体育统计学—单因素方差分析---(共六道练习题
方差分析习题与答案完整版

方差分析习题与答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】统计学方差分析练习题与答案一、单项选择题1.在方差分析中,()反映的是样本数据与其组平均值的差异A 总离差B 组间误差C 抽样误差D 组内误差2.是()A 组内平方和B 组间平方和C 总离差平方和D 因素B的离差平方和3.是()A 组内平方和B 组间平方和C 总离差平方和D 总方差4.单因素方差分析中,计算F统计量,其分子与分母的自由度各为()A r,nB r-n,n-rC r-1.n-rD n-r,r-1二、多项选择题1.应用方差分析的前提条件是()A 各个总体报从正态分布B 各个总体均值相等C 各个总体具有相同的方差D 各个总体均值不等E 各个总体相互独立2.若检验统计量F= 近似等于1,说明()A 组间方差中不包含系统因素的影响B 组内方差中不包含系统因素的影响C 组间方差中包含系统因素的影响D 方差分析中应拒绝原假设E方差分析中应接受原假设3.对于单因素方差分析的组内误差,下面哪种说法是对的()A 其自由度为r-1B 反映的是随机因素的影响C 反映的是随机因素和系统因素的影响D 组内误差一定小于组间误差E 其自由度为n-r4.为研究溶液温度对液体植物的影响,将水温控制在三个水平上,则称这种方差分析是()A 单因素方差分析B 双因素方差分析C 三因素方差分析D 单因素三水平方差分析E 双因素三水平方差分析三、填空题1.方差分析的目的是检验因变量y与自变量x是否,而实现这个目的的手段是通过的比较。
2.总变差平方和、组间变差平方和、组内变差平方和三者之间的关系是。
3.方差分析中的因变量是,自变量可以是,也可以是。
4.方差分析是通过对组间均值变异的分析研究判断多个是否相等的一种统计方法。
5.在试验设计中,把要考虑的那些可以控制的条件称为,把因素变化的多个等级状态称为。
体育统计学试题及答案

体育统计学试题及答案一、选择题1. 下列选项中,属于体育统计学的内容是:A. 运动员的饮食安排B. 运动员的心理素质C. 运动员的竞技成绩D. 运动员的训练计划答案:C2. 体育统计学主要研究以下哪个方面:A. 运动员的养生保健B. 运动项目的规则制定C. 运动员的竞技表现D. 运动场馆的建设规划答案:C3. 体育比赛中的场上实施情景统计是指:A. 记录运动员的训练计划B. 记录比赛时的主要情景C. 记录运动员的心理变化D. 记录比赛中的技术统计数据答案:B4. 体育统计学常用的数据分析方法包括:A. 方差分析B. 回归分析C. 相关分析D. 所有选项都对答案:D5. 作为体育统计学的研究对象,下列哪个属于场外统计:A. 记录运动员的体格指标B. 记录运动员在场上的表现C. 记录比赛场馆的气候情况D. 记录运动员的训练计划答案:A二、简答题1. 简述体育统计学在运动训练中的应用。
答:体育统计学在运动训练中有着广泛的应用。
首先,通过对运动员的竞技表现进行统计分析,可以了解运动员的优势和不足,进而制定有针对性的训练计划。
其次,通过运动员的技术统计数据,可以评估运动员的技术水平,及时发现问题并加以改进。
此外,体育统计学还可以帮助教练员进行对抗性训练的安排,提高运动员的竞技能力。
2. 你认为体育统计学对于提高比赛规则的公正性有何作用?答:体育统计学对于提高比赛规则的公正性起着重要作用。
通过对比赛进行统计分析,可以客观地评估比赛规则的合理性和公正性。
例如,在某项运动中,通过对比赛过程中的技术统计数据进行分析,可以判断现有的规则是否存在利于某一方的偏差,从而对规则进行相应的修改和完善,确保比赛结果的公正性。
三、论述题体育统计学在竞技体育中的应用分析体育统计学作为一门交叉学科的研究领域,它与体育竞技密不可分。
通过对运动员的竞技表现数据进行统计分析,可以了解运动员的优势和不足,制定相应的训练计划,提高运动员的竞技能力。
体育统计学试题及答案

体育统计学试题及答案一、选择题(每题2分,共20分)1. 体育统计学中,数据的收集方法不包括以下哪一项?A. 观察法B. 实验法C. 调查法D. 推理法答案:D2. 在统计学中,以下哪一项不是描述数据集中趋势的指标?A. 平均数B. 中位数C. 众数D. 方差答案:D3. 体育统计中,相关系数的取值范围是?A. -1到1B. 0到1C. 0到正无穷D. -1到正无穷答案:A4. 以下哪一项不是体育统计学中常用的概率分布?A. 正态分布B. 二项分布C. 泊松分布D. 指数分布答案:D5. 在体育统计中,以下哪一项不是假设检验的步骤?A. 建立假设B. 选择显著性水平C. 计算检验统计量D. 确定样本容量答案:D6. 体育统计中,以下哪一项是衡量数据离散程度的指标?A. 平均数B. 方差C. 众数D. 中位数答案:B7. 在体育统计中,以下哪一项不是非参数检验?A. 卡方检验B. 曼-惠特尼U检验C. 配对样本t检验D. 克鲁斯卡尔-瓦利斯检验答案:C8. 体育统计中,以下哪一项是描述数据分布形态的指标?A. 偏度B. 方差C. 标准差D. 峰度答案:A9. 在体育统计中,以下哪一项不是数据的预处理步骤?A. 数据清洗B. 数据转换C. 数据插补D. 数据分析答案:D10. 体育统计中,以下哪一项不是数据的类型?A. 定性数据B. 定量数据C. 计数数据D. 混合数据答案:D二、填空题(每题2分,共20分)11. 体育统计学中,数据的收集方法包括观察法、实验法和_________。
答案:调查法12. 在统计学中,描述数据集中趋势的指标包括平均数、中位数、众数和_________。
答案:极差13. 体育统计中,相关系数的取值范围是-1到1,其中1表示_________相关。
答案:完全正14. 在体育统计中,常用的概率分布包括正态分布、二项分布、泊松分布和_________。
答案:t分布15. 体育统计中,假设检验的步骤包括建立假设、选择显著性水平、计算检验统计量和_________。
《体育统计》练习题

一、填空题(每空1分,共20分)1.体育统计是运用__数理统计_______的原理和方法对体育领域里各种__随机现象________规律性进行研究的一门基础学科,属_____方法论_____学科范畴。
2.统计资料审核的一般步骤是_统计资料的搜集_统计资料的整理__统计资料的分析_。
3.在体育统计中,总体率可用字母_____sp_____表示,总体方差可用符号__________表示。
4.两个样本统计量分别为n1=20, X——1=5;n2=10, X——2=8,那么两个样本合并后的平均数为___6_______。
5.已知某年级跳远均值5.5米,标准差为0.60米,跳高均值1.5米,标准差为0.20米,相比较,跳远________项目成绩更集中。
6.现有数据5、7、3、9,则∑X=__24___,∑X2=_164_______,中位数为5_____。
7.标准正态曲线下所围的面积P(-1.96<u<1.96)=___0.95_______,P(u>2.58)=___0.0049______。
8.假设检验可能犯的第一类错误是__弃真________,第二类错误是___取伪_______。
9.当一个随机事件的概率为0 时,就称这个随机事件为__不可能发生__事件;概率为1 时称为__必然_事件。
一个随机事件的概率很小,但不等于0 ,称为_小概率________事件。
二、选择题(每小题1分,共10分)1.在体育统计中,常用S表示一组数据的( B )。
A.抽样误差B.个体离散程度C.集中位置量数D.不同项目差异程度2.全省范围的中学生体质健康状况的抽样研究,适用的抽样方法是( B )。
A.简单随机抽样B.整群抽样法C.随机数表法D.分层抽样3.由一系列偶然因素引起的不易控制的测量误差称为:(C )A、系统误差B、过失误差C、随机误差D、抽样误差4.下面属于集中趋势量数种类的是:( C )A.平均差B.全距C.众数D.均方5.取16名运动员的每分钟脉搏材料,平均数为60次,标准差为4次,其标准误为:( A )A.1 B. 3.75 C.4 D. 86. 现有组数据59、53、61、63、60,下面哪组数据标准14.2差与之不等?( D )A.53、59、60、61、63 B. 159、153、161、163、160C.118、106、122、126、120 D. -1、-7、1、3、07.多组样本均数比较,若条件许可,最宜于采用的检验方法是:( D )A. t检验B. U检验C. χ2检验D. 方差分析8.在总体均数相等的假设检验中,如果检验统计量u >1.96,那么结论为( A )。
!!!正版!!!体育教育专业--体育统计学复习题库

体育统计学复习题第一章绪论一、名词解释:1、总体:根据统计研究的具体研究目的而确定的同质对象的全体,称为总体。
2、样本:根据需要与可能从总体中抽取的部分研究对象所形成的子集。
3、随机事件:在一定实验条件下,有可能发生也有可能不发生的事件称随机事件。
4、随机变量;把随机事件的数量表现(随机事件所对应的随机变化量)。
5、统计概率:如果实验重复进行n次,事件A出现m次,则m与n的比称事件A在实验中的频率,称统计概率。
6、体育统计学:是运用数理统计的原理和方法对体育领域里各种随机现象的规律性进行研究的一门基础应用学科。
二、填空题:1、从性质上看,统计可分为两类:描述性统计、推断性统计。
2、体育统计工作基本过程分为:收集资料、整理资料、分析资料。
3、体育统计研究对象的特征是:运动性、综合性、客观性。
4、从概率的性质看,当m=n时,P(A)=1,则事件A为必然事件。
当m=0时,P(A)=0,则事件A为不可能发生事件。
5、某校共有400人,其中患近视眼60人,若随机抽取一名同学,抽取患近视眼的概率为 0.15 。
6、在一场篮球比赛中,经统计某队共投篮128次,命中41次,在该场比赛中每投篮一次命中的率为 0.32 。
7、在标有数字1~8的8个乒乓球中,随机摸取一个乒乓球,摸到标号为6的概率为 0.125 。
8、体育统计是体育科研活动的基础,体育统计有助于运动训练的科学化,体育统计有助于制定研究设计,体育统计有助于获取文献资料。
9、体育统计中,总体平均数用μ表示,总体方差用σ2表示,总体标准差用σ表示。
10、体育统计中,样本平均数用x表示,样本方差用 S2表示,样本标准差用 S 表示。
11、从概率性质看,若A、B两事件相互排斥,则有:P(A)+ P(B)= P(A+B)。
12、随机变量有两种类型:一是连续型变量,二是离散型变量。
13、一般认为,样本含量 n≥45 为大样本,样本含量 n<45 为小样本。
14、现存总体可分为有限总体和无限总体。
体育统计学—单因素方差分析---(共六道练习题

体育统计学—单因素方差分析------(共六道练习题!)1、单因素方差分析实例1为探讨不同的训练方法对提高100m成绩的效果,现将64名初一男生随机分成4组,每组16人,进行4种不同方法的训练,一学期后,按统一测量方法进行测试,得到他们实验前后100m跑成绩的差数,问不同训练方法的效果是否存在显著性差异?一组: 0.3 0.20.0 0.10.4 0.2 0.3 0.5 0.40.3 0.10.0 -0.1 0.4 0.5 0.3二组: 0.4 0.30.1 0.20.4 0.6 0.5 0.2 0.30.4 0.60.30.5 0.2 0.1 0.5 三组: 0.2 0.00.1 0.4 -0.1 0.0 0.1 0.2 0.0 -0.1 0.1 -0.20.3 0.1 0.2 0.1 四组: 0.1 0.1 -0.1 0.2 -0.1 0.2 0.0 0.3 0.20.1 0.1 -0.10.0 0.2 0.1 -0.12、单因素方差分析实例2在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。
问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体第一组: 42 41 42 42 43第二组: 39 40 40 41 40第三组: 43 44 43 45 453、单因素方差分析实例3某高原研究组将籍贯相同、年龄相同、身高体重接近的30名新战士随机分为三组,甲组为对照组,按常规训练,乙组为锻炼组,每天除常规训练外,接受中速长跑与健身操锻炼,丙组为药物组,除常规训练外,服用抗疲劳药物,一月后测定第一秒用力肺活量(L),结果见表。
试比较三组第一秒用力肺活量有无差别。
对照组: 3.25 3.32 3.29 3.34 3.16 3.64 3.60 3.28 3.52 3.26锻炼组: 3.66 3.64 3.48 3.64 3.48 3.20 3.62 3.56 3.44 3.82药物组: 3.44 3.62 3.48 3.36 3.52 3.60 3.32 3.44 3.16 3.284、单因素方差分析实例4随机抽取某大学三个年级男生的共15人(每个年级5人)作为测试对象,测试他们的身高、体重、肺活量,求出肺活量体重指数。
体育统计学复习题答案
体育统计学复习题答案体育统计学是一门应用统计学原理和方法来分析和解释体育数据的学科。
以下是一些体育统计学复习题的答案示例:1. 描述性统计分析:- 描述性统计包括哪些内容?答案:描述性统计包括中心趋势的度量(如均值、中位数、众数)和离散程度的度量(如方差、标准差、极差)。
2. 概率分布:- 正态分布的特点是什么?答案:正态分布是一种对称的钟形曲线,其特点是均值、中位数和众数相等,且数据的分布遵循3σ规则。
3. 假设检验:- 假设检验的基本步骤是什么?答案:假设检验的基本步骤包括:提出零假设和备择假设、选择适当的检验统计量、确定显著性水平、计算检验统计量的值、做出决策。
4. 相关与回归分析:- 相关系数的取值范围是多少?答案:相关系数的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示无相关。
5. 方差分析:- 方差分析的目的是什么?答案:方差分析的目的是检验两个或两个以上样本均值是否存在显著差异。
6. 非参数统计:- 非参数统计方法适用于哪些情况?答案:非参数统计方法适用于样本量较小、数据不满足正态分布或数据为定性数据的情况。
7. 样本与总体:- 抽样误差是如何产生的?答案:抽样误差是由于从总体中随机抽取的样本不能完全代表总体而产生的误差。
8. 统计图表:- 条形图和直方图的区别是什么?答案:条形图用于展示分类数据的频数或百分比,而直方图用于展示连续数据的分布情况。
9. 体育成绩的统计分析:- 如何使用统计学方法分析运动员的成绩?答案:可以使用描述性统计来展示运动员成绩的中心趋势和离散程度,使用相关和回归分析来探究不同因素对成绩的影响,使用假设检验来比较不同运动员或不同训练方法的效果。
10. 体育研究中的伦理问题:- 在体育统计研究中,研究者应遵循哪些伦理准则?答案:研究者应遵循诚信、尊重参与者、保护隐私和数据的准确性等伦理准则。
请注意,这些答案仅为示例,具体问题的答案可能需要根据实际的统计数据和研究背景来确定。
方差分析习题与答案
统计学方差分析练习题与答案一、单项选择题1.在方差分析中,()反映的是样本数据与其组平均值的差异A 总离差B 组间误差C 抽样误差D 组内误差2.是()A 组内平方和B 组间平方和C 总离差平方和D 因素B的离差平方和3.是()A 组内平方和B 组间平方和C 总离差平方和D 总方差4.单因素方差分析中,计算F统计量,其分子与分母的自由度各为()A r,nB r-n,n-rC r-1.n-rD n-r,r-1二、多项选择题1.应用方差分析的前提条件是()A 各个总体报从正态分布B 各个总体均值相等C 各个总体具有相同的方差D 各个总体均值不等E 各个总体相互独立2.若检验统计量F= 近似等于1,说明()A 组间方差中不包含系统因素的影响B 组内方差中不包含系统因素的影响C 组间方差中包含系统因素的影响D 方差分析中应拒绝原假设E方差分析中应接受原假设3.对于单因素方差分析的组内误差,下面哪种说法是对的?()A 其自由度为r-1B 反映的是随机因素的影响C 反映的是随机因素和系统因素的影响D 组内误差一定小于组间误差E 其自由度为n-r4.为研究溶液温度对液体植物的影响,将水温控制在三个水平上,则称这种方差分析是()A 单因素方差分析B 双因素方差分析C 三因素方差分析D 单因素三水平方差分析E 双因素三水平方差分析三、填空题1.方差分析的目的是检验因变量y与自变量x是否,而实现这个目的的手段是通过的比较。
2.总变差平方和、组间变差平方和、组内变差平方和三者之间的关系是。
3.方差分析中的因变量是,自变量可以是,也可以是。
4.方差分析是通过对组间均值变异的分析研究判断多个是否相等的一种统计方法。
5.在试验设计中,把要考虑的那些可以控制的条件称为,把因素变化的多个等级状态称为。
6.在单因子方差分析中,计算F统计量的分子是方差,分母是方差。
7.在单因子方差分析中,分子的自由度是,分母的自由度是。
四、计算题1.有三台机器生产规格相同的铝合金薄板,为检验三台机器生产薄板的厚度是否相同,随机从每台机器生产的薄板中各抽取了5个样品,测得结果如下:机器1:0.236,0.238,0.248,0.245,0.243机器2:0.257,0.253,0.255,0.254,0.261机器3:0.258,0.264,0.259,0.267,0.262问:三台机器生产薄板的厚度是否有显著差异?2.养鸡场要检验四种饲料配方对小鸡增重是否相同,用每一种饲料分别喂养了6只同一品种同时孵出的小鸡,共饲养了8周,每只鸡增重数据如下:(克)配方:370,420,450,490,500,450配方:490,380,400,390,500,410配方:330,340,400,380,470,360配方:410,480,400,420,380,410问:四种不同配方的饲料对小鸡增重是否相同?3.今有某种型号的电池三批,它们分别为一厂、二厂、三厂三个工厂所生产的。
《体育统计学》习题及解答
《体育统计学》习题及解答第一讲习题1-1.根据表1-1的数据,试利用Excel函数计算:(1) 总评成绩列第三位的成绩是多少?(2) 课程考试成绩倒数第十名的成绩是多少?(3) 总评成绩第一的成绩是多少?(4) 课程考试成绩最低的是多少?(5) 该年级课程考试的总分是多少?解:(1) 总评成绩列第三位的成绩是多少?=LARGE(g5:g32,3)回车=87(2) 课程考试成绩倒数第十名的成绩是多少?=small(f5:f32,10)回车=80(3) 总评成绩第一的成绩是多少?=large(g5:g32,1)回车=88(4) 课程考试成绩最低的是多少?=min(f5:f32)回车=70或=small(f5:f32,1)回车=70(5) 该年级课程考试的总分是多少?=sum(f5:f32)回车=22701-2.进入十三届亚运会足球比赛前八名的球队分别是中国、伊朗、科威特、泰国、韩国、土库曼斯坦、乌兹别克和卡塔尔,试分析前三名的组成情况有几种?解:=permut(8,3)回车=336分析:即前三名的组成情况有336种。
1-3.某届全运会篮球预赛分三区进行。
其中太原赛区男女各有9个队,哈尔滨赛区男女各有10个队,乌鲁木齐赛区男队9个,女队10个,各赛区男女各取前四名参加在北京举行的决赛,预赛和决赛都采用单循环制,试计算一共需比赛多少场?解:=combin(9,2)回车=36=combin(10,2)回车=45预赛场次为:36+36+45+45+36+45=243=combin(12,2)回车=66决赛场次为:66+66=132总场次为:132+243=375分析:即一共需比赛375场。
1-4.根据表1-1的数据,试利用Excel函数计算:(1) 调查报告成绩的平均数为多少?(2) 文献摘要成绩的众数为多少?(3) 试比较课程考试成绩的平均数和中位数。
解:(1) 调查报告成绩的平均数为多少=average(c5:c32)回车=83.03571(2) 文献摘要成绩的众数为多少?=mode(d5:d32)回车=90(3) 试比较课程考试成绩的平均数和中位数。
《体育统计学》题集
《体育统计学》题集第一大题:选择题(每小题2分,共20分)1.在体育统计学中,下列哪一项不是描述性统计的内容?A. 平均数B. 标准差C. 频数分布D. 假设检验2.下列哪个统计量是度量数据分布离散程度的?A. 平均数B. 中位数C. 众数D. 标准差3.在体育研究中,如果要比较两组运动员的成绩是否有显著差异,应该使用哪种统计方法?A. t检验B. 方差分析C. 卡方检验D. 相关分析4.下列哪个概念用于描述两个变量之间的线性关系强度和方向?A. 回归系数B. 相关系数C. 协方差D. 标准差5.在体育统计学中,下列哪一项不是推断性统计的内容?A. 参数估计B. 假设检验C. 回归分析D. 频数分布表6.下列哪个统计量常用于描述偏态分布的中心位置?A. 平均数B. 中位数C. 众数D. 几何平均数7.在进行方差分析时,如果F值大于临界值,说明什么?A. 各组之间无显著差异B. 各组之间有显著差异C. 需要进行事后检验D. 数据不符合正态分布8.下列哪个统计图常用于展示两个变量之间的相关关系?A. 条形图B. 饼图C. 散点图D. 折线图9.在体育研究中,如果要研究运动员的年龄与其运动成绩之间的关系,应该使用哪种统计方法?A. t检验B. 方差分析C. 相关分析D. 卡方检验10.下列哪个概念用于描述数据集中某一数值出现的次数?A. 频数B. 频率C. 累积频数D. 累积频率第二大题:填空题(每小题2分,共10分)1.在体育统计学中,描述性统计主要包括______和______两部分内容。
2.标准差是度量数据分布______的统计量。
3.在进行假设检验时,如果P值小于显著性水平α,则应______原假设。
4.相关系数r的取值范围是______,其中r=1表示完全正相关。
5.在回归分析中,如果回归系数b大于0,说明自变量x与因变量y之间存在______关系。
第三大题:判断题(每小题2分,共10分)1.在体育统计学中,频数分布表是描述性统计的内容之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体育统计学—单因素方差分析------(共六道练习题!)
1、单因素方差分析实例1
为探讨不同的训练方法对提高100m成绩的效果,现将64名初一男生随机分成4组,每组16人,进行4种不同方法的训练,一学期后,按统一测量方法进行测试,得到他们实验前后100m跑成绩的差数,问不同训练方法的效果是否存在显著性差异?
一组: 0.3 0.20.0 0.10.4 0.2 0.3 0.5 0.40.3 0.10.0 -0.1 0.4 0.5 0.3
二组: 0.4 0.30.1 0.20.4 0.6 0.5 0.2 0.30.4 0.60.30.5 0.2 0.1 0.5 三组: 0.2 0.00.1 0.4 -0.1 0.0 0.1 0.2 0.0 -0.1 0.1 -0.20.3 0.1 0.2 0.1 四组: 0.1 0.1 -0.1 0.2 -0.1 0.2 0.0 0.3 0.20.1 0.1 -0.10.0 0.2 0.1 -0.1
2、单因素方差分析实例2
在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。
问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体
第一组: 42 41 42 42 43
第二组: 39 40 40 41 40
第三组: 43 44 43 45 45
3、单因素方差分析实例3
某高原研究组将籍贯相同、年龄相同、身高体重接近的30名新战士随机分为三组,甲组为对照组,按常规训练,乙组为锻炼组,每天除常规训练外,接受中速长跑与健身操锻炼,丙组为药物组,除常规训练外,服用抗疲劳药物,一月后测定第一秒用力肺活量(L),结果见表。
试比较三组第一秒用力肺活量有无差别。
对照组: 3.25 3.32 3.29 3.34 3.16 3.64 3.60 3.28 3.52 3.26
锻炼组: 3.66 3.64 3.48 3.64 3.48 3.20 3.62 3.56 3.44 3.82
药物组: 3.44 3.62 3.48 3.36 3.52 3.60 3.32 3.44 3.16 3.28
4、单因素方差分析实例4
随机抽取某大学三个年级男生的共15人(每个年级5人)作为测试对象,测试他们的身高、体重、肺活量,求出肺活量体重指数。
看不同年级学生的肺活量体重指数是否存在显著性差异。
(注:肺活量体重指数=肺活量/体重)
5、书中P 128----第六题
6、书中P 128----第七题。