,()tan tan C A B =-+,111111tan tan tan tan tan tan tan tan tan A BB C B A B B A B,tan 2tan B A =,211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.8.C解析:C 【解析】分析:由不等式性质对其判定 详解:对于①,若22am bm >,20m >,则a b >,故正确对于②,若a b >,则a a b b >,正确 对于③,若0b a >>,0m >,则a m ab m b+>+,故正确 对于④,若0a b >>且lna lnb =,则1ab =,1b a=122a b a a∴+=+≥当12a a =时等号成立,即12a =< 这与ab >矛盾,故错误 综上所述,正确的个数为3 故选C点睛:由不等式性质对其判定,若能举出反例即可判断其错误,注意数值的符号,对于④中利用基本不等式求出最小值需要满足一正二定三相等,本题在取等号时是取不到的,故错误.9.A解析:A 【分析】设函数()221f x ax ax =++,把不等式2210ax ax ++>在x ∈R 上恒成立,转化为()0f x >对于x R ∀∈恒成立,结合函数的性质,即可求解.【详解】解:设函数()221f x ax ax =++,则不等式2210ax ax ++>在x ∈R 上恒成立,即()0f x >对于x R ∀∈恒成立, 当0a =时,()10f x =>,显然成立; 当0a ≠时,要使()0f x >在x ∈R 上恒成立,需函数()221f x ax ax =++开口向上,且与x 轴没有交点,即2(2)410a a a >⎧⎨∆=-⨯⨯<⎩,解得01a <<, 综上知,实数a 的取值范围为[0,1).故选:A. 【点睛】本题主要考查了不等式的恒成立问题,以及二次函数的图象与性质的应用,其中解答中把不等式的恒成立问题转化为利用二次函数的性质求解是解答的关键,着重考查转化思想,以及推理与计算能力.10.A解析:A 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立, 设函数数()2f x x x=-,[]15x ∈, ()2210f x x∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.11.D解析:D 【分析】根据关于x 的不等式20x px q ++<的解集为{|23}x x <<,利用韦达定理得到5,6p q =-=,则不等式22028x px q x x ++>--转化为 2256028x x x x -+>--,再利用穿根法求解.【详解】因为关于x 的不等式20x px q ++<的解集为{|23}x x <<, 所以由韦达定理得:5,6p q =-=,所以22028x px q x x ++>--,即为2256028x x x x -+>--,即为()()()()23042x x x x -->-+,即为()()()()23420x x x x ---+>用穿根法得不等式的解集为:()()(),22,34,-∞-+∞,故选:D 【点睛】本题主要考查一元二次不等式的解集的应用以及穿根法求高次不等式,属于中档题.12.B解析:B 【分析】求得集合{}|13A x x =-≤≤,结合集合交集的概念及运算,即可求解. 【详解】由题意,集合{}{}2230|13A x x x x x =--≤=-≤≤,{}1B x x =>,根据集合交集的概念及运算,可得{}(]|131,3A B x x =<≤=.故选:B. 【点睛】本题主要考查了集合交集的概念及运算,其中解答中正确求解集合A ,结合集合交集的概念及运算求解是解答的关键,着重考查推理与运算能力.二、填空题13.6【分析】利用基本不等式得出的不等式解之可得的最小值【详解】∵∴∴当且仅当即时等号成立故答案为:6【点睛】方法点睛:本题考查用基本不等式求最小值解题方法是用基本不等式得出关于的不等式然后通过解不等式解析:6 【分析】利用基本不等式得出3a b +的不等式,解之可得3a b +的最小值. 【详解】∵0,0a b >>,∴211933(3)(3)(3)312ab a b a b a b a b a b =++=⋅++≤+++. (318)(36)0a b a b +++-≥,∴36a b +≥,当且仅当3a b =,即3,1a b ==时等号成立, 故答案为:6. 【点睛】方法点睛:本题考查用基本不等式求最小值,解题方法是用基本不等式得出关于3a b +的不等式,然后通过解不等式得出结论.不是直接由基本不等式得最小值,解题时也要注意基本不等式成立的条件.即最小值能否取到.14.【分析】配凑成再用利用均值不等式直接求解【详解】因为所以当且仅当即时等号成立故答案为:【点睛】此题考查利用基本不等式求最值属于基础题方法点睛:均值不等式成立的3个条件一正二定三相等一正:的范围要为正 解析:1-【分析】配凑成()4()333f x x x ⎡⎤=--+⎢⎥-⎣⎦,再用利用均值不等式直接求解. 【详解】因为3x <,所以 ()()43333413f x x x ⎡⎤=--+≤-=-=-⎢⎥-⎣⎦.当且仅当43=3x x --,即1x =时等号成立,故答案为: 1-【点睛】 此题考查利用基本不等式求最值,属于基础题.方法点睛:均值不等式a b +≥成立的3个条件“一正、二定、三相等”.一正:,a b 的范围要为正值二定:当,a b 为大于零的变量,那么a b +、最值.三相等:验证均值不等式在给定的范围内能否满足取等号的条件.15.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号. 则32233838y x x y xy ++==,故答案为:8.【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.16.【分析】利用基本不等式求出的最小值可得不等式恒成立时的取值范围再取其补集即可【详解】若不等式对任意实数且恒成立则当且仅当且即时等号成立所以故命题为假命题时的取值范围为故答案为:【点睛】本题主要考查命 解析:94m ≥【分析】 利用基本不等式求出41a b +的最小值,可得不等式41m a b +>恒成立时,m 的取值范围,再取其补集即可.【详解】 若不等式41m a b+>对任意实数0a >,0b >且4a b +=恒成立,则411411419()()(5)5)4444b a a b a b a b a b +=++=++≥=, 当且仅当4b a a b =且4a b +=,即83a =,43b =时等号成立. 所以94m <,故命题为假命题时,m 的取值范围为94m ≥. 故答案为: 94m ≥【点睛】本题主要考查命题的真假,基本不等式的应用,属于中档题.17.16【分析】本题先判断再求函数的最小值即可【详解】解:∵∴∴当且仅当即时取等号∴函数的最小值是16故答案为:16【点睛】本题考查基本不等式求最值是基础题解析:16【分析】本题先判断40x >,160x >,再求函数()164f x x x =+的最小值即可. 【详解】解:∵ 0x >,∴ 40x >,160x >,∴ ()16416f x x x =+≥=, 当且仅当164x x=即2x =时,取等号,∴ 函数()164f x x x=+的最小值是16. 故答案为:16.【点睛】 本题考查基本不等式求最值,是基础题.18.【分析】由不等式恒成立转化为的最小值大于9构造利用基本不等式求的最小值【详解】当时等号成立若不等式恒成立则即即故答案为:【点睛】本题考查不等式恒成立求参数的取值范围重点考查利用1的变形利用基本不等式 解析:[)4,+∞【分析】 由不等式恒成立,转化为221sin cos m x x+的最小值大于9,构造()22222211sin cos sin cos sin cos m m x x x x x x ⎛⎫+=++ ⎪⎝⎭,利用基本不等式求 221sin cos m x x+的最小值. 【详解】22sin cos 1x x += ,0m >()222222221cos sin sin cos 1sin cos sin cos m x m x x x m x x x x ⎛⎫∴++=+++ ⎪⎝⎭11m m ≥++=++ 当2222cos sin sin cos x m x x x=时,等号成立,若不等式2219sin cos m x x +≥恒成立,则19m ++≥,即)219≥134m ≥⇒≥. 故答案为:[)4,+∞【点睛】本题考查不等式恒成立求参数的取值范围,重点考查利用”1”的变形,利用基本不等式求最小值,属于中档题型,本题的关键是根据22sin cos 1x x +=,已知变形为()22222211sin cos sin cos sin cos m m x x x x x x ⎛⎫+=++ ⎪⎝⎭. 19.【分析】代入函数解析式可得不等式等价于任意的实数恒成立利用判别式小于0即可求解【详解】不等式恒成立即恒成立整理得恒成立可知则任意的实数恒成立解得(舍去)或实数的取值范围是故答案为:【点睛】本题考查一解析:()4,+∞【分析】代入函数解析式可得不等式等价于223340x tx t 任意的实数x 恒成立,利用判别式小于0即可求解.【详解】 3()3f x x x =-,不等式()()(0)f x t f x t t +>+≠恒成立,即()()3333x t x t x x t +-+>-+恒成立,整理得2233340tx t x t t 恒成立,可知0t >,则223340x tx t 任意的实数x 恒成立,2234340t t ,解得4t <-(舍去)或4t >, ∴实数t 的取值范围是()4,+∞.故答案为:()4,+∞.【点睛】本题考查一元二次不等式的恒成立,属于基础题.20.6【分析】首先由条件变形为化简后利用基本不等式求最小值【详解】所以当时等号成立即解得:所以即的最小值为6此时故答案为:6;【点睛】本题考查基本不等式求最值重点考查转化思想计算能力属于基础题型本题的关 解析:613【分析】 首先由条件变形为()222331a a b a ab ab+++=,化简后利用基本不等式求最小值. 【详解】 1a b +=,()21a b ∴+= 所以()222223314242a a b a a b ab a b ab ab ab b a +++++===++,44a b b a +≥=, 当4a b b a =时,等号成立,即120,0a b b a a b +=⎧⎪=⎨⎪>>⎩,解得:12,33a b ==, 所以231426a ab+≥+=, 即231a ab+的最小值为6,此时13a =.故答案为:6;13【点睛】 本题考查基本不等式求最值,重点考查转化思想,计算能力,属于基础题型,本题的关键是利用()21a b =+变形,化简. 三、解答题21.无22.无23.无24.无25.无26.无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.如果两个正方形的边长之和为1,那么它们的面积之和的最小值是( ) A .14B .12C .1D .22.函数2()f x x bx c =++对任意实数t 满足()(4)f t f t =-,则(1),(2),(4)f f f 的大小关系是( ) A .(1)(2)(4)f f f << B .(2)(1)(4)f f f << C .(4)(2)(1)f f f <<D .(4)(1)(2)f f f <<3.下列命题中是真命题的是( ) A .2222y x x =+++的最小值为2;B .当a >0,b >0时,1124ab a b++≥; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.4.若集合{}2|10A x ax ax =-+<=∅,则实数a 的取值范围是 ( ) A .{}|04a a << B .{|04}a a ≤< C .{|04}a a <≤ D .{|04}a a ≤≤5.当4x >时,不等式44x m x +≥-恒成立,则m 的取值范围是( ) A .8m ≤B .8m <C .8m ≥D .8m >6.如图,在ABC 中,23BD BC =,E 为线段AD 上的动点,且CE xCA yCB =+,则13x y+的最小值为( )A .16B .15C .12D .107.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .218.对于实数a 、b 、m ,下列说法:①若22am bm >,则a b >;②若a b >,则a ab b ;③若0b a >>,0m >,则a m ab m b+>+;④若0a b >>且ln ln a b =,则2a b +的最小值是,正确的个数为( ) A .1B .2C .3D .49.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .610.若直线20(,1)ax by a b +-=>始终把圆222220x y x y +---=的周长分为1:2.则11a b+的最大值为( )A .4-B .2-C 1D11.已知m ,0n >,4121m n+=+,则m n +的最小值为( ) A .72B .7C .8D .412.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( ) A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤-⎥⎝⎦D .(][),22,-∞+∞二、填空题13.若a ,b 为实数,且12,12a b ≤≤≤≤,则21a b ab+的最小值是________. 14.已知,x y R +∈,且1112x y+=,则x y +的最小值为________ 15.若0a >,0b >,且4a b +=,则下列不等式中恒成立的是_______.①112ab >;②228a b +≥;2≥;④111a b+≥. 16.不等式x 2-2x +3≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是______. 17.一批救灾物资随51辆汽车从某市以/vkm h 的速度匀速直达灾区,已知两地公路线长400km ,为了安全起见,两辆汽车的间距不得小于2800v km ,那么这批物资全部到达灾区,最少需要______.h18.已知实数x ,y ,z 满足:222336x y z x y z ++=⎧⎨++=⎩,则x y z ++的最大值为_________. 19.已知0a >,0b >,且22a b +=,那么21a b+的最小值为________. 20.函数()2436x x f x x ++=-的值域为__________.三、解答题21.近年来,某西部乡村农产品加工合作社每年消耗电费24万元.为了节能环保,决定修建一个可使用16年的沼气发电池,并入该合作社的电网.修建沼气发电池的费用(单位:万元)与沼气发电池的容积x (单位:米3)成正比,比例系数为0.12.为了保证正常用电,修建后采用沼气能和电能互补的供电模式用电.设在此模式下,修建后该合作社每年消耗的电费C (单位:万元)与修建的沼气发电池的容积x (单位:米3)之间的函数关系为()50kC x x =+(0x ≥,k 为常数).记该合作社修建此沼气发电池的费用与16年所消耗的电费之和为F (单位:万元).(1)解释()0C 的实际意义,并写出F 关于x 的函数关系;(2)该合作社应修建多大容积的沼气发电池,可使F 最小,并求出最小值.(3)要使F 不超过140万元,求x 的取值范围. 22.已知二次函数()223f x x ax =-+.(1)若()f x 在(],1-∞上单调递减,求实数a 的最小值; (2)存在[]4,2x ∈--,使得()f x a ≥有解,求实数a 的取值范围.23.已知关于x 的不等式()24(4)0()kx k x k --->∈R 的解集为A . (1)写出集合A ;(2)若集合A 中恰有9个整数,求实数k 的取值范围.24.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.25.已知函数212()log (1)f x x =+,26()g x x ax =-+. (1)若()g x 为偶函数,求a 的值并写出()g x 的增区间;(2)若关于x 的不等式()0<g x 的解集为{}23x x <<,当1x >时,求()1g x x -的最小值;(3)对任意的1[1,)x ∈+∞,2[2,4]x ∈-,不等式12()()f x g x ≤恒成立,求实数a 的取值范围.26.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设两个正方形的边长分别为x 、y ,可得1x y +=,利用基本不等式可求得两个正方形的面积之和22x y +的最小值.【详解】设两个正方形的边长分别为x 、y ,则0x >,0y >且1x y +=,由基本不等式可得222x y xy +≥,所以,()()22222221x yxy xy x y +≥++=+=,所以,2212x y +≥,当且仅当12x y ==时,等号成立,因此,两个正方形的面积之和22x y+的最小值为12. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由题意知()f x 关于2x =对称,结合函数解析式即可判断(1),(2),(4)f f f 的大小. 【详解】由对任意实数t 满足()(4)f t f t =-,知:()f x 关于2x =对称, 由函数2()f x x bx c =++知:图象开口向上,对称轴为22bx =-=, ∴()f x 在[2,)+∞上单调递增,而(1)(41)(3)f f f =-=, ∴(2)(1)(4)f f f <<. 故选:B 【点睛】本题考查了二次函数的性质,根据对称性,结合二次函数的性质比较函数值的大小,属于基础题.3.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C选项可设,a b αα==,利用三角函数的值域求范围. 【详解】 A 选项,222x +≥0>,∴2y =≥==,即221x +=±时成立,又222x ≥+,故A 错;B 选项,当a >0,b >0时,1124a b +++≥⨯=,当且仅当1a b =⎧=,即1a b ==时等号成立,B 正确;C选项,设,a b αα==,则2sin 24a b πααα⎛⎫+==+≤ ⎪⎝⎭,C 正确;D 选项,2a b +=,()212192a b ⎡⎤⎛⎫∴+++= ⎪⎢⎥⎝⎭⎣⎦,则()121252229291111++4+22442+2242a b a b a b a b a b ⎛⎫+ ⎪⎡⎤+⎛⎫⎛⎫+++=⨯++ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛ ≥⨯+= ⎝⎭,当且仅当122422a b a b ++=++且2a b +=时等号成立,解得1a b ==,故D 正确. 故选:BCD 【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.4.D解析:D 【分析】本题需要考虑两种情况,00a a =≠,,通过二次函数性质以及即集合性质来确定实数a 的取值范围. 【详解】设()21f x ax ax =-+当0a =时,()10f x =>,满足题意 当0a ≠时,()f x 时二次函数 因为{}2|10A x ax ax =-+<=∅ 所以()21f x ax ax =-+恒大于0,即0≤所以240a a -≤,解得04a ≤≤. 【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论.5.A解析:A 【分析】 由题可得444444x x x x +=-++--,且40x ->,利用基本不等式解答即可. 【详解】解:∵4x >,∴40x ->,∴44444844x x x x +=-++≥=-- 当且仅当444x x -=-,即6x =时取等号, ∵当4x >时,不等式44x m x +≥-恒成立, ∴只需min484m x x ⎛⎫≤+= ⎪-⎝⎭. ∴m 的取值范围为:(8],-∞. 故选A . 【点睛】本题主要考查基本不等式,解题的关键是得出444444x x x x +=-++--,属于一般题.6.A解析:A 【分析】由已知可得A ,D ,E 三点共线,结合平面向量基本定理可得31x y +=,0x >,0y >,再利用基本不等式即可求解. 【详解】 解:∵23BD BC =, ∴3CB CD =,3CE xCA yCB xCA yCD =+=+,因为A ,D ,E 共线,所以31x y +=, 则()3313333101016x y x y y x x y x y x y +++=+=++≥+. 当且仅当33y x x y =且31x y +=即14x y ==时取等号, 故选:A.【点睛】本题主要考查三点共线的向量表示,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.7.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P(,4),所以114)PB t =--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.8.C解析:C 【解析】分析:由不等式性质对其判定 详解:对于①,若22am bm >,20m >,则a b >,故正确对于②,若a b >,则a a b b >,正确 对于③,若0b a >>,0m >,则a m ab m b+>+,故正确 对于④,若0a b >>且lna lnb =,则1ab =,1b a=12222a b a a∴+=+≥当12a a =时等号成立,即21a =< 这与a b >矛盾,故错误 综上所述,正确的个数为3 故选C点睛:由不等式性质对其判定,若能举出反例即可判断其错误,注意数值的符号,对于④中利用基本不等式求出最小值需要满足一正二定三相等,本题在取等号时是取不到的,故错误.9.C解析:C 【分析】由1x >,得10x ->,则441111x x x x+=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->, 所以444112(1)()15111x x x x x x +=-++≥-⋅+=---, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.10.B解析:B 【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即2221a b a b +-=+,化简整理后,再结合基本不等式的性质可得ab 的最小值,再求出11a b+的最大值.【详解】把圆222220x y x y +---=化成标准形式为22(1)(1)4x y -+-=,其中圆心为(1,1),半径为2.设直线与圆交于A 、B 两点,圆心为C , 因为直线把圆的周长分为1:2,所以13601203ACB ∠=⨯︒=︒,所以圆心(1,1)C 到直线20ax by +-=的距离为11=,因为a ,1b >,所以202()a ab b -++=,由基本不等式的性质可知,22()4ab a b ab +=+, 当且仅当a b =时,等号成立,此时有2(22)ab +,所以1(2)111112222(2ab a b a b ab ab ab+++===++=+. 所以11a b +的最大值为2- 故选:B . 【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.11.A解析:A 【分析】利用“乘1法”与基本不等式的性质即可得出. 【详解】 ∵m ,0n >,4121m n+=+, ∴()()4111411911554122122n m m n m n m n m n +⎛⎫⎛⎫++=+++⨯=++≥+= ⎪ ⎪++⎝⎭⎝⎭, 当且仅当411n m m n +=+且4121m n+=+,即2m =,32n =时取等号, 故m n +的最小值72.故选:A. 【点睛】本题主要考查了均值不等式求最值,“1”的变形使用,属于中档题. 12.C解析:C 【分析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选C . 【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.二、填空题13.【分析】利用基本不等式得到通过求出进而求解【详解】由得又因为所以当时此时成立可得时满足条件所以的最小值是;故答案为:【点睛】关键点睛:解题的关键在于基本不等式后得到的求最值得到进而求解解析:2【分析】利用基本不等式,得到21a b ab +≥=,通过求出min2⎡=⎢⎣,进而求解 【详解】由12,12a b ≤≤≤≤得,21a b ab +≥=,又因为12b ≤≤,所以,当2b =时,min2⎡=⎢⎣,此时21a b ab =成立,可得,2a b =,a =2b =时,满足条件,所以,21a b ab +的最小值是2;故答案为:2【点睛】关键点睛:解题的关键在于基本不等式后得到的min2⎡=⎢⎣,进而求解14.【分析】由条件可得利用均值不等式可得答案【详解】当且仅当即也即时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)解析:32+ 【分析】由条件可得()2112112x yx y x y x y y x ⎛⎫+=+=++ ⎪⎭+⎝+,利用均值不等式可得答案. 【详解】()11332122212x y x y y x x y x y ⎛⎫+=+=+++++≥+= ⎪⎝⎭当且仅当2x y y x =,即x =,也即2212x y ⎧+=⎪⎪⎨+⎪=⎪⎩时取等号.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.②④【分析】利用基本不等式和题设得到答案即可【详解】解:且即当且仅当时取等号故选项①错误;当且仅当时取等号选项②正确;即选项③错误;当且仅当时取等号选项④正确故答案为:②④【点睛】利用基本不等式求最解析:②④ 【分析】利用基本不等式和题设得到答案即可. 【详解】 解:0a >,0b >,且4a b +=,42a b ab ∴+=,即4ab ,当且仅当2a b ==时取等号,∴114ab,故选项①错误; 222()82a b a b++=,当且仅当2a b ==时取等号,∴选项②正确; 42ab ab +=,即2,∴选项③错误;1111111()()(2)(221444b a a b a b a b a b +=++=+++=,当且仅当2a b ==时取等号,∴选项④正确, 故答案为:②④. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.(-13)【解析】由题意得解析:(-1,3) 【解析】由题意得222min (23)2122113x x a a a a a -+>--∴>--⇒-<<17.10【分析】用速度v 表示时间结合基本不等式计算最小值即可【详解】当最后一辆车子出发第一辆车子走了小时最后一辆车走完全程共需要小时所以一共需要小时结合基本不等式计算最值可得故最小值为10小时【点睛】考解析:10 【分析】用速度v 表示时间,结合基本不等式,计算最小值,即可. 【详解】当最后一辆车子出发,第一辆车子走了25080016v v v ⋅=小时,最后一辆车走完全程共需要400v 小时,所以一共需要40016vv +小时,结合基本不等式,计算最值,可得 4001016v v +≥=,故最小值为10小时 【点睛】考查了基本不等式计算函数最值问题,关键利用a b +≥中等.18.【分析】按的正负分类讨论由得至少有一个正数然后分全正一负二负然后利用基本不等式可得结论【详解】首先至少有一个正数(1)如果则由得不成立;(2)若中只有一个负数不妨设则又∴即当且仅当时等号成立;(3)解析:1+【分析】按,,x y z 的正负分类讨论,由3x y z ++=得,,x y z 至少有一个正数,然后分全正,一负,二负,然后利用基本不等式可得结论. 【详解】首先,,x y z 至少有一个正数,(1)如果0,0,0x y z ≥≥≥,则由3x y z ++=得,,[0,3]x y z ∈,2222736x y z ++<<,不成立;(2)若,,x y z 中只有一个负数,不妨设0,0,0x y z ≥≥<,则3z x y -=+-,22()6()9z x y x y =+-++,又2222()36()362x y z x y +=-+≤-,∴2()6()9x y x y +-++2()362x y +≤-,即2()4()180x y x y +-+-≤,2x y +≤2231x y z x y z x y ++=+-=+-≤+12x y ==+,1z =时等号成立;(3)若,,x y z 中有两个负数,不妨设0,0,0x y z ≥<<,则3y z x --=-,2222()362y z y z x ++=-≥,∴22(3)362x x --≥,整理得22210x x --≤,01x ≤≤+231x y z x y z x ++=--=-≤+1x =+12y z ==-时等号成立;综上所述,x y z ++的最大值是1+故答案为:1+【点睛】本题考查用基本不等式求最值,解题关键是根据绝对值的定义分类讨论去掉绝对值符号,然后利用基本不等式.19.4【分析】根据1的变形运用均值不等式即可求解【详解】且当且仅当即时等号成立故答案为:4【点睛】本题主要考查了基本不等式的灵活运用属于中档题解析:4. 【分析】根据“1”的变形,运用均值不等式即可求解. 【详解】0a >,0b >,且22a b +=,1(2)12a b ∴+= ()211211422222b a a b a b a b a b ⎛⎫⎛⎫∴+=++=+++ ⎪ ⎪⎝⎭⎝⎭1442b a a b ⎛⎫=++ ⎪⎝⎭1442⎛≥+= ⎝ 当且仅当4b aa b=,即21a b ==时,等号成立. 故答案为:4 【点睛】本题主要考查了基本不等式的灵活运用,属于中档题.20.【分析】设将关于的函数利用基本不等式即可求出值域【详解】设当时当且仅当时等号成立;同理当时当且仅当时等号成立;所以函数的值域为故答案为:【点睛】本题考查函数的值域注意基本不等式的应用属于基础题解析:(),161667,⎡-∞-++∞⎣【分析】设6x t -=,将()f x 关于t 的函数,利用基本不等式,即可求出值域. 【详解】设21663636,6,()16t t x t x t g t t t t++-==+==++,当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣.故答案为: (),161667,⎡-∞-++∞⎣.本题考查函数的值域,注意基本不等式的应用,属于基础题.三、解答题21.(1)()0C 的实际意义是未修建沼气发电池时,该合作社每年消耗的电费;192000.1250F x x =++,0x ≥;(2)该合作社应修建容积为350立方米的沼气发电池时,可使F 最小,且最小值为90万元;(3)3050100,3⎡⎤⎢⎥⎣⎦. 【分析】(1)根据题中函数关系式,可直接得到()0C 的实际意义;求出k ,进而可得F 关于x 的函数关系;(2)根据(1)中F 的函数关系,利用基本不等式,即可求出最小值; (3)将140F ≤,转化为关于x 的不等式,求解即可. 【详解】(1)()0C 的实际意义是修建这种沼气发电池的面积为0时的用电费用, 即未修建沼气发电池时,该合作社每年消耗的电费; 由题意可得,()02450kC ==,则1200k =; 所以该合作社修建此沼气发电池的费用与16年所消耗的电费之和为120019200160.120.125050F x x x x =⨯+=+++,0x ≥; (2)由(1)()19200192000.120.125065050F x x x x =+=++-++690≥=, 当且仅当()192000.125050x x =++,即350x =时,等号成立, 即该合作社应修建容积为350立方米的沼气发电池时,可使F 最小,且最小值为90万元; (3)为使F 不超过140万元,只需192000.1214050F x x =+≤+, 整理得2333503050000x x -+≤, 则()()330501000x x --≤,解得30501003x ≤≤, 即x 的取值范围是3050100,3⎡⎤⎢⎥⎣⎦【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.无23.无24.无25.无26.无。