运筹学教材编写组《运筹学》课后习题-存储论(圣才出品)
运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
运筹学存储论习题

运筹学存储论习题习题十三13.1 一家出租汽车公司平均每月使用汽油8000公升,汽油价格为每公升1.05元,每次定货费为3000元,保管费为每月每公升0.03元。
试求最优策略及其费用。
13.2 某厂对某种材料的全年需求量为1040吨,其购价为每吨1200元,每次订货费为2040元,每年每吨的保管费为170元。
(1)试求最优策略及其费用;(2)为实用方便,则存贮策略及其费用又如何? 13.3 某装配车间每月需要A零件400件。
该零件由厂内生产,生产率为每月800件,每批生产准备费为100元,每件生产成本为5元,每月每个零件的保管费为0.5元。
试求装配车间对A零件的存贮策略及其费用,以及该零件的生产周期与最高存贮水平。
13.4 某厂每天生产50件产品,每批生产固定费用为250元,每件产品的成本为200元,每件产品每年保管费为65元。
若每天对该产品的需求量为10件,求最有策略及其费用。
13.5 某机械厂每周购进某种机械零件50个,购价为每件4元,每次订货费为4元,每件每周保管费为0.36元。
(1)求经济订货批量;(2)为少占用流动资金,使存贮大到最低限度,该厂宁可使总费用超过最低费用的4%,则此时订货批量又为多少? 13.6 承13.2题,若允许缺货,且知缺货损失费为每吨每年500元。
(1)求最优策略、最大缺货量及最小费用;(2)若为实用方便,则结果有应如何?13.7 某印刷厂负责印刷一本年销售量为120万册的书,该厂每天的生产能力是几十万册,该书的销售是均匀的。
若该厂只按每天销售印刷,则可使生产率与销售率同步,从而无库存,但每天印完此书又得换印刷别的书,其生产调节费为每天2000元。
每万册书贮存一天的费用为4.53元,缺货一天的损失为1.02元,试分析比较缺货与不缺货的最有策略哪个比较好,并说明理由。
13.8 承13.4题,若允许缺货,且知缺货损失为每件每年85元。
(1)求最优策略、最大缺货量及最小费用;(2)若为实用方便,则又应如何?13.9 某报社定期补充纸张的库存量,所用新闻纸以大型卷筒进货,每次订货费用(包括采购手续、运输费等)为25元,购价如下:买1~9筒,单价为12.00元买10~49筒,单价为10.00元买50~99筒,单价为9.50元买100筒以上,单价为9.00元报社印刷车间的消耗率是每周32筒,贮存纸张的费用(包括保险、占用资金的利息)为每周每筒1元。
《运筹学研究生辅导课件》第五章存储论习题解答.docx

第五章习题解答1.某商品单位成本为5元,每天存贮费为成本的0. 1%,每次订货费为10 元。
已知对该商品的需求是100件/天,不允许缺货。
假设该商品的进货可以随时实现。
问应怎样组织进货,才能最经济。
解根据题意,其屈于“不允许缺货,补充时间极短”的经济订货批量存贮模型,可知K二5 元/件,C[=5X0. 1%二0. 005 元/件•天,Cg^lO 元,R二100 件/天。
因此有=/?/*=100X6. 32=632 (件)C= 72x0.005x10x100 =3. 16 (元/天)所以,应该每隔6. 32天进货一次,每次进货该商品632件,能使总费用(存贮费和订货费Z和)为最少,平均约3.16元/天。
若按年计划,则每年大约进货365/6. 32^58 (次),每次进货630件。
2.某仪表厂今年拟生产某种仪表30000个。
该仪表屮有个元件需要向仪表元件厂订购。
每次订购费用50元,该元件单价为每只0.5元,全年保管费用为购价的20%o (1)试求仪表厂今年对该元件的最佳存贮策略及费用。
(2)如明年拟将这种仪表产量提高一倍,则所需元件的订购批量应比今年增加多少?订购次数又为多少?解:(1)根据题意,其属于“不允许缺货,补充时间极短”的经济订货批量存贮模型。
确定以1年为时间单位,且R二30000只/年,C3二50元/次,K二0. 5 元/只;C| 二0. 2K=0. 1 元/只•年。
因此有最佳经济批量为最佳订货周期为心余號^83(年)最小平均总费用为C' = = 72x0.1x50x30000 =548 (元)(2)明年仪表产量提高一倍,则R 二60000只/年,其他己知条件不变,可得:因此所需元件订购批量比今年增加:7746-5477=2269 (只)全年订购次数:R n =—— :=6需=7. 75(次)比较n 二7和n 二8时的全年运营费用:n 二7时,订购周期t=l/7,年运营费用:⑴心厂疇出心79(元)n 二8时,订购周期t 二1/&年运营费用:C =60000x0,1+50x8=775 (元) 2x8比较两者的年运营费用,取"8,即全年订购8次,毎次订购批量60000/8 =7500 只。
运筹学课后答案2

运筹学(第2版)习题答案2第1章 线性规划 P36~40第2章 线性规划的对偶理论 P68~69 第3章 整数规划 P82~84 第4章 目标规划 P98~100 第5章 运输与指派问题 P134~136 第6章 网络模型 P164~165 第7章 网络计划 P185~187 第8章 动态规划 P208~210 第9章 排队论 P239~240 第10章 存储论 P269~270 第11章 决策论 Pp297-298 第12章 博弈论 P325~326 全书360页由于大小限制,此文档只显示第6章到第12章,第1章至第5章见《运筹学课后答案1》习题六6.1如图6-42所示,建立求最小部分树的0-1整数规划数学模型。
【解】边[i ,j ]的长度记为c ij ,设⎩⎨⎧=否则包含在最小部分树内边0],[1j i x ij数学模型为:,12132323243434364635365612132434343546562324463612132446362335244656121324354656m in 52,22,233344,510ij ijij i j ij Z c x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ==++≤++≤++≤++≤+++≤+++≤+++≤++++≤++++≤+++++≤=∑或,[,]i j ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩所有边6.2如图6-43所示,建立求v 1到v 6的最短路问题的0-1整数规划数学模型。
图6-42【解】弧(i ,j )的长度记为c ij ,设⎩⎨⎧=否则包含在最短路径中弧0),(1j i x ij数学模型为:,1213122324251323343524344546253545564656m in 100,00110,(,)ijiji jij Z cx x x x x x x x x x x x x x x x x x x x x x i j =⎧+=⎪---=⎪⎪+--=⎪⎪+--=⎨⎪++-=⎪⎪+=⎪=⎪⎩∑或所有弧 6.3如图6-43所示,建立求v 1到v 6的最大流问题的线性规划数学模型。
运筹学教材习题答案

教材习题答案部分有图形的答案附在各章PPT文档的后面,请留意。
第1章线性规划第2章线性规划的对偶理论第3章整数规划第4章目标规划第5章运输与指派问题第6章网络模型第7章网络计划第8章动态规划第9章排队论第10章存储论第11章决策论第12章对策论习题一1.1 讨论下列问题:(1)在例1.1中,假定企业一周内工作5天,每天8小时,企业设备A有5台,利用率为0.8,设备B有7台,利用率为0.85,其它条件不变,数学模型怎样变化.(2)在例1.2中,如果设x j(j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(3)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路.(4)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(5)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.1.2 工厂每月生产A、B、C三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-22所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:【解】设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为14112342567891036891112132347910121314min 2300322450232400232346000,1,2,,14jj j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩∑ 用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为134131412342567891036891112132347910121314min 0.60.30.70.40.82300322450232400232346000,1,2,,14j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j =+++++⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩ 用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。
运筹学教材编写组《运筹学》笔记和课后习题(含考研真题)详解 第(13-14)章【圣才出品】

dFT dt
et , t 0
(3)爱尔朗分布(Erlang)
3 / 54
圣才电子书 十万种考研考证电子书、题库视频学习平台
设1, 2 , , k 是 k 个独立的随机变量,服从相同参数 k 的负指数分布,那么,
T 1 2 k 的概率密度是:
fk
(t)
图 13-1 这种系统状态(n)随时间变化的过程就是生灭过程(Birth and Death Process), 它可以描述细菌的生灭过程。
4 / 54
圣才电子书
6.几个重要的参数
十万种考研考证电子书、题库视频学习平台
:单位时间平均到达的顾客数;
e :系统的有效达到率; :单位时间能被服务完成的顾客数;
那么一顾客走完 k 个服务台总共所需要服务时间就服从上述的 k 阶 Erlang 分布。
5.生灭过程(稳态)
稳态时, Pn (t) 与时间无关,可以写成 Pn ,它对时间的导数为 0,所以
PnP01
P1 0 Pn1 (
) Pn
0
上式即为关于 Pn 的差分方程。由此可得该排队系统的状态转移图如图 13-1 所示:
1 /研考证电子书、题库视频学习平台
①服务机构分为单服务台和多服务台。不同的输入形式与排队规则和服务机构联合后形
成不同的排队服务机构。
②服务方式分为单个顾客服务和成批顾客服务。
③服务时间分为确定型(定常时间)和随机型。
④服务时间的分布在这里我们假定是平稳的。
1
)
,
1 N
, 1
1
1 ,
e (1 PN ) (1 P0)
: / 。
7.排队论公式整理
(1)无敌的 Little 公式
运筹学 第9章 存贮论

§1 经济订购批量存贮模型
§2 经济生产批量模型
§3 允许缺货的经济订购批量模型
§4 允许缺货的经济生产批量模型
§5 经济订购批量折扣模型
第九章 存贮论
存贮是缓解供应与需求之间出现的供不应求或供过于求等不协
调情况的必要和有效的方法和措施。
但是,要存贮就需要资金和维护,存贮的费用在企业经营的成 本中占据非常大的部分。
T
t1 T t 2
c 显然, 2 时,允许缺货订购模型趋于经济订购批量模型。
§3 允许缺货的经济订购批量模型
例子:假设§2例子中图书馆设备公司不生产书架,只销售书架。 其销售的书架靠订货提供而且都能及时供货。该公司一年的需求量为 4900个,一个书架一年的存贮费用为1000元,每次订货费为500元, 每年的工作日为250天。 问: 1. 不允许缺货。求一年总费用最低的最优每次订货量及相应的周 期,每年的订购次数,一年的总费用。 2. 允许缺货。设一个书架缺货一年的缺货费为2000元。求一年总 费用最低的最优每次订货量及相应的周期,相应的最大缺货量,同期 中缺货的时间,不缺货的时间,每年的订购次数,一年的总费用。
§1 经济订购批量存贮模型
一年的存贮费 每箱方便面一年的存贮费 平均存贮量 1 6 Q 3Q 2
一年的订货费 每次的订货费 每年订货次数 D c3 Q 3000 52 25 Q
一年的总费用 一年的存贮费+一年的订货费 3000 52 3900000 3Q 25 3Q Q Q
§1 经济订购批量存贮模型
各参量之间的关系: 订货量 Q 总存贮费 越小 存贮费用越小 越大 存贮费用越大 存贮量Q与时间 t 的关系 总订购费 订购费用越大 订购费用越小
《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(存储论)

第13章存储论13.1 复习笔记1.存储论的基本概念备货时间:从订货到货物进入“存储”往往需要一段时间,我们把这段时间称为备货时间。
备货时间可能很长,也可能很短,可能是随机性的,也可以是确定性的。
提前时间:从另一个角度看,为了在某一时刻能补充存储,必须提前订货,那么这段时间称之为提前时间。
存储策略:决定多少时间补充一次以及每次补充数量的策略称为存储策略。
存储论要解决的问题是:多少时间补充一次,每次补充的数量应该是多少,即存储策略。
2.一些参数的含义K:货物单价;:最佳订货周期;R:需求速度;:最佳订货批量;:单位存储费用;:单位缺货损失;:订购费;:最佳费用;:最佳生产时间;:生产速度;:最大存贮量;:最大缺货量;:最大缺货量。
3.存储策略(1)-循环策略,每隔时间向系统内补充存储量Q。
(2)策略,当存储量时不补充;当时补充存储,补充量(即,将存储量补充到S)。
(3)混合策略,每经过t时间检查存储量,当时不补充;当时,补充存储量使之达到S。
4.确定性存储模型(1)模型一—经典的E.O.Q模型:不允许缺货,备货时间很短,且需求是连续均匀的,即需求速度是一常数;每批订货量不变,订货费用为常数;单位存储费用不变。
已知,求,,(2)模型二:不允许缺货,生产需一定时间,其余条件同模型一。
已知,求,,(3)模型三:允许缺货,备货时间很短,其余条件同模型一。
已知,求,,,最大缺货量(4)模型四:允许缺货(需补足缺货),生产需要一定时间,其余条件同模型一。
已知,求,,简便的记忆方法:①永远成立②记住模型一,,③定义两个因子④与因子的关系与乘以因子,与除以因子模型二乘除,模型三乘除,模型四乘除⑤模型二的,模型三的,模型四的说明:在允许缺货条件下,经过研究而得出的存储策略是:每隔时间订货一次,订货量为,用中的一部分补足所缺货物,剩余部分进入存储。
很明显,在相同的时间段落里,允许缺货的订货次数比不允许缺货时订货次数减少了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q* = 2C3R = 2 600100000 = 2000(件)
C1
30
所以经济订购批量为 2000 件。
(2) 所以每年的订购次数为 50 次。
13.3 某工厂生产某种零件,每年需要量为 18000 个,该厂每月可生产 3000 个,每 次生产后的装配费为 5000 元,每个零件的存储费为 1.5 元,求每次生产的最佳批量。
3/9
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)该厂为少占用流动资金,希望存储量达到最低限度,决定宁可使总费用超过最低 费用的 4%作为存储策略,问这时订购批量为多少?
解:已知 R = 50,C3 = 40,C1 = 3.6 。
(1)由 E.O.Q 公式,可求得
有折扣的类型,即订购费为 C3 + KQ,K为阶梯函数) 解: R = 5000,C3 = 500,C1 =10 。设电感单价为 K(Q) ,则
按 E.O.Q 计算,得
分别计算每次订购 707 个和 l500 个电感平均每单位电感所需费用:
4/9
圣才电子书 十万种考研考证电子书、题库视频学习平台
解得 Q = 44件,Q = 25件 。所以该厂为了少占用流动资金,应取 Q ' =25 件。
13.8 某公司采用无安全存量的存储策略,每年需电感 5000 个,每次订购费 500 元, 保管费用每年每个 10 元,不允许缺货。若采购少量电感每个单价 30 元,若一次采购 1500 个以上,则每个单价 18 元,问该公司每次应采购多少个?(提示:本题属于订购量多,价格
Q* =
2C3R =
2 2001800 12 32(吨)
C1
60
所以最佳订购量为 32 吨。
13.2 某公司采用无安全存量的存储策略。每年使用某种零件 100000 件,每件每年的
保管费为 30 元,每次订购费为 600 元。试求:
(1)经济定购批量;
(2)订购次数。
解:(1)按 E.O.Q 模型计算 Q* ,得
13.9 某工厂的采购情况如表 13-1 所示.假设年需求量为 10000,每次订货费为 2000 元,存储费率为 20%,则每次应采购若干?
表 13-1
解:已知 R =10000,C3 = 2000
设单价为 K(Q) ,则
假定
0
Q 0
1999
,则
Q 0
=
2C3R
C1
(
Q 0
)
=
2 200010000 1414 20
假定
Q 0
2000
,则
Q 0
=
2C3R
C1
(
Q 0
)
=
2 200010000 1581 ,与假定矛盾,舍去。 16
分别计算每次订购 1414 个和 2000 个时,平均每单位所需费用:
因为 CⅡ(Q1 ) CⅠ(Q0 ) ,所以 Q* = Q1 = 2000个 ,即每次采购 2000 个。
E.O.Q 为
最小费用为
ቤተ መጻሕፍቲ ባይዱ
所以,最佳批量为 447 件,最小费用约为 10733 元。
13.6 在题 5 中如允许缺货,求存储量 S,及最大缺货量,设缺货费为 C2 = 200 元。
解:用“允许缺货,生产时间很短”的模型求解。
已知 C1 = 24,C2 = 200,C3 =100,R = 24000 ,故
C(Q0 )=
1 2
C1
Q0 R
+
C3 Q0
+K1=
1 2
10
707 5000
+
500 707
+30
31.414(元/个)
C(Q1 )=
1 2
C1
Q1 R
+
C3 Q1
+K2 =
1 2
10
1500 5000
+
500 1500
+18
19.83(元/个)
因为 C(Q1 ) C(Q0 ) ,所以取 Q* =1500个,即该公司每次应采购 1500 个。
则 Q* = 2C3 R = 250 4 7(件)
C1
8
以月为单位的平均费用为
C (Q* )
=
C1
Q* 2
+
C3
R Q
=
8
7 2
+
50
4 7
56.6(元)
(2)用“不允许缺货,生产需一段时间”的模型求解。已知 C3 = 50,C1 = 8,P =10 ,
R = 4 ,则最佳批量为
最小费用为
所以,如果生产时间足够短,那么最佳生产量为 7 件,最小费用为 56.6 元;如果生产 速度为每月可生产 10 件,那么最佳生产量为 9 件,最小费用为 43.8 元。
2/9
圣才电子书 十万种考研考证电子书、题库视频学习平台
13.5 每月需要某种机械零件 2000 件,每件成本 l50 元,每年的存储费用为成本的 16%,每次订购费 100 元,求 E.O.Q 及最小费用。
解:用“不允许缺货,生产时间很短”的模型求解。
已知 C3 =100,R = 200012 = 24000,C1 =15016%= 24 。
1/9
圣才电子书 十万种考研考证电子书、题库视频学习平台
解:由题意知,该题模型为“不允许缺货,生产需一定时间”,已知 C3 = 5000 ,C1 =1.5 , P = 3000,R =18000 12 =1500 。
最佳批量是
Q* =
2C3RP
C1 (P − R)
=
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 13 章 存储论
13.1 设某工厂每年需用某种原料 1800 吨,不需每日供应,但不得缺货。设每吨每月
的保管费为 60 元,每次订购费为 200 元,试求最佳订购量。
解:由题意知,该模型为“不允许缺货,生产时间很短”,按 E.O.Q 计算 Q*得
2500015003000
1.5(3000 −1500)
447(2 个)
所以,每次生产的最佳批量为 4472 个。
13.4 某产品每月用量为 4 件,装配费为 50 元,存储费每月每件为 8 元,求产品每次
最佳生产量及最小费用。若生产速度为每月可生产 10 件,求每次生产量及最小费用。
解:(1)用“不允许缺货,生产时间很短”的模型求解。已知 C3 = 50,R = 4,C1 = 8 。
最大缺货量为
Q − S = 2RC1C3 = 2 24000 24100 50(件)
C2 (C1 + C2 )
200(24 + 200)
所以库存量 S 为 423 件,最大缺货量为 50 件。
13.7 某制造厂每周购进某种机械零件 50 件,订购费为 40 元,每周保管费为 3.6 元。 试求:
(1)E.O.Q;