二次函数交点式公式
二次函数公式顶点式交点式两根式

二次函数公式顶点式交点式两根式二次函数是中学数学中的一个重要概念,也是数学基本的一种函数类型。
在解题中,对于二次函数的不同公式形式的掌握以及它们的应用是非常重要的。
本文将详细介绍二次函数的三种常用公式形式:顶点式、交点式和两根式。
一、顶点式:顶点式也叫标准式,它是二次函数最常用的一种表示形式。
顶点式的一般形式为:y=a(x-h)²+k,其中a表示抛物线开口的方向和大小,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;(h,k)表示抛物线的顶点坐标。
顶点式提供了抛物线的顶点坐标,因此很容易确定抛物线的最值。
当a>0时,抛物线的最小值为k,当a<0时,抛物线的最大值为k。
此外,顶点式也可以很方便地求出对称轴的方程,对称轴的方程为x=h。
顶点式的一个重要应用是求解二次函数的最值问题。
通过求解顶点的坐标,可以得到二次函数的最值点,进而解决各种最值问题,如求抛物线经过的点中的最大或最小值等。
二、交点式:交点式是通过已知抛物线上两个点求解二次函数的一种表示形式。
交点式的一般形式为:y=a(x-x₁)(x-x₂),其中(x₁,y₁)和(x₂,y₂)表示抛物线上两个已知点的坐标。
交点式提供了抛物线上的两个点,通过已知两点可以直接写出二次函数的全式形式。
交点式也可以通过展开得到全式形式,展开后,得到二次函数的一般形式y=ax²+bx+c,其中a、b、c的数值可以通过已知的两个点求解。
交点式的一个重要应用是求解二次函数的方程,通过已知的两个点,可以将二次函数的方程写成交点式的形式,从而可以直接解出二次方程,求出解的个数以及具体的解。
三、两根式:两根式也是二次函数的一种常见表示形式,它主要用于求解二次方程的两个根(零点)。
两根式的一般形式为:y=a(x-x₁)(x-x₂),其中(x₁,y₁)和(x₂,y₂)表示抛物线与x轴相交的两个点的坐标。
两根式主要通过已知抛物线与x轴相交的两个点来求解二次方程的两个根。
二次函数一般式怎么化成交点式

二次函数一般式怎么化成交点式二次函数一般式化为交点式二次函数是高中数学中一个重要的概念,它的一般式表示为:y = ax² + bx + c。
其中a、b、c是常数,且a ≠ 0。
通过将二次函数的一般式化为交点式,可以更加直观地了解二次函数的性质和特点。
交点式是指以二次函数与坐标轴的交点为基础,将二次函数表示为与坐标轴的交点位置和形式有关的表达式。
将二次函数的一般式化为交点式,可以帮助我们更好地理解二次函数的图像和性质。
要将二次函数的一般式化为交点式,需要先找到二次函数与坐标轴的交点。
二次函数与x轴的交点可以通过令y = 0来求解,而与y 轴的交点则是函数的截距。
我们来看二次函数与x轴的交点。
当y = 0时,二次函数的一般式变为0 = ax² + bx + c。
通过求解这个二次方程,可以得到二次函数与x轴的交点。
对于一般的二次方程ax² + bx + c = 0,我们可以使用求根公式来求解。
求根公式是:x = (-b ± √(b² - 4ac)) / 2a。
根据这个公式,我们可以得到二次函数与x轴的交点的横坐标。
接下来,我们来看二次函数与y轴的交点。
当x = 0时,二次函数的一般式变为y = ax² + bx + c。
这个方程的截距就是二次函数与y轴的交点的纵坐标。
通过求解二次函数与x轴的交点和求解二次函数与y轴的交点,我们可以得到二次函数的交点式表达式。
例如,对于二次函数y = x² - 4x + 3,我们可以先求解与x轴的交点,即令y = 0:0 = x² - 4x + 3这个方程可以因式分解为(x - 1)(x - 3) = 0。
因此,二次函数与x 轴的交点为x = 1和x = 3。
接下来,我们求解与y轴的交点,即令x = 0:y = 0² - 4(0) + 3这个方程可以简化为 y = 3,即二次函数与y轴的交点为(0, 3)。
初中数学二次函数顶点坐标公式大全

初中数学二次函数顶点坐标公式大全二次函数顶点坐标公式推导:一般式:y=ax^2+bx+c(a,b,c 为常数,a≠0);顶点式:y=a(x-h)^2+k,[抛物线的顶点P(h,k)];对于二次函数y=ax^2+bx+c其顶点坐标为 (-b/2a,(4ac-b^2)/4a)。
初中数学二次函数顶点坐标公式对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线],其中x1,2=-b±√b^2-4ac,顶点式:y=a(x-h)^2+k,[抛物线的顶点P(h,k)],一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),注:在3种形式的互相转化中,有如下关系:h=-b/2a=(x₁+x₂)/2k=(4ac-b^2)/4a与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a。
所以二次函数的顶点坐标公式是顶点坐标是(-b/2a,4ac-b2/4a)。
二次函数图像与X轴交点的情况当△=b2-4ac>0时,函数图像与x轴有两个交点。
当△=b2-4ac=0时,函数图像与x轴只有一个交点。
当△=b2-4ac<0时,函数图像与x轴没有交点。
二次函数重点知识点一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号当a>0,与b异号时(即ab<0),对称轴在y轴右。
因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
初一年级二次函数公式:顶点式、交点式、两根式

初一年级二次函数公式:顶点式、交点式、两根式?一般地,自变量x和因变量y之间存在如下关系:(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。
顶点坐标(-b/2a,(4ac-b^2)/4a)(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).(3)交点式(与x轴):y=a(x-x1)(x-x2)观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯定说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。
雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。
我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。
如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。
通过联想,幼儿能够生动形象地描述观察对象。
二次函数交点式顶点坐标公式

二次函数交点式顶点坐标公式二次函数,也叫做二次方程或者二次多项式,是一种形式如下的数学函数:f(x) = ax^2 + bx + c其中a、b、c是常数,且a不等于0。
二次函数的图象是一条抛物线,它的开口方向由二次项的系数a的正负号决定。
如果a大于0,则抛物线开口向上;如果a小于0,则抛物线开口向下。
顶点是二次函数的一个重要特征点,它代表了抛物线的最高点或最低点。
顶点的坐标可以通过一些特定的公式来计算。
以下是两种常用的计算顶点坐标的公式:1.求顶点横坐标:顶点的横坐标可以通过以下公式计算:x=-b/(2a)其中b是二次项的系数,a是一次项的系数。
通过这个公式,我们可以得到顶点的横坐标。
2.求顶点纵坐标:顶点的纵坐标可以通过将顶点的横坐标带入二次函数的表达式中计算得出。
y = f(x) = ax^2 + bx + c其中x是顶点的横坐标。
通过这个公式,我们可以得到顶点的纵坐标。
通过以上两个公式,我们可以计算出二次函数的顶点坐标。
顶点坐标可以帮助我们更好地理解和分析二次函数的性质。
对于开口向上的抛物线,顶点代表了函数的最低点;对于开口向下的抛物线,顶点代表了函数的最高点。
顶点也可以通过其他方法来计算,例如使用判别式等。
判别式是二次函数的一个重要概念,它可以帮助我们判断二次函数的图象和性质。
Δ = b^2 - 4ac判别式的符号可以帮助我们判断二次函数的开口方向和顶点的情况。
如果判别式大于0,则函数的图象与x轴有两个交点,抛物线开口向上;如果判别式等于0,则函数的图象与x轴有一个交点,抛物线开口向上或向下;如果判别式小于0,则函数的图象与x轴没有交点,抛物线开口向下。
当判别式不为0时,顶点的纵坐标可以通过以下公式计算:y=-Δ/(4a)这个公式可以帮助我们计算出顶点的纵坐标。
通过顶点的坐标,我们可以更好地理解和分析二次函数的特征和性质。
综上所述,二次函数的顶点坐标可以通过横坐标的公式和纵坐标的公式来计算得出。
交点式二次函数表达式

交点式二次函数表达式
二次函数交点式公式:y=a(X-x1)(X-x2)。
二次函数的基本表示形式为y=ax²+bx+c(a≠0)。
二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域C和对应法则f。
二次函数交点式公式

二次函数交点式公式交点式:y=a(X-x1)(X-x2) ,仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便.y=a(x-x1)(x-x2) 找到函数图象与X轴的两个交点,分别记为x1和x2,代入公式,再有一个经过抛物线的点的坐标,即可求出a的值. 将a、X1、X2代入y=a(x-x1)(x-x2),即可得到一个解析式,这是y=ax²;+bx+c因式分解得到的,将括号打开,即为一般式.X1,X2是关于ax²+bx+c=0的两个根.如果(x1,0),(x2,0)是二次函数y=ax^2+bx+c的两个交点,那么x1,x2必是一元二次方程ax^2+bx+c=0(a≠0)的两个实数根, 从而ax^2+bx+c=a(x-x1)(x-x2).我们把y=a(x-x1)(x-x2)称为二次函数的交点式.一般地,自变量x和因变量y之间存在如下关系:(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。
顶点坐标(-b/2a,(4ac-b^2)/4a)(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).(3)交点式(与x轴):y=a(x-x1)(x-x2)(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y 轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k =0时,抛物线y=ax2的顶点在原点.(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).。
初一年级二次函数公式:顶点式、交点式、两根式

优秀教育文档初一年级二次函数公式:顶点式、交点式、两根式?普通地,自变量x和因变量y之间存在如下关系:(1)普通式:y=ax2+bx+c (a,b,c为常数,a≠0),那么称y为x 的二次函数。
顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).
(3)交点式〔与x轴〕:y=a(x-x1)(x-x2)
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x
轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:
(1)任何一个二次函数经过配方都可以化为顶点式y=
a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y =ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,依据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=
ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).
1 / 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数交点式公式
[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]
在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便。
y=a(x-x1)(x-x2) 找到函数图象与X轴的两个交点,分别记为x1和x2,代入公式,再有一个经过抛物线的点的坐标,即可求出a的值。
将a、X1、X2代入y=a(x-x1)(x-x2),即可得到一个解析式,这是y=ax²;+bx+c因式分解得到的,将括号打开,即为一般式。
X1,X2是关于ax²+bx+c=0的两个根。
设y=ax²+bx+c此函数与x轴有两交点,即ax²+bx+c=0有两根分别为x1,x2,
a(x²+bx/a+c/a)=0 根据韦达定理a[x²-(x1+x2)x+x1*x2]=0 2.二次函数的性质
(1)抛物线的顶点是坐标原点,对称轴是y 轴.
(2)函数的图像与的符号关系.
①当时抛物线开口向上顶点为其最低点;
②当时抛物线开口向下顶点为其最高点.
(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为 .
3.二次函数的图像是对称轴平行于(包括重合)y 轴的抛物线.
4.二次函数用配方法可化成:的形式,其中 .
5.二次函数由特殊到一般,可分为以下几种形式:①;②;③;
④;⑤ .
6.抛物线的三要素:开口方向、对称轴、顶点.。