高三第一次月考试题

合集下载

2024-2025学年天津耀华中学高三上期第一次月考地理试题及答案

2024-2025学年天津耀华中学高三上期第一次月考地理试题及答案

天津市耀华中学2025届高三年级第一次月考地理学科试卷Ⅰ卷(45分)一.单选题:(15小题,每题3分,共45分)冰架是指陆地冰或与大陆架相连的冰休延伸到海洋的那部分,崩解后的冰架成为冰山。

冰架有大有小,大的冰架可达数万平方千米,两极地区是冰架最为集中的地区。

下图为南极著名冰架埃默里冰架及其周边冰川分布图,冰川冰流是冰架主要的物质来源。

据此完成下面小题。

1. 图中科考站位于费希尔冰川的( )A 西北方向 B. C. 西南方向D. 东北方向2. 梅勒冰川冰流的运动方向是( )A. 自西北向东南B. 自西北向东南C. 自西南向东北D. 自东南向西北下图为中亚某区域等高线(单位:m)图。

读图完成下面小题。

.3. 图中河流干流流向总体大致是( )A. 从东向西B. 从西向东C. 从南向北D. 从北向南4. 若a 、b 、c 是甲湖泊三个不同时期水面状况,则a 最可能是( )A. 1月B. 5月C. 7月D. 10月5. 甲湖泊始终是淡水湖的原因最可能是( )A. 入湖河水不含盐分B. 与咸水湖有暗河相通C. 河流注入水量太大D. 当地蒸发量非常微弱斯瓦尔巴群岛60%的土地被冰雪覆盖,岛上的朗伊尔城每年4月中旬到8月中旬处于极昼期,11月末到次年2许光亮。

据此完成下面小题。

6. 朗伊尔城极昼期长于极夜期是因为( )A. 地球公转速度差异B.地球自转速度差异的C 正午太阳高度不同 D. 日出日落方位不同7. 朗伊尔城极夜期中午见到的些许光亮来自( )A. 极光闪烁产生的微弱光芒B. 冰川对星光的反射作用C. 大气对太阳光的散射作用D. 地面对月光的反射作用北京时间5月30日9时31分,神舟十六号载人飞船在酒泉(40°N ,100°E)卫星发射中心发射成功,将在太空驻留5个月后返回。

完成下面小题。

8. 纽约(西五区)华人观看卫星发射时,当地时间接近( )A. 29日22时31分B. 30日21时31分C. 29日20时31分D. 30日20时31分9. 神舟十六号发射时( )A. 开罗(30°N,30°E)曙光初现B. 圣地亚哥(33°S,70°W)万家灯火C. 昆仑站(80°S,77°E)阳光明媚D. 黄河站(78°N,12°E)夜幕沉沉10. 下图能够示意神舟十六号发射时全球日期分布状况的是( )A. B.C. D.11. 阿联酋迪拜(25°N ,55°E)政府发布了一款新型太阳能电池板,因其形如花瓣,昼开夜合并智能追踪太阳,使得叶片总能与光线保持垂直,命名为“智能太阳花”,如下图所示。

天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考历史试题(含答案)

天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考历史试题(含答案)

姓名:座号:保密★启用前塘沽一中2025届高三毕业班第一次月考历史本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试用时60分钟。

第Ⅰ卷1至5页,第Ⅱ卷6至8页。

答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共15题,每题3分,共45分。

在每题给出的四个选项中,只有一项是最符合题目要求的。

1.据学者考证,春秋末年,陈国司徒辕颇向封疆内所有的田地征取赋纳。

辕颇遭到拥有一定数量田地的国人驱逐,逃亡到郑国。

这一考证可以说明A.官僚政治的腐朽B.贵族与农民阶级矛盾尖锐C.土地制度的变动D.诸侯权威遭到卿大夫挑战2.汉文帝时,对孝悌、力田、三老等基层教化乡官进行嘉奖并赐帛慰问;“诏诸侯王、公卿、郡守举贤良能直言极谏者”,要求被举荐之人品德高尚,且尤其强调孝道;对于违背孝道的行为要处以刑罚。

据此可知,当时A.政府比较重视基层治理B.国家治理凸显儒家价值取向C.官员选拔制度逐步完善D.儒家思想得到统治者的尊崇3.下图为北魏前期、后期中枢机构长官籍贯数量分布情况柱状图。

图示中官员籍贯数量的变化推动了A.政权政治中心的转移B.南北经济格局的变化C.华夏认同观念的形成D.鲜卑族的封建化进程4.学者张显清说:“晚明社会的时代特点,概括起来讲,就是中国传统封建社会高度成熟,并开始起步由传统的封建社会向新的近代社会转型,晚明恰是转型的起点。

”下列选项中,可以对材料中“转型的起点”解释的是①开设工场,使用自由雇佣劳动②致力于维护朝贡体制③思想界出现了反对专制的倾向④兴起一批工商业市镇A.①③B.①④C.②④D.③④5.1902年,顺天乡试借河南贡院举行,山西乡试则与陕西乡试在西安合闱。

江西省部分高中学校2024-2025学年高三上学期开学第一次月考试题 语文含答案

江西省部分高中学校2024-2025学年高三上学期开学第一次月考试题 语文含答案

高三语文试卷(答案在最后)考生注意:1.本试卷共150分,考试时间150分钟。

2.请将各题答案填写在答题卡上3.本试卷主要考试内容:高考全部内容。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:根据第四次中国城乡老年人生活状况抽样调查数据,2015年中国空巢老人占老年人口的比重为51.3%,其中农村地区略高,为51.7%。

《2020中国农村养老现状国情调研报告》统计,大约有50%的农村老人处于空巢状态。

专家预测,到2030年,中国空巢老人比例将高达90%,预计将有超过2亿老年人成为空巢老人,农村地区空巢老人数量显著高于城市。

2020年第七次全国人口普查数据显示,中国留守老年人数量超过1亿。

老龄化与数字化相伴而生,相向而行。

信息化、数字化、智能化为人口老龄化社会发展提供支持和帮助。

将信息技术运用到养老产业、医疗领域,大力发展智慧养老,完善养老服务体系,提供全面的智慧养老解决方案,同时要看到老年人面临的“数字鸿沟”。

人口老龄化为经济发展带来斯的增长点。

老年人的健康、养老、医疗需求及对于休闲娱乐、文化教育的需求都会给经济发展带来新的活力。

虽然老年人口的增多会增加社会保障支出,但是老年人并不是“负担”,而是一座“金矿”;不是“人口负债”,而是“人口红利”。

数字经济时代,消费升级,互联网市场下沉,依托数字技术开拓老年人消费市场,发展银发产业,既有利于社会的和谐发展,又有利于社会经济高质量发展。

老年人的消费结构与其他消货群体有显著区别。

首先,饮食方面,老年人更加注重健康饮食,对保健食品和营养品有较大的消费需求;其次,医养护理方面,随着年龄的增加,老年人的身体机能逐步下降,对医疗保健、日常护理服务的需求增加;再次,随着社会的进步及消费观念的改变,老年人在满足物质需求的基础上,更加注重社交、尊重等精神层面的需求,包括体育健身、文化旅游、休闲服务、社交活动等;最后,老年人对家居用品和辅助器具的需求也与年轻人有显著区别,例如老花镜、助听器、按摩椅等。

2024-2025学年陕西省西安中学高三上学期10月月考数学试题及答案

2024-2025学年陕西省西安中学高三上学期10月月考数学试题及答案

陕西省西安中学高2025届高三第一次质量检测考试数学试题(时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ( )A. {}10x x -≤≤ B. {}10x x -<≤ C. {}10x x -≤< D. {}10x x -<<2. “01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A. B.C. D.4. 已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则( )A. c b a>> B. c a b>> C. a b c>> D. b c a>>5. 已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =( )A. 1- B. 1C. 3- D. 36. 已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是( )A. {}eB. [)e,+∞ C. {}1,0e 8⎛⎫- ⎪⎝⎭D. {}1,e 8⎛⎫-∞- ⎪⎝⎭7. 已知函数3()1f x x x =-+,则( )A. ()f x 有三个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =对称中心D. 直线2y x =是曲线()y f x =的切线8. 已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于( )A. 28- B. 28C. 14- D. 14二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列导数运算正确的是( )A.1()x '= B. (e )e x x --'= C. 21(tan )cos x x'=D. 1(ln )x x'=10. 甲乙丙等5人的身高互不相同,站成一排进行列队训练,则( )A. 甲乙不相邻的不同排法有48种B. 甲乙中间恰排一个人不同排法有36种C. 甲乙不排在两端的不同排法有36种D. 甲乙丙三人从左到右由高到矮的不同排法有20种11. 已知0c b a <<<,则( )A. ac b bc a+<+ B. 333b c a +<C.a c ab c b +<+ D.>三、填空题:本题共3小题,每小题5分,共15分.12. 某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.的的13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.14. 51(2)y x y x ⎛⎫-+⎪⎝⎭的展开式中,23x y 的系数为__________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 极值;(2)讨论函数()f x 的单调性.16. 为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x 123456体重超标人数y987754483227lnz y= 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);的(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆni ii nii x y nx ybxnx ==-⋅=-∑∑,ˆˆa y bx=-;参考数据:6123.52i i z ==∑,6177.72i i i x z ==∑,62191i i x ==∑,ln10 2.30.≈17. 已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.18. 某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品. 现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值. 若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈. )(2)(i )从样本质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装. 已知一件A 等品芯片的的的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.19. 已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.陕西省西安中学高2025届高三第一次质量检测考试数学试题(时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ( )A. {}10x x -≤≤ B. {}10x x -<≤ C. {}10x x -≤< D. {}10x x -<<【答案】C 【解析】【分析】先根据对数函数的单调性解不等式化简集合B ,然后利用交集运算求解即可.【详解】因为()222log 1log 2x x -≤=,所以202x x <-≤,解得12x <≤或10x -≤<,故{10B x x =-≤<或}12x <≤,又{}10A x x =-≤≤,所以A B = {}10x x -≤<.故选:C2. “01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据对数函数和一次函数的单调性,再结合复合函数“同增异减”的判断法则求得对应的a 的取值范围即可得出结论.【详解】易知()()log 2a f x a x =-的定义域为(),2a -∞,且函数2y a x =-为单调递减函数;根据复合函数单调性可知若函数()()log 2a f x a x =-在(),1-∞上单调递增,可得0121a a <<⎧⎨≥⎩,解得112a ≤<;显然112a a ⎧⎫|≤<⎨⎬⎩⎭是{}|01a a <<的真子集,所以“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的必要不充分条件.3. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=-+->--=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.4. 已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则( )A. c b a >>B. c a b>> C. a b c>> D. b c a>>【答案】B 【解析】【分析】判断出01a <<,0b <,1c >,即可求解.【详解】555log 1log 2log ,0151a a <=<∴<=< 22log log 10b a =<= ,故0b <;1122bc ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭,故1c >,故c a b >>.5. 已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =( )A. 1- B. 1C. 3- D. 3【答案】C 【解析】【分析】由条件推得函数的周期为4,结合函数的周期,即可求解.【详解】由()()32f x f x +=,可得()()()342f x f x f x +==+,所以()f x 的周期为4,则()()()3100032f f f ===-.故选:C.6. 已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是( )A. {}e B. [)e,+∞ C. {}1,0e 8⎛⎫- ⎪⎝⎭D. {}1,e 8⎛⎫-∞- ⎪⎝⎭【答案】C 【解析】【分析】根据题意,转化为()y f x =与1y kx =-的图象有2个交点,分0k =、0k <和0k >,三种情况讨论,结合导数的几何意义与函数的图象,即可求解.【详解】由题意,关于x 的方程()()f x g x =有2个不相等的实数解,即()y f x =与1y kx =-的图象有2个交点,如图所示,当0k =,直线1y =-与2y x=图象交于点()2,1--,又当0x ≥时,e 10x -≥,故直线1y =-与e 1x y =-(0x ≥)的图象无公共点,故当0k =时,()y f x =与1y kx =-的图象只有一个交点,不合题意;当0k >,直线1y kx =-与曲线e 1x y =-(0x ≥)相切时,此时()y f x =与1y kx =-的图象有2个交点,设切点()00,e 1xP x -,则00e x x x k y =='=,又由1y kx =-过点()0,1-,所以()000e 11e 0x x x ---=-,解得01x =,所以e =k ;当0k <时,若21kx x=-,则220kx x --=,由180k ∆=+=,可得18k =-,所以当18k =-时,直线1y kx =-与2y x=的图象相切,由图得当108k -<<时,直线1y kx =-与()y f x =的图象有2个交点.综上所述,实数k 的取值范围是{}1,0e 8⎛⎫- ⎪⎝⎭.故选:C .7 已知函数3()1f x x x =-+,则( )A. ()f x 有三个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线【答案】C 【解析】【分析】求导后判断单调性,从而求得极值点即可判断A ;利用单调性结合零点存在性定理即可判断B ;令3()h x x x =-,得到()h x 是奇函数,(0,0)是()h x 的对称中心,再结合图象的平移规律即可判断C ;由导数的几何意义求得切线方程即可判断D.【详解】对于A ,由题,()231f x x '=-,令()0f x '>得x >或x <()0f x '<得x <<的.所以()f x在(,-∞,)+∞上单调递增,(上单调递减,所以x =是极值点,故A 不正确;对应B,因(10f =+>,10f =->,()250f -=-<,所以,函数()f x在⎛-∞ ⎝上有一个零点,当x ≥时,()0f x f ≥>,即函数()f x在⎫∞⎪⎪⎭+上无零点,综上所述,函数()f x 有一个零点,故B 错误;对于C ,令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;对于D ,令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:C8. 已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于( )A. 28- B. 28C. 14- D. 14【答案】A 【解析】【分析】利用换元法结合一元二次方程根的分布,数形结合计算即可.【详解】先作出()f x 的大致图象,如下令()f x t =,则()20g t t at b =++=,根据()f x 的图象可知:要满足题意必须()0g t =有两个不等根()1212,t t t t <,且()1f x t =有两个整数根,()2f x t =有三个整数根,结合对勾函数和对数函数图象与性质知,两函数14,y t y x x==+相切时符合题意,因为44x x +≥=,当且仅当2x =时取得等号,又()()22log log 0y x x x ==-<,易知其定义域内单调递减,即()14f x t ==,此时有两个整数根2x =或16x =-,而要满足()2f x t =有三个整数根,结合()f x 图象知必有一根小于2,显然只有1x =符合题意,当1x =时有()15f =,则25t =,解方程45x x+=得25t =的另一个正根为4x =,又()2log 5x -=⇒32x =-,此时五个整数根依次是32,16,1,2,4x =--,显然最大根和最小的根和为()43228+-=-.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列导数运算正确的是( )A. 211()x x '=-B. (e )e x x --'=C. 21(tan )cos x x'=D. 1(ln )x x'=【答案】ACD【解析】的的【分析】利用求导公式逐项判断即可.【详解】对于A ,211(x x '=-,故A 正确;对于B ,(e )e x x --'=-,故B 错误;对于C ,2222sin cos sin 1(tan )()=cos cos cos x x x x x x x+''==,故C 正确;对于D ,()(ln ),01(ln )ln ,0x x x x x x '>⎧⎪==⎨⎡⎤-<⎪⎣⎦⎩'',故D 正确.故选:ACD10. 甲乙丙等5人的身高互不相同,站成一排进行列队训练,则( )A. 甲乙不相邻的不同排法有48种B. 甲乙中间恰排一个人的不同排法有36种C. 甲乙不排在两端的不同排法有36种D. 甲乙丙三人从左到右由高到矮的不同排法有20种【答案】BCD 【解析】【分析】根据排列和组合的定义、结合捆绑法逐一判断即可.【详解】A :甲乙不相邻的不同排法有3234A A 72=种,所以本选项不正确;B :甲乙中间恰排一个人的不同排法有123323C A A 36=种,所以本选项正确;C :甲乙不排在两端的不同排法有2333A A 36=种,所以本选项正确;D :甲乙丙三人从左到右由高到矮的不同排法有5533A 20A =种,所以本选项正确.故选:BCD11. 已知0c b a <<<,则( )A. ac b bc a+<+ B. 333b c a +<C.a c ab c b +<+D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c abc b +==+,此时a c ab c b +>+,故C 错误;因为0c b a <<<0>>⇒<⇒>,故D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12. 某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.【答案】65【解析】【分析】利用百分位数的定义求解.【详解】解:成绩在[20,60)的频率是()0.0050.01200.3+⨯=,成绩在[20,80)的频率为0.30.02200.7+⨯=,所以第40百分位数一定在[60,80)内,所以这次数学测试成绩的第40百分位数是0.40.36020650.4-+⨯=,故答案为:6513. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21yx =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 51(2)y x y x ⎛⎫-+⎪⎝⎭展开式中,23x y 的系数为__________.【答案】40【解析】【分析】根据二项式的通项公式进行求解即可.【详解】二项式5(2)x y +的通项公式为()515C 2rrr r T x y -+=⋅⋅,所以23x y 的系数为()233255C 21C 240⋅+-⋅⋅=,故答案为:40四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为23,极大值为56(2)答案见解析【解析】的【分析】(1)对()f x 求导,分析单调性,再根据极值定义即可求解;(2)()()(2)f x x a x =--',对a 分2a =,2a >和2a <讨论单调性即可.【小问1详解】3213()2,()(1)(2)32f x x x x f x x x =-+'=--.所以x <1或x >2时,'()0f x >,12x <<时,'()0f x <,则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =.【小问2详解】()()(2)f x x a x =--',当2a =时,'()0f x ≥,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,'()0f x >;2x a <<时,'()0f x <,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,'()0f x >;2a x <<时,'()0f x <,所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减.16. 为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x 123456体重超标人数y987754483227ln z y= 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆni ii nii x y nx ybxnx ==-⋅=-∑∑,ˆˆa y bx=-;参考数据:6123.52ii z==∑,6177.72i ii x z==∑,62191i i x ==∑,ln10 2.30.≈【答案】(1)0.26 4.83ex y -+=(2)从第十个月开始【解析】【分析】(1)由计算公式与参考数据,求出ˆ,a b则可得回归方程;(2)根据经验回归方程建立不等式0.26 4.83e 10x -+<,解出不等式则可预测.【小问1详解】由e bx a y +=得ln z y bx a ==+,由题意得1(123456) 3.56x =+++++=,11123.52 3.9266n i i z z ===⨯=∑,所以6162221677.726 3.5 3.92ˆ0.26916 3.56i i i ii x zx zbxx ==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ 3.92(0.26) 3.5 4.83az bx =-≈--⨯=,所以ˆˆln 0.26 4.83zy x ==-+,即y 关于x 的经验回归方程为0.26 4.83e x y -+=【小问2详解】令0.26 4.83ln10 2.3e 10e e x -+<=≈,所以0.26 4.83 2.3x -+<,又由于x ∈N ,所以解得10x ≥,且x *∈N ,所以从第十个月开始,该年级体重超标的人数降至10人以下.17. 已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.【答案】(1)15|24x x ⎧⎫<≤⎨⎬⎩⎭(2)2t ≤-或t ≥【解析】【分析】(1)当1t =-时,将不等式()()f x g x ≤转化为()()2log 1log 21a a x x +≤-,利用对数函数的单调性结合一元二次不等式求解即可;(2)解法一:分离参数,将原函数的零点问题转化为22(2x t x x +=-≠-且12)x -<≤有根,设2U x =+(14U <≤且2U ≠+,则124t U U=--+,利用对勾函数的单调性求解值域即可求解;解法二:先判断0t =时,不合题意,当0t ≠时,根据二次函数零点分布分类讨论,列不等式组求解即可.【小问1详解】当1t =-时,()()2log 1log 21a a x x +≤-,又0<a <1,则x +1≥(2x−1)22x−1>0,∴4x 2−5x ≤0x >12⇒12<x ≤54,∴不等式()()f x g x ≤的解集为15|24x x ⎧⎫<≤⎨⎬⎩⎭;【小问2详解】解法一:由题设()222F x tx x t =+-+,由()0F x =,得22(2x t x x +=-≠-且12)x -<≤,则()()222422x t x x +=-+-++,设2U x =+(14U <≤且2U ≠+,则212424U t U U U U=-=-+--,令2()U U Uϕ=+,当1U <<时,()U ϕ4U <<时,()U ϕ单调递增,且()()913,42ϕϕϕ===,故()92U ϕ≤≤且() 4.U ϕ≠12402U U ∴-≤--<或2044U U<--≤-t 的取值范围为:2t ≤-或t ≥解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得t =,又1212x x t ==-(]1,2∈-⇒t =;②F (x )在(1,2]-上只有一个零点,且不是方程的重根,则()()120F F -<,解得2t <-或1t >,经检验2t =-或1t =时,F (x )在(1,2]-上都有零点,则2t ≤-或 1.t ≥③方程()0F x =在(1,2]-上有两个相异实根,则有t >0Δ>0−1<−12t <2F(−1)>0F(2)>0或t <0Δ>0−1<−12t <2F(−1)<0F(2)<0,解得1t <<,综上可知:t 的取值范围为2t ≤-或t ≥18. 某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品. 现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值. 若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈. )(2)(i )从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装. 已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.【答案】(1)0.16 (2)(i )分布列见解析,32;(ii )794m =【解析】【分析】(1)根据频率分布直方图求得样本平均数,然后利用正态分布的对称性求解概率.(2)(i )先求出η的取值,然后求出对应的概率,即可求出分布列,代入期望公式求解即可;(ii )先根据二项分布的期望求出()E Z 1684ln(25)m m =+-,然后构造函数()1684ln(25)(124)f x x x x =+-<<,利用导数求出最大值时的m 即可.【小问1详解】由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69x =⨯⨯+⨯+⨯+⨯+⨯=.即69x μ≈=,11s σ≈≈,所以2(69,11)X N ~,因为质量指标值X 近似服从正态分布2)(69,11N ,所以1(69116911)(80)2P X P X --<<+≥=1()2P X μσμσ--<<+=10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16.【小问2详解】(i )(0.010.01)1010020+⨯⨯=,所以所取样本的个数为20件,质量指标值在[]85,95的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:301010320C C 2(0)C 19η===P ,211010320C C 15(1)C 38η===P ,15(2)38η===P ,031010320C C 2(3)C 19η===P ,随机变量η的分布列为:η0123P21915381538219所以η的数学期望2151523()0123193838192E η=⨯+⨯+⨯+⨯=.(ii )设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以~(100,0.16)Y B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))100ln(25)m m EY m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-.令()1684ln(25)(124)f x x x x =+-<<,由84()16025f x x '=-=-得,794x =,又79(1,)4∈x ,()0f x '>,()f x 单调递增,79(,24)4∈x ,()0f x '<,()f x 单调递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大.19. 已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.【答案】(1)答案见解析(2)证明见解析(3)(,1).-∞【解析】【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)对函数()f x ()f x 导函数的单调性,求出导函数的最小值,即可证明;(3)对()f x 求导得,11()e 1x f x a a x -'=+--,令11()e 1x h x a a x-=+--,再求导,分a 的不同取值讨论()h x 的性质,即可求出a 的取值范围.【小问1详解】当0a =时,()ln f x x x =-,且知11()1x f x x x-='-=,在(0,1)上,()0f x '>, ()f x 在(0,1)上单调递增;在(1,)+∞上,()0f x '<, ()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞【小问2详解】证明:因为1a =,所以1()e ln 2x f x x x -=+-,且知11()e2x f x x-'=+-,要证函数()f x 单调递增,即证()0f x '≥在(0,)+∞上恒成立,设11()e 2x g x x-=+-,0x >,则121()e x g x x -'=-,注意1e x y -=,21y x =-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g ≥=,即()0f x '≥,因此函数()f x 在(0,)+∞上单调递增;【小问3详解】由11()e 1x f x a a x-'=+--,有(1)0f '=,令11()e 1x h x a a x -=+--,有121()e x h x a x -'=-,①当0a ≤时,11()e 0x xh x a x -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1e x y a -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数 a 的取值范围为(,1).-∞【点睛】关键点点睛:已知函数的极大值点,求出函数的导数,根据导数的导数121()e x h x a x -'=-分类讨论,确定函数极值点是解题的关键,据此可得符合题意的参数取值范围.。

湖南省常德市第一中学2024-2025学年高三上学期第一次月考 数学试题

湖南省常德市第一中学2024-2025学年高三上学期第一次月考 数学试题

常德市第一中学2025届高三第一次月水平检测数学时量:120分钟满分:150分一、单选题。

(本题共8小题,每题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的。

)1.已知集合{}{}21,24A x x B x x =-≤=-<≤,则A B = ()A .{}4x x ≤B .{}34x x ≤≤C .{}23x x -<≤D .{}24x x -<≤2.命题“x ∃∈R ,ln e 0x x x ++>”的否定是()A .x ∃∈R ,ln e 0x x x ++≤B .x ∀∈R ,ln e 0x x x ++≤C .x ∀∉R ,ln e 0x x x ++≤D .x ∃∉R ,ln e 0x x x ++<3.设5log 2a =,25log 3b =,0.20.6c =,则()A .c b a>>B .c a b>>C .b a c>>D .a c b>>4.近年,“人工智能”相关软件以其极高的智能化水平引起国内关注,深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为181425G L ⎛⎫=⨯ ⎪⎝⎭,其中L 表示每一轮优化时使用的学习率,G 表示训练迭代轮数,则学习率衰减到0.2及以下所需的训练迭代轮数至少为(参考数据:lg20.301≈)()A .16B .72C .74D .905.“1m £”是“函数()()22log 1f x x mx =--在()1,+∞单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.对于三次函数()()³²0f x ax bx cx d a =+++≠给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数32115()33212f x x x x =-+-,请你根据上面探究结果,计算12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()A .1010B .2020C .2023D .20247.()1212,[1,e]x x x x ∀∈≠,均有122121ln ln x x x x a x x -<-成立,则a 的取值范围为()A .(],0-∞B .[)1,+∞C .[]0,1D .[)0,+∞8.已知函数()()22e ,e xf x x x ag x x =-+=-,若(][]12,0,1,e x x ∞∀∈-∃∈,使()()12g x f x ≤成立,则实数a 的取值范围是()A .[)2e 1,-+∞B .12e 1,e ∞⎡⎫+-+⎪⎢⎣⎭C .)2e ,⎡+∞⎣D .21e ,e ⎡⎫++∞⎪⎢⎣⎭二、多选题(本题有3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,选错得0分)9.下列选项中正确的有()A .若a b >,则22ac bc >B .若集合{}{}20|1,2,A B x ax =-=+=,且B A ⊆,则实数a 的取值所组成的集合是{}1,2-.C .若不等式20ax bx c ++>的解集为{}3|1x x <<,则不等式20cx bx a ++<的解集为1{3x x <或1}x >D .已知函数()1y f x =+的定义域是[]2,3-,则()1y f x =-的定义域是[]0,5.10.已知0,0a b >>,且1a b +=,则()A .ab 的最小值是14B .222a b +最小值为23CD .12aa b+的最小值是111.已知函数()1e ,01ln ,04x x x f x x x +⎧-≤⎪=⎨->⎪⎩,下列选项中正确的是()A .()f x 在(),1-∞-上单调递增,在()1,0-上单调递减B .()f x 有极大值C .()f x 无最小值D .若函数()()()()2[]24h x f x af x a =-+∈R 恰有6个零点,则实数a 的取值范围是5,2⎛⎫+∞ ⎪⎝⎭三、填空题(本题共3小题,每小题5分,共15分)12.已知命题“[]1,5x ∃∈,使得1e 0xa x--<”是假命题,则实数a 的取值范围是.13.已知函数()f x ,()g x 分别是定义在R 上的奇函数,偶函数,且()()e xf xg x +=,则()()22f xg x -=⎡⎤⎡⎤⎣⎦⎣⎦.14.设函数()2e e xf x ax x =--,若在()0,∞+上满足()0f x <的正整数至多有两个,则实数a 的取值范围是.四、解答题(本题共5小题,共77分,解答应写出文字说明,证明过程和演算步骤)15.(13分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知向量,m n 满足(2,6m a =-,)2sin ,n B b =,且m n ⊥.(1)求角A ;(2)若ABC 是锐角三角形,且3a =,求ABC 周长的取值范围.16.(15分)已知正方体1111ABCD A B C D -的棱长为3,11113PD A D =,11123QC C D =,M 为线段BD 上的动点,M '是点M 关于AD 所在直线的对称点.(1)求证:1MB PQ ⊥;(2)求三棱锥1Q PMB -的体积;(3)当2BM DM =时,求二面角M PQ M '--的余弦值的绝对值.17.(15分)数列{}n a 满足321212222n n a a a a n -+++⋯+=.(1)求{}n a 的通项公式;(2)若n nnb a =,求{}n b 的前n 项和n T .18.(17分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点与点3,12P ⎛⎫ ⎪⎝⎭连线的斜率为2,且点()1,e 在椭圆C 上(其中e 为C 的离心率).(1)求椭圆C 的标准方程.(2)已知点(2,0)D ,过点P 的直线l 与C 交于A ,B 两点,直线DA ,DB 分别交C 于M ,N 两点,试问直线MN 的斜率是否为定值?若是,求出该定值;若不是,请说明理由.19.(17分)已知()2ln x ax x bf x x++=(1)当3,1a b =-=-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)已知()f x 有两个极值点12,x x ,且满足()()120f x f x +=,求b 的值;(3)在(2)的条件下,若()1f x x ≥-+在[)1,+∞上恒成立,求a 的取值范围.参考答案:1.C 2.B3.B4.C5.B 6.B 7.B 8.B9.CD10.BC 11.ABD 12.(],e 1∞--13.1-14.3e 3e ,9⎛⎤--∞ ⎥⎝⎦11.【详解】对于A ,当0x ≤时,1()e x f x x +=-,则111()(e e )e (1)x x x f x x x +++'=-+=-+,当1x <-时,()0f x '>,当10x -<<时,()0f x '<,所以()f x 在(),1∞--上单调递增,在()1,0-上单调递减,所以A 正确,对于B ,由选项A 可知()f x 在(),1∞--上单调递增,在()1,0-上单调递减,所以()f x 在=1x -处取得极大值,所以B 正确,对于C ,当0x >时,14141ln ,e 14()ln 41ln ,0e 4x x f x x x x ⎧-≥⎪⎪=-=⎨⎪-<<⎪⎩,当14e x ≥时,1ln 04x -≥,当140e x <<时,1ln 04x ->,所以当0x >时,()0f x ≥,因为()f x 在(),1∞--上单调递增,在()1,0-上单调递减,且当0x ≤时,()0f x ≥恒成立,综上,()f x 的值域为[0,)+∞,所以()f x 有最小值0,所以C 错误,对于D ,因为()f x 在(),1∞--上单调递增,在()1,0-上单调递减,()11f -=,(0)0f =,14141ln ,e 14()ln 41ln ,0e 4x x f x x x x ⎧-≥⎪⎪=-=⎨⎪-<<⎪⎩所以()f x 的大致图象如图所示由()0h x =,得()()2[]240f x af x -+=,令()f x t =,则2240t at -+=,由()f x 的图象可知,要使()h x 有6个零点,则方程2240t at -+=有两个不相等的实数根12,t t ,不妨令12t t <,若120,01t t =<<,则由图可知()h x 有6个零点,但202040a -⨯+≠,所以不符合题意,所以1201,1t t <<>,因为2020440a -⨯+=>,所以21240a -+<,解得52a >,即实数a 的取值范围是5,2∞⎛⎫+ ⎪⎝⎭,所以D 正确,故选:ABD 14.3e 3e ,9⎛⎤--∞ ⎝⎦【详解】由在()0,∞+上满足()2e e 0xf x ax x =--<的正整数至多有两个,即在()0,∞+上满足2e e x x a x ->的正整数至多有两个,设()2e e x xg x x -=,0x >,则()()3e 2e xx x g x x -+'=,设()()e 2e x h x x x =-+,0x >,则()()e 1e x h x x '=-+,0x >,设()()e 1e x m x x =-+,0x >,则()e 0xm x x '=>恒成立,则()m x 在()0,∞+上单调递增,即()()0e 10m x m >=->,即()0h x '>,所以()h x 在()0,∞+上单调递增,又()10h =,所以当()0,1x ∈时,()0h x <,即()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0h x >,即()0g x '>,()g x 单调递增;所以当1x =时,()g x 取最小值,又在()0,∞+上满足()2e e x x a g x x ->=的正整数至多有两个,则()3e 3e39a g -≤=,即3e 3e ,9a ⎛⎤-∈-∞ ⎥⎝⎦,故答案为:3e 3e ,9⎛⎤--∞ ⎥⎝⎦.15.(1)π3A =或2π3.(2)(333,9]+【详解】(1)解:∵m n ⊥,∴22sin 60a B b =,即22sin 6a B b =.由正弦定理得2sin sin 3A B B .∵sin 0B ≠,∴3sin 2A =,∵(0,π)A ∈,∴π3A =或2π3.(2)∵3a =,且三角形ABC 为锐角三角形,∴π3A =.∴由正弦定理得23sin sin sin 32a b cA B C====.∴23sin b B =,23sin c C =.∴)2π23sin sin 3sin sin 3b c B C B B⎤⎛⎫+=+=+- ⎪⎥⎝⎭⎦,31333sin cos sin 3sin 2222B B B B B ⎫⎫=++=+⎪⎪⎪⎪⎭⎭)331π33sin cos 32sin cos 6sin 2226B B B B B ⎛⎫⎛⎫=+=⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭.又∵ABC 为锐角三角形,∴π02B <<,∴2π0π32B <-<,得ππ62B <<,ππ2π363B <+<.∴3πsin()126B <+≤,336sin 66B π⎛⎫<+≤ ⎪⎝⎭,∴336b c <+≤,又∵3a =,∴3339a b c +<++≤.∴ABC 的周长的取值范围为(333,9]+.16.(1)证明见解析(2)52(3)1719【详解】(1)证明:连接1111,AC B D .由11123QC C D =,得11113QD C D =,又11113PD A D =,则有11//PQ AC ,正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11AC ⊂平面1111D C B A ,得111BB A C ⊥,又正方形1111D C B A 中,1111B D AC ⊥,1111BB B D B ⋂=,111,BB B D ⊂平面11BB D D ,所以11AC ⊥平面11BB D D ,由1MB ⊂平面11BB D D ,得111AC MB ⊥.又11//PQ A C ,所以1PQ MB ⊥.(2)111D P D Q ==,22112PQ D P D Q =+=,111111,A B C B A P C Q ==,1111Rt Rt A B P C B Q ≅ ,222222*********B P B Q A P A B ==+=+=,有1113B P B Q ==1221111521322222PQB PQ S PQ PB ⎛⎫=-=-= ⎪⎝⎭,∴11115332Q PMB M PQB PQB V V S --==⨯⨯= .(3)如图所示,以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴建立空间直角坐标系.则(0,0,0)D ,(3,0,0)A ,(1,0,3)P ,(0,1,3)Q ,当2BM DM =时,有(1,1,0)M ,则(1,1,0)M -',(1,1,0)PQ =- ,(1,2,3)QM -'=- .(0,1,3)PM =-设()111,,m x y z = 为平面QPM '的一个法向量,∴111110230PQ m x y QM m x y z ⎧⋅=-+=⎪⎨⋅='--=⎪⎩ ,令13x =,得113,1y z ==-,可得()3,3,1m =- .设()222,,n x y z = 为平面QPM 的一个法向量,∴2222030PQ n x y PM n y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令23x =,得223,1y z ==,可得(3,3,1)n = .设M PQ M '--所成的角为θ∴17cos 19991991m n m n θ⋅==⋅++⨯++ .17.(1)2nn a =(2)222n nn T +=-【详解】(1)数列{}n a 满足321212222n n a a a a n -++++= ,当2n ≥时,()31212221222n n a a a a n --+++⋯+=-,两式相减可得,122nn a -=,所以2n n a =,当1n =时,1122a ==也满足上式,所以2n n a =;(2)由(1)得2n n n b =,所以231232222nn nT =++++ ,则234111*********n n n n n T +-=+++++ ,两式相减的,2311111(1)11111222112222222212n n n n n n n n n T +++-+=++++-=-=-- ,所以222n nn T +=-.18.(1)2212x y +=(2)是定值,定值为2-(1)由题意可得22222221023211c c a a b a b c-⎧=⎪-⎪⎪⎪+=⎨⎪=+⎪⎪⎪⎩,解得222211a b c ⎧=⎪=⎨⎪=⎩故椭圆C 的标准方程为2212xy +=;(2)由题意可知直线l 的斜率不为0,设直线l 的方程为()312x m y =-+,()11,A x y ,()22,B x y ,()33,M x y ,()44,N x y ,则直线DA 的方程为1122x x y y -=+.联立11222212x x y y x y -⎧=+⎪⎪⎨⎪+=⎪⎩,整理得()()22111132220x y x y y y -+-+=则2113132y y y x =-,即13132y y x =-.代入1122x x y y -=+,得()13112312322232x x x x -=+=---.同理可得()2442231,322232y y x x x ==---.因为()()()()21211213214312123232323211232232MNy y y x y x y y x x k x x x x x x -------===-----()()()21112112123332322222,y my m y my m m y y m y y m y y ⎡⎤⎡⎤⎛⎫⎛⎫--+---+ ⎪ ⎪⎢⎥⎢⎥-⎝⎭⎝⎭⎣⎦⎣⎦===---所以直线MN 的斜率为定值,且定值为2-.19.(1)1y x =-+(2)1b =-(3)[)3,2--【详解】(1)当3,1a b =-=-时,()()13ln ,10f x x x f x =--=,所以()2311f x x x '=-+,所以()11f '=-.所以曲线()y f x =在点()()1,1f 处的切线方程为1y x =-+.(2)因为()()ln ,0,b f x x a x x x =++∈+∞,所以()2221a b x ax bf x x x x +-=+-=',因为()f x 有两个极值点12,x x ,所以()f x '有两个大于0的变号零点,所以方程20x ax b +-=有两个不等正根,所以21212Δ4000a b x x b x x a ⎧=+>⎪=->⎨⎪+=->⎩,解得2400a bb a ⎧>-⎪<⎨⎪<⎩,又因为()()120f x f x +=,即有112212ln ln 0b b x a x x a x x x +++++=,整理得()()12121212ln 0x x x x a x x bx x ++++=,代入1212,x x b x x a =-+=-,可得()()ln 0aa ab b b--+-+=-,解得1b =-,又因为240a ba ⎧>-⎨<⎩,所以可得2a <-,经检验,符合题意.(3)由(2)可知1b =-且2a <-,从而()1ln f x x a x x=+-,因为()1f x x ≥-+在[)1,+∞上恒成立,令()()[)112ln 1,1,g x f x x x a x x x=+-=+--∈+∞,则有()0g x ≥在[)1,+∞上恒成立,易得()12ln1110g a =+--=,因为()2221212a x ax g x x x x ++=++=',所以()13g a '=+,令()[)()221,1,,13h x x ax x h a =++∈+∞=+,对称轴4a x =-,①当32a -≤<-时,()3130,44a h a x =+≥=-≤,所以()h x 在[)1,+∞单调递增,从而()()130h x h a ≥=+≥恒成立,所以()()20h x g x x ='≥在[)1,+∞也恒成立,所以()g x 在[)1,+∞单调递增,从而()()10g x g ≥=恒成立.②当3a <-时,()130h a =+<,所以2210x ax ++=有两个不等实根34,x x (不妨设34x x <),所以341x x <<,且当()41,x x ∈时,()0h x <,从而()()20h x g x x='<,所以()g x 在[]41,x 上单调递减,所以()()410g x g <=,与“()0g x ≥在[)1,+∞上恒成立”矛盾,综上,a 的取值范围是[)3,2--。

天津市和平区2024_2025学年高三语文上学期第一次月考试题

天津市和平区2024_2025学年高三语文上学期第一次月考试题
D. 文中的“京师”,是指当时的都城。南宋陆游有“谁令骑马客京华”一句,其中的“京华”指南宋行在临安。
10. 文中画波浪线的句子,断句最合理的一项是( )
A. 今兹日戴星入曹局/治文书/往往不遑食/暮归/脱冠带/昏然就枕
B. 今兹日戴星入/曹局治文书/往往不遑食/暮归脱冠带/昏然就枕
C. 今兹日戴星入曹局/治文书往往不遑/食暮/归脱冠带/昏然就枕
5. 下列对表格的分析,不正确的一项是( )
A. 与许舍集市相比,雪浪集市规模较小,但是开设的频率较高。
B. 传统的许舍集市是定期集市,每月会开市一次,位于雪浪山庄和许舍小学旁边。
C. 传统的许舍集市因为规模大,历史久,吸引的人群会较多,影响力更大。
D. 许舍集市和雪浪集市在开市时间、地理位置、规模和服务人群上都存在很大不同。
农村集市的文化传承是家乡持续的精髓和重要支撑。集市持续了大量的民俗文化,本身形成了一个无界限的文化空间,集市的产生强化了人们的沟通和沟通,也反映出深厚的乡村文化氛围,有利于文化的传承和家乡的持续。
(摘编自聂李虎、过伟敏《家乡的持续——文化传承下的农村新集市》,有校改)
4. 下列对材料相关内容的理解,正确的一项是( )
C. 作者曾答应为周景春新田园中的亭子命名,但三年过去还未兑现,恰值景春之子来,于是回忆当年巡游之景,将亭子取名为“水木清华”。
D. 作者艳羡周景春的闲适生活,在为其亭取名之后,自己也另在郡北买了一座山,畅游其间,颇为自适。
12. 把文言文阅读材料中画横线的句子翻译成现代汉语。
(1)士大夫有良田美池可以适者,讵止君,然不得如君者恒多。
三、(15分)
阅读下面的文言文,完成下面小题。
水木清华亭记
【元】宋本
至治三年,予过朗,周君景春语子:“吾白马湖园田,子尝觞其会心亭者,吾岁一再至,至辄留数十日。虽颇野逸,吾犹以近城郭,过客夥,往往闻官府里巷事为可厌。别买小山敖山驿旁,筑亭其上,距城六十里而远,非亲戚故人来候,终岁无通刺者。其奇胜岑蔚,视白马湖不啻什百。”因共往临观,徘徊忘归,暮就宿亭中。既别君以北,怀其境,必形思梦,数数念君,为能自适。盖亲大林丘山者,莫樵牧农夫若。然其目不知书诗,昧道理,劳斧斤耜耒,指趼,以登陟作业,虽日涉,只见其苦。常试问之,将悼其生之在野,又乌知惬心目高深耶?知者独士大夫。士大夫有良田美池可以适者,讵止君,然不得如君者恒多。苟名士大夫,率不甘沉浮稠人中,必振拔骄傲,求尺寸名,诧九族侪类,西东驰骛无已时,其乡有十年、廿年不至者,况良田美池?否则暂至,集农夫耕获,校斗斛诈欺,不得自休息,穷日疲极而睡,旦复乘车骑马还市中,自适之乐夺矣。君爵禄不入心,又不愿自婴世故,闻人争竞是非,远避如不及。至山中,纳履策杖,翛然往来林下。遇田父道人,坐谈或略具酒茗资笑乐。于是山林可爱而玩者,若皆效奇以出,不为外夺故也。它士大夫能效君,则其园田讵皆无奇?是非君擅有斯乐不让,人不即之耳。

湖南师范大学附属中学2025届高三上学期第一次月考数学试题及答案

湖南师范大学附属中学2025届高三上学期第一次月考数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ()A.{}32xx −≤≤∣ B.{32}x x −≤<∣C.{12}x x <≤∣ D.{12}x x <<∣2.若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于()A.B.54C.D.3.已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上投影向量为()A.()6,3− B.()4,2− C.()2,1− D.()5,04.记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A.21B.19C.12D.425.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D.820人6.已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( )A.π6 B.π4C.π3D.2π37.已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.B.C.(D.(8.已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1−∞∪ C.[)1,+∞ D.()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF ⊥平面PMN10.已知函数()5π24f x x=+,则()A.()f x 的一个对称中心为3π,08B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则()A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +−的展开式中2x y 的系数为______.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ,求CD 的长.16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围.17.已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18.在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张1.9 1.982.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式:()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ()A.{}32xx −≤≤∣ B.{32}x x −≤<∣C.{12}x x <≤∣ D.{12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2.若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于()A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3.已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A.()6,3− B.()4,2− C.()2,1− D.()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A.21 B.19C.12D.42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A.136人B.272人C.328人D.820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6.已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 64αβαβ⋅+⋅=,解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7.已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.B.C.(D.(【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+,即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8.已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1−∞∪ C.[)1,+∞ D.()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF ⊥平面PMN【答案】BD【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10.已知函数()5π24f x x=+,则()A.()f x 的一个对称中心为3π,08B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确. 故选:BD11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=,即()()21f x g x +−=①,用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②,由①+②得()()222f x f x ++−=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−,所以()()()()82422f x f x f x f x +=−+=−−= ,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +−的展开式中2x y 的系数为______.【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>.构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e ,所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零,综上所述,()0f x >的解集为()()1,01,−∪+∞.故答案为:()()1,01,−∪+∞14.已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】 【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ∠=∈ ,由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为: 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C =(2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++,解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,−∞−+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值; (2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−.函数()g x 的导函数()()1e xg x k x −=−′①若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. ②若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.③若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(+∞)上单调递增,所以()min ()1ekg x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−.综上所述,k 的取值范围为(](),10,∞∞−−∪+.17.已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− ,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18.在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥,所以当232ι=时,线段PQ .【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=.直线()21:111a DM y x a −−=−−,即()10x a y a −++=.由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=.所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,22224224,11r r a b ab r r −−∴+==−−代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=,220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛. 参考公式:()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t +(2)433774n n P =+⋅− (3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,a b 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新,12345678959t ++++++++=新,则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新,可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−,所以数列47n P − 是首项为928−,公比为34−的等比数列,故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−.【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减,最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

辽宁省实验中学2024~2025学年高三上学期10月月考英语试题含答案

辽宁省实验中学2024~2025学年高三上学期10月月考英语试题含答案

辽宁省实验中学25届高三上学期第一次月考英语科试卷考试时间:120分钟试卷满分:150分命题人:校对人:第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What will the speakers do with the phone?A. Have it updated.B. Have it charged.C. Have it checked.2. What kind of T-shirts does the woman prefer?A. Short.B. Loose.C. Tight.3. Who is the woman probably?A. A language teacherB. A writer.C. A musician4. What does the man have with his coffee?A. Low-fat milk.B. Goat’s milkC. Cream5. What are the speakers probably going to do next?A. Put up a tentB. Fish in the lakeC. Get food at a store.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6. Where does the conversation probably take place?A. In a library.B. At a print shop.C. In a classroom.7. What did the woman do last night?A. She worked on a presentation.B. She watched a show.C. She shared a story.听第7段材料,回答第8至10题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三第三学年第一学期第一次月考试题
一、填空题:(1分╳20=20分)
1、将演示文稿打包的目的是________
2、在幻灯片的视图中,向幻灯片插入图片,选择________菜单的图片命令,然后选择相应的命令。

3、普通视图包含3种窗口:________、________和________。

4、Powerpoint可利用模板来创建________,它提供了两类模板,________和________。

模板的扩展名为________。

5、文本框有________和________2种类型。

6、在Powerpoint中,可以为幻灯片中的文字、形状和图形等对象设置________。

设计基本动画的方法是先在________视图中选择好对象,然后选用幻灯片放映菜单中的________。

7、Powerpoint可利用模板来创建________,它提供了两类模板,________和________。

模板的扩展名为________。

8、艺术字是一种________对象,它具有________属性,不具备文本的属性。

二、选择题(2分╳20=40分)
1、PowerPoint 2003的主要功能是()
A)创建演示文稿B)数据处理C)图像处理D)文字编辑
2、PowerPoint 2003下保存的演示文稿扩展名是()
A)PPT B)XLS C)TXT D)DOC
3、在PowerPoint 2003中,“格式”菜单中的可以改变幻灯片布局的命令是()
A)背景B)幻灯片版式C)幻灯片配色方案D)字体
4、在PowerPoint中,大纲视图只显示文稿的()部分。

A)图形对象B)色彩C)文本D)声音媒体
5、下列关于PowerPoint2003的描述正确的是()
A)使用PowerPoint2003只能生成PPT类型的文件
B)使用PowerPoint2003不可以制作电子相册
C)通过内容提示向导可以快速完成演示文稿的制作
D)PowerPoint2003是一个系统软件
6、在放映幻灯片时,如果需要从第1张切换至第3张,应该怎么做()
A)在放映时,单击鼠标左键
B)停止放映,双击第3张后再放映
C)放映时双击第3张就可切换
D)右击幻灯片,在快捷菜单中选择第3张
7、通过下列哪种方法不能插入一张新幻灯片。

()
A)插入幻灯片 B)格式工具栏”新幻灯片”按钮
C)快捷键Ctrl+M D)文件新建
8、当新插入的剪贴画遮挡住原来的对象时,下列哪种说法不正确。

()
A)可以调整剪贴画的大小
B)可以调整剪贴画的位置
C)只能删除这个剪贴画,更换大小合适的剪贴画
D)调整剪贴画的叠放次序,将被遮挡的对象提前
9、关于自定义动画,说法不正确的是()
A)可以调整顺序B)有些可设置参数
C)可以带声音D)只能为文字设置自定义动画
10、使用椭图工具画圆时,按是哪个键位可以画出一个圆形。

()
A)Shift B)Ctrl C)Alt D)Enter
11、关于插入表格的方法,下列哪种说法是错误的。

()
A)可以使用插入菜单插入表格
B)可以通过应用内容版式为幻灯片插入表格
C)只能将Word中做好的表格复制到PowerPoint中
D)Word和Excel中的制作好的表格都可以复制到PowerPoint中来
12、在PowerPoint 2003中,设置幻灯片放映时的换页效果为“垂直百叶窗”,应使用“幻片放映”菜单下的哪个命令。

()
A)动作按钮B)幻灯片切换C)预设动画D)自定义动画
13、在放映幻灯片时,如果需要从第1张切换至第3张,应()
A)在制作时建立第1张转至第3张的超链
B)停止放映,双击第3张后再放映
C)放映时双击第3张就可切换
D)放映时不能从第1张直接切换至第3张
14、PowerPoint中插入一张图片的过程哪一个是正确的()。

1 ) 打开幻灯片;
2 ) 选择并确定想要插入的图片;
3) 执行插入图片从文件的命令;
4) 调整被插入的图片的大小、位置等
A) 1423 B) 1324 C)3124 D) 3214
15、在幻灯片播放时,如果要结束放映,可以按下键盘上的()键。

A)ESC B)Enter C)Space D)Ctrl
16、如果想在幻灯片中的某段文字或是某个图片添加动画效果,可以单击“幻灯片放映”菜单的()命令。

A)动作设置B)自定义动画C)幻灯片切换D)动作按钮
17、在“PowerPoint”中,要进行格式复制,我们可用何种工具进行操作?()
A)复制B)格式刷C)粘贴D)工具条
18、PowerPoint的幻灯片可以()。

A) 在计算机屏幕上放映
B)在投影仪上放映
C)打印成幻灯片使用
D)以上三种均可以完成
19.以下元素可以添加动画效果的是()。

A)图片B)剪贴画C)文本框D)图示E)自选图形
20.关于自定义动画,说法正确的是()。

A)可以带声音B)可以添加效果 C)不可以进行预览
D)不可以添加效果E)可以调整顺序
三、判断题:(1分╳15=15分)
1、可以为同一个演示文稿中的不同幻灯片应用不同的设计模板。

()
2、幻灯片在播放的时候只能从第一张开始。

()
3、PowerPoint2003共提供了四种视图。

()
4、在PowerPoint2003中从当前幻灯片开始放映的快捷键是ctrl+F5。

( )
5、在PowerPoint2003将幻灯片隐藏就等于将幻灯片进行了删除。

()
6、隐藏的幻灯片在编辑时是看不到的,只有在播放时才可以看见。

()
7、在PowerPoint2003中幻灯片在放映时只能按顺序进行上下放映而不能任意跳到其他的幻灯片上。

()
8、利用设计模板只能为全部幻灯片设置背景而不能只为一张幻灯片设置背景。

()
9、自定义动画功能不能给文字添加动画效果。

()
10、如果幻灯片没有插入声音,则不能放映。

()
11、在PowerPoint中插入的图表只能是直方图。

()
12、在幻灯片放映时使用Ctrl+P可以调出绘图笔。

()
13、使用动作按钮可以在幻灯片放映时打开一个程序。

()
14、演示文稿不能使用打印机打印出来。

()
15、幻灯片中不能设置页眉、页脚。

()
四、操作题(25分,5分+10分+10分)
1、下图是浏览图中的常用工具栏,试写出指定标记的名称。

(5分)
(1)(2)(3)
(1)__________;(2)__________;(3)__________
2、对下图所示Excel表格按以下要求操作:(10分)
(1)、在sheet1表后插入工作表sheet2,并将sheet1复制到sheet2;(4分)
(2)、求出sheet2中07、08两年平均招收新生总数并填入相应的单元格;(4分)
(3)、将各校所有内容按“两年平均招收新生总数”升序排列(不包括“合计”)(2分);
3、在word文档中,插入Excel表格,设置A1:E9边框为红双线,底纹为12.5%灰度,写出操作步骤。

(10分)
高三第三学年第一学期第一次月考试题
一、填空题:(1分╳20=20分)
1、________
2、________
3、________、________和________
4、________、________、________、________
5、________、________
6、________、________、________
7、________、________、________、________
8、________、________
二、选择题(2分╳20=40分)
1、(5分)(1)__________;(2)__________;(3)__________
2、(10分)
(1)、
(2)、
(3)、
3、(10分)。

相关文档
最新文档