第四章习题解答

合集下载

第4章课后习题及答案

第4章课后习题及答案
上一题 下一题
返 回
第 4 章 供 电 与 用 电
练习题解答
4.1.1 某三相同步发电机,三相绕组联结成星形时的线电压为 10.5kV,若将它联结成三角形,则线电压是多少?若联结成星形 时,L2相绕组的首末端接反了,则三个线电压的有效值U12 , U23 和U31各是多少? · · · · U31= U3 -U1 · -U2 解: 星形联结时UlY = 10.5kV U3 · U 3 UlY 10.5 = kV = 6.06kV ∴UpY = · · U 1=U23 √ 3 √3 · ·-U =U 三角形联结时相电压不变, 2 3 · UlY = UpY =6.06kV L2首末端接反的相量图如图所示:
· · · 0 0 0 IL2 = I2 - I1 ( 8 . 8 30 8 . 8 0 ) A 4 . 56 105 A · · · 0 0 0 IL3 = I3 - I2 ( 8 . 8 30 8 . 8 30 ) A 8 . 8 90 A
XL= Z sin = 77.1×0.6 Ω = 46.3 Ω
返 回 上一题 下一题
第 4 章 供 电 与 用 电
4.3.2 某三相负载,额定相电压为220V,每相负载的电阻为4Ω,感 抗为3Ω,接于线电压为380V的对称三相电源上,试问该负载应
采用什么联结方式?负载的有功功率、无功功率和视在功率?
· I
l2
· I
l3
· I
2
· I
3
-jXC
解: 负载为不对称三相负载
· · 0 U U 220 120 2 23 · 0 I2 = Z = -jX = 8 . 8 30 A -j25 2 C
返 回 上一题 下一题

第4章习题与解答

第4章习题与解答

第4章数据库和数据仓库4.1本章知识框架与学习要求数据库技术是数据管理的最新技术,是计算机科学的重要分支。

它已经成为先进信息技术的重要组成部分,是现代计算机信息系统和计算机应用系统的基础和核心。

数据库已经成为人们存储数据、管理信息、共享资源的最先进最常用的技术。

认识和掌握有关的数据库技术对学好本课程具有重要作用。

本章主要介绍了数据库技术的相关概念包括数据的组织层次、数据模型、信息模型、关系规范化等,以及数据库的设计方法,数据库仓库和数据挖掘的概念。

4.1.1 知识框架与学习要求一、数据的描述与组织(掌握)(一)三个世界1.现实世界2.信息世界3.计算机世界(二)数据组织的层次1.数据项(字段)2.记录3.数据文件4.数据库二、数据库管理技术(一)数据管理的发展(了解)1.简单应用阶段2.文件系统阶段3.数据库系统阶段(二)数据库管理系统(掌握)1.数据库系统(DBS)2.数据库管理系统(DBMS)(1)数据库的定义功能(2)数据库的操作功能(3)数据库的保护功能(4)数据库的维护功能(5)数据的存储管理三、数据模型(掌握)(一)信息模型(概念模型)1.信息模型的要素2.两个实体集之间联系的分类3.实体联系模型(E-R模型)(二)数据模型1.数据模型的三要素2.数据模型与信息模型的关系3.三种主要的数据模型(1)层次模型(Hierarchical Model)(2)网状模型(Network Model)(3)关系模型(Relational Model)(三)概念模型向关系模型的转换(四)关系的规范化1.第一范式(1NF)2.第二范式(2NF)3.第三范式(3NF)五、数据库设计(掌握)(一)数据库设计方法简述(二)数据库设计步骤六、数据仓库和数据挖掘(了解)(一)数据仓库1.数据仓库的概念2.数据仓库和数据库的区别3.数据仓库的特性4.数据仓库的基本结构5.数据仓库工具的组成(二)数据挖掘1.数据挖掘的概念2.数据仓库与数据挖掘的关系4.1.2 学习重点本章重点掌握以下几方面的内容:1.三个世界即现实世界、信息世界、计算机世界的特点及区别与联系;2.人工管理阶段、文件系统阶段及数据库系统阶段应用程序与数据关系的区别;3.数据库管理系统功能4.信息(概念)模型的要素、E-R模型的绘制方法;5.数据模型的三要素、数据模型与信息模型的关系、关系模型;6.概念模型向关系模型的转换;7.数据库设计方法和步骤4.2 教材习题与解答4.2.1 习题一、名词解释1.数据库2.记录3.DBMS4.DBS5.概念模式6.数据模型7.概念模型8.键或码9.数据操作10.1NF 11. 2NF 12.3NF 13.关系14.关系模式15.数据仓库16.数据挖掘二、简答题1. 数据库系统组织数据的特点是什么?2. 数据库系统与文件系统的区别是什么?3. 数据管理经历了哪几个阶段?各个阶段的特点是什么?4. 数据模型的三要素是什么?5. 数据库管理系统的主要功能是什么?6. 信息模型的要素有哪些?7. 试述概念模式在数据库中的重要地位。

高等代数-第4章习题及解答

高等代数-第4章习题及解答

第四章 多项式4.1习题,()(),..(-)-(-)()()-(-)()--(-)(-)Z a c ad bc q Z s t ad bc q a c a c b d ab cd ad bc a c b d ab cd a c q a c b d q ab cd ∈-+∴∃∈+==++=++=+1. 设a,b,c,d 已知(a-c)(ad+bc),求证(a-c)(ab+cd)证明:又由 () 得 ()() 即 ,,-()()b d q Zb d q Z ac ab cd ∈∴+∈-+即有 121212,65(-3)13,65(-2)5,65-,65(-3)13(-2)571865-(6528)65(-65)-2828m m m m r c c m c m c c c m m r ⨯⨯∃⨯+⨯==-+∴=2. 一个整数被5除余3,被13除余2,求它被65除的余数解:设所求数为由题知 即 有 令 ,, 则有 故有 1723582957,581-143,-143202,0231414a b a b a b a b b a b a b a ==-=-==-=-=-=-=+=⋅+=⋅+3. 对于下列的整数,分别求出以除所得的商和余数: (1), (2), (3), (4)解:)由带余除法,可表示为 故商为,余数为;)同理得 故商为,余数为; )由 知商为,余数为; 49595b a =+ )由 知商为,余数为。

.()001a b a b b aq q Z b q b a q q a b≠≤=∈≠∴≠∴=≥∴≤4. 证明:若a b,b 0,则证明:由 可得 又 又1,) 1.b ∈=1 1 1115. 设a,b 是不全为零的整数,且a=da ,b=db ,d,a ,b Z.证明d 是a 与b 的一个最大公因数的充分必要条件是(a1111111111[] 4.1.3,,..01(,)1[](,)1''1''1,''u v Z s t ua vb d uda vdb d d ua vb a b a b u a v b a bu v u a v b d d d⇒∃∈+=+=≠∴+=∴=⇐=+=+=+=证明:根据定理得 即 又故有 即 则有 综上所述,结论得证6.(,)1,(,) 1.,(1),,..()()(1),,1,1a b a b ab a b ab d d Z d u v Z s t u a b vab d ua u va b d u v a Z u va Za b =+=+=∈≠∴∃∈++=∴++=∈∴+∈= 证明:若则 证明:反证 假设() 且 故 ()与 () 矛盾 ,17.1..,()(),,.a b ab a b p ab p a p b p p mn a b k k Z p abp b b k p a p b p k m b m k m k n b n k n k p ∴+===+∈∴+ () 设是一个大于的整数且具有以下性质:对于任意整数,,若,则或 证明是一个素数 证明:令 又当 不整除,有,不整除 又有,不整除或; 不整除或 若为合数,那,m k n k p p k p b p 么由可知必为素数,否则 同理可证当不整除时,也必为素数4.2习题224324321.,,(21)(1)251\2(2)(21)()12521-2,1,31k h m x hx x kx x x mx x x k h x hk x h k x h k hk m k h m h k +--+=++--=--+--++--=⎧⎪--====⎨⎪+=-⎩求使 解:对于左边 即有 解之得432322.()242,()25 4.()(),()(),()().f x x x x xg x x x x f x g x f x g x f x g x =+---=--++- 设 计算432443270765432()()4292()()6()0254()()()23913131868kki k i k i f x g x x x x x f x g x x x g x x x x x f x g x a b x x x x x x x x -==+=+--+-=+-=⋅+--+∴==+--++--∑∑解:由题得 令323122223.()59-73,()(53),()().-15-50[()()]3691()()04.()0().()0()()()f x x x xg x x x f x g x f x g x x f x g x s f x f x f x f x f x f x ︒=-++=++⨯=±∂===≠≠=⋅∴ 设求乘积 的次数及其系数和解:根据 得 令 则有 的系数和 证明:当时,是偶次多项式证明:又有 根据定理2 4.2.12()()()()(),()()2f x f x f x f x f x n n N f x n ︒︒︒︒︒∂⋅=∂+∂∂=∈∴∂=的()知 ()()() 再令 () 结论得证2225.(),(),()..()()(),()()()0.(),(),()1221222132212f x g x h x f x xg x xh x f x g x h x g x g f x f h x hg h f g g h f h g h f g f ︒︒︒︒︒︒=+===∂=∂=∂=>=+<=+==+= 设是实数域上的多项式证明如下 若是 则 证明:令 () () () 当 时,有 当 时,有 当 时,有 或 2222214()(),(),()(),(),()()()()06.(),(),()()0(),()1()0(),()h f x f x g x h x f x g x h x f x g x h x f x g x h x f x g x i h x f x xg x x xh x x +========-= 又由题可知 是偶次多项式,又由于是实数域上的多项式 故 的次数不存在 即 求一组满足上题结论的不全为零的复系数多项式解:令 , 即 , 222()()0()()0(),()1xg x xh x f x f x g x i h x ∴+===== 满足条件即 ,4.3 习题3221.()321,()321,()()()().f x x x xg x x x g x f x q x r x =-+-=-+设求用除所得的商式和余数232322217393213212133751337147399299172(),()3999()()()()x x x x x x x x x x x x x x x q x x r x f x g x q x r x --+-+--+-+--+--=-=-=+解: 故 即[]2432322412*********.,,(1)()?012,1(1)()3.()(()()),()(()()),:()(()()()()),(),()m p q x mx x px q p m m m r q m p m m q m x mx x px q g x f x f x g x f x f x g x u x f x u x f x u x u x F x ++++⎧+=-=⎨=-⎩=-=-+++++-+在适合什么条件时,解:由题知当余式时有 即当 时 有 设证明其中为中任意两个12121212121211()(()()),()(()())()(()()()())()(()()()())()(),()()3()()(i g x f x f x g x f x f x g x f x f x f x f x g x f x f x f x f x g x f x g x f x u x F x i +-∴++-+-+∃∀∈=多项式 证明:即 根据多项式整除性质)可知 1122112221,2)..()()(),()()()2()()(1,2)..()(()()()())4.(1)(),(1)(),(1)().11(1)(),(1)(i o s t g x u x f x g x u x f x u x F x i s t g x u x f x u x f x x f x x f x x f x x x f x x f ∃∀∈=+-+-≠±-+ 再根据性质)得 若则证明:1212)(),()[]()()(1)(1)()()(1)(2)x u x u x F x f x u x x f x u x x ∴∃∈=+⎧⎨=-⎩221()()(1)(-1)-(2)(1)()(-1)()2u x u x x x f x x -⨯⨯+= 得212()()()[]2(-1)()21-1()0o u x u x u x F x x f x x x f x -∃=∈=== 故 即 或时,可得出 同样结论成立1212121221212125.(1)()(()()),()()()()(2)()()(),()()()()1(),()1,()1()(()())()()()g x f x f x g x f x g x f x g x f x f x g x f x g x f x g x x f x x f x x g x f x f x g x f x f x +==+=-+ 若则且对吗? 若则或对吗?解:()不对 如 :令 可见 而 不整除 和 (21212122()-1,()1,()1()()()()()()g x x f x x f x x g x f x f x g x f x f x ==+=-)不对如 :令 可见 而 不整除 和(1)(2)6.(1)(1),.,1()1(1)(1),(1)(1).(1)(1)(0),1(1)1,(1)(1)(1)(d n n d q d q d q d d n d n n qd r d q r r d n d x x d n d n d n n qd x x x x x x x x x n qd r r d x x x x x x x x --+--⇐=-=-=-+++--⇒--=+≤<-==-+---- 证明:的充分必要条件是(这里是正整数)证明 设 ,即 则 即 设,令则且212121)(1)(1)0,0.7.()110220()32.(),()[]..(1)()10()(1)(2)()2d q d r x x x r d r d n f x x x f x x x u x u x F x s t x u x f x x u x -∴--≤<=++++∃∈++=++ ,又 故 ,即 设被除的余式为,被除的余式为, 求被 除的余式解:设 , 23120()(2)()[]..()32(3)(1)(2)-(2)(1)()32--10(1)434-10(1)f x u x F x s t f x x x u r x x f x x x u u x r x =∃∈=+++⨯+⨯+=+++=+ 又 , () 有 ()() () 由(),()可得习题4.4432424322432312(1)43243221(-1)1.1)()242,()322;2)()441,() 1.()24221)()()2222f x x x x x g x x x x x f x x x x x g x x x f x x x x x x x A x g x x x x x x x x x +-+=+---=+---=--++=--⎛⎫⎛⎫+----⎛⎫==−−−→ ⎪ ⎪ ⎪+---+---⎝⎭⎝⎭⎝⎭−计算以下各式多项式的最大公因式:解:由 11333221()1()21()42222222200x x xx x x x x x x x x x -++-⎛⎫⎛⎫⎛⎫⎛⎫----−−→−−−→−−−→−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭224324312(4)222212(-)2(1)12()221(1)()2()44132)()()112333212x x d x x f x x x x x x x A x g x x x x x x x x x x x x +++-++∴=-⎛⎫⎛⎫--++--⎛⎫==−−−→ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫--⎛⎫−−−−→−−−→−−−→ ⎪ ⎪ ⎪-+---+⎝⎭⎝⎭⎝⎭−−−→ 由 2311110()1x x x d x -⎛⎫⎛⎫⎛⎫→→ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭∴=2.(),()(),,0,(()(),()())((),()).((),())()()(),()()()()()),()()())(),()(f x g x F x a b c d F ad bc af x bg x cf x dg x f x g x f x g x d x d x f x d x g x d x af x bg x d x cf x dg x h x h x af ∈∈-≠++==∴++∃∀另而,,,并且证明证明:令 即有 ( ( 又设 ()()),()()())-0()()())-()())---()()())()())--()(),()(),()x bg x h x cf x dg x ad bc d bf x af x bg x cf x dg x ad bc ad bc c ag x af x bg x cf x dg x ad bc ad bch x f x h x g x h x d ++≠∴=++=+++∴ (有 (( (( 从而有 ()()()()())()(()(),()())((),())x af x bg x cf x dg x d x af x bg x cf x dg x f x g x ++=++= 即 (, 即 :3.()0,()((),())(()()(),()).()0(),..()()()()()()-()()1((),())(()())((),())(()()(g x h x f x g x f x h x g x g x g x h x s t f x g x h x r x r x f x g x h x f x g x g x r x f x g x f x h x g x ≠=-≠∃=+===-设为任意多项式,证明: 证明: 故 即 由引理可知 , 即 ),())g x1122121212124.1)(,)2)(,)(,)(,,,),,,().1(,),,,,(,),[],..f g hf gh f g f g f f f g g f g g f g h F x f g d d f d g dh fh dh gh dh hf hg f g d u v F x s t uf vg d ===∃∈+=∴证明:是与的最大公因式;此处都是的多项式证明:)设 即 从而有 即 是与的公因式又由 得 112211211212211211221214.4.42)(,),(,),(,[]),;,,,,(,),(,),,,ufh vgh dhdh fh gh f g m f g n m n F x m f m g m f m g mn f f mn f g mn f g mn g g f g m f g n k k l +===∈==∃ 由定理知 是与的最大公因式 设 即 从而有 又由 知 211112222121211221221121212122112112212122112[],..,(,,,)(,)(,)(,,,)l F x s t k f l g m k f l g nk k f f k f l g l k f g l l g g mn mn f f f g f g g g f g f g f f f g f g g g ∈+=+=+++=== 即有 由此可知 从而有4323243232324323235.(),()()()()()((),()):1)()343,()310232)()421659,()25453431033113333102301310u x v x u x f x v x g x f x g x f x x x x x g x x x x f x x x x x g x x x x x x x x x x x x x x x x +==+---=++-=--++=--+⎛⎫+--------→ ⎪++-⎝⎭+2求使解:)(A(x),I )=222322222232230159935993913310230156553296331393555591393132563555555x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ⎛⎫⎪⎪ ⎪+-⎝⎭⎛⎫----⎛⎫---- ⎪→→ ⎪- ⎪++---- ⎪⎝⎭⎝⎭⎛-+⎛⎫-+------ ⎪ ⎪→→--+ ⎪------+- ⎪⎝⎭⎝33-x -x 22243232323231550**321,()55122342165910332540125401x x x x x x x v x x x x x x x x x x x x x x ⎫ ⎪ ⎪ ⎪ ⎪⎭⎛⎫-+- ⎪→ ⎪ ⎪⎝⎭-∴-=⎛⎫⎛⎫--+---++ ⎪→ ⎪ ⎪--+ ⎪⎝⎭--+⎝⎭2 u(x)= 2)(A(x),I )=22222222121223231333332222412(2)1333312231330**1223(),()33x xx x x x x x x x xx x x x x x x x x x x u x v x ⎛⎫-++⎛⎫--+--- ⎪⎪ ⎪⎪→→ ⎪ ⎪--++--+-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫--+- ⎪→ ⎪ ⎪⎝⎭--+∴==4322432436.()1,()(1),,,()().(),()2,()()()()(,,)()(2)(2)(2)1of x Ax Bxg x x A B f x g x f x g x g x f x g x ax bx c a b c F f x ax b a x c b a x b c x c Ax Bx a A =++=-∂==++∈∴=+-+-++-+=++=设试决定使与 的最大公因式为二次多项式解:由于() 即 为最大公因式故不妨设 即有 -23,2,13,-4202013,-4b a B a bc A B c b a b c c A B ⎧⎪=⎪⎪=====-+=⎨⎪-=⎪=⎪⎩∴== 解得 即7.(),()((),())()()()(),((),())1((),())()()()()*()()()()()()()()()()*(),()[].f x g x f x g x u x f x v x g x u x v x f x g x u x f x v x g x u x f x v x g x f x u x f x v x g x g x m x n x F x s =+==+++∃∈设 不全为零,且证明:证明:()有 , 再由 () .()()[()()()()]()()[()()()()]1-()()()()()()11-()())()()()()221()t f x m x u x f x v x g x g x n x u x f x v x g x m x u x f x m x v x g x n x v x g x n x u x f x f x =+=+== 即() () ( () 将()代入(),消去得1-()()1-()()()()()()()()(),(),()01-()()()()()()()()()()()()1()()()()4.4.5((),())1m x u x n x v x g x m x v x g x n x u x f x g x g x n x v x m x u x m x n x u x v x m x n x u x v x m x n x u x v x u x v x =≠∴-+=∴==()()不全为零 即令 由定理 得8.((),()) 1.((),()) 1.,,((),()) 1.1()()()[]()()()()()()((),())1n m n o n n n f x g x n f x g x m n f x g x g x g x k x F x g x k x g x g x g x k x f x g x ===∃∈=∴==设令是任意正整数,证明:由此进一步证明: 对于任意正整数都有证明: 易见 , 即 s.t. (1)又 ()()1()()1()((),())1()(),()[]()()()()()()nn m m m f x g x f x g x k x f x g x x f x l x F x f x l x f x f x f x l x ∴∃∈+=+==∃∈=∴=o u(x),v(x)F[x] s.t. u(x)v(x) (2)v(x) 将(1)代入(2)得 u(x) 由定理4.4.5 知 2易见 f 即 s.t. ((),())1'''()()'()()11'()()'()()1()((),())1n n mn m n f x g x u x f x v x g x u x f x v x g x l x f x g x =∴∃∈+=+== (3)又u (x),v (x)F[x] s.t. (4) 将(3)代入(4)得 由定理4.4.5知 [][]1111119.((),()) 1.((),()())((),()())(()(),()()) 1.((),()())()()(),()()()()[()()]()()()]f x g x f x f x g x g x f x g x f x g x f x g x f x f x g x d x d x F x u x v x F x u x f x v x f x g x d x u x v x =+=+=+=+=∈∴∃∈++=+设 证明: 证明:令 ()s.t. 即 [1()()()()((),())1()1((),()())1((),()())1(()(),()())1f x v xg x d x f x g x d x f x f x g x g x f x g x f x g x f x g x +===+=+=+=故 即 同理可证得 再根据互素性质可知10.()0,()0,:1(),()()()()(),((),())12(),()(),()()()()(),((),())11((),())()1,()()f x g x h x f x g x h x f x h x f x g x h x f x h x g x h x f x g x h x f x g x f x g x d x f x d x m ≠≠===≠=设证明 )若对于任意多项式由可得到则必有 )若对于任意多项式由可得到则必有 证明:) 假设 则有(),()()()()()()()()()()()()()()x g x d x n x m x f x f x g x h x h x f x g x m x f x m x ︒︒=∂<∂∴ 其中 () ()又 (为任意多项式)即有()()((),())12((),())()1()()()()()()()()(),()()()()()()()1((f x m x f x g x f x g x d x f x d x m x h x m x g x f x g x m x g x g x m x f x g x g x m x f x ==≠==∴ 但 不整除,从而矛盾, 故 )假设 ,且 令 即有 () 又),())()()()()()()()1((),())1g x d x f x m x f x g x g x m x f x g x ︒︒︒︒=∴∂>∂∂>∂∴= () ()故 () () 与()矛盾1212111212112211.(),(),,()().1)((),(),,())(((),,()),((),,())),112(),(),,()(),(),,()()()()()()()n n k k n n n n f x f x f x F x f x f x f x f x f x f x f x k n f x f x f x u x u x u x F x u x f x u x f x u x +∈=≤≤-∈+++设证明: )互素的充分且必要条件是存在多项式 ,使得1211121()11((),(),,())(),((),,()(),((),,()()()(),1,2,,()(),1,2,,;()(),1,2,,()(),n n k k n i s t f x f x f x f x d x f x f x d x f x f x d x d x f x i nd x f x s k d x f x t k k nd x d x +=====∴==++∴证明:)设21212()()()(),1,2()(),1,2,,;()(),1,2,,()(),1,2,,()(),2((),(),,())1i s t i n d x d x c x d x i d x f x s k d x f x t k k nc x f x i nc xd x f x f x f x ===++∴=∴= 设结论得证。

习题参考答案(第4章)

习题参考答案(第4章)
4-1 求点A和B在新的投影体系V1/H中的投影。 b'
a' V XH
a
4-2 用换面法求线段CD的实长和对V面的倾角。
T.CD
d1
c1 d'
X 1 c' X
d
H X1 V1
a1'
b1'
c
4-3 用换面法求相互平行的两条直线AB、CD之间的距离。
b'
d'
a'
c'
X
b
d
a
c
AB、CD间距离
4-4 已知平行直线AB、CD之间的距离为15,用换面法求cd。
15
15
a' c'
b'
d'
b
X2
பைடு நூலகம்X1
a
d
c
高校教育精品PPT
25 1
4-5 已知直线AB与CD垂直相交,用换面法求c'd'。 b'
a'
c a
b d
4-6 用换面法求点到直线BC距离,并求垂足。
a'
c'
b'
c a
A到BC距离 b
O2
4-7 已知点A到直线BC的距离为15,求a。 a1
R15
b1
c1
O1
a b
c a'1
c'1 c2
a2
b1' b2
高校教育精品PPT
27 3
4-11 已知直线AB与 CDE的距离为10,用换面法求ab。
c' e'
b'
a' X

第4章 习题及答案

第4章 习题及答案

(一)1.目的练习逐步结转分步法及成本还原。

2.资料某企业A产品生产分两个步骤,分别由第一、第二两个生产车间进行。

第一车间生产成品,交半成品库验收,第二车间按所需半成品数量向半成品库领用;第二车间所耗半成品费用按全月一次加权平均单位成本计算。

两个车间月末在产品均按定额成本计价.该企业采用按实际成本结转的逐步结转分步法计算A产品成本.第一、第二两个车间月初、月末在产品定额成本资料及本月生产费用资料见“产品成本明细账”;自制半成品月初余额、本月第一车间完工半成品交库数量及本月第二车间领用自制半成品数量见“自制半成品明细账”.解:产品成本明细账车间名称:第一车间产品名称:半成品A自制半成品明细账半成品名称:半成品A 单位:件产品成本明细账产成品成本还原计算表(二)1.目的练习产品成本计算的综合结转分步法.2.资料某企业生产甲产品,分三个生产步骤进行生产。

该企业设有第一、第二、第三三个基本生产车间,甲产品由这三个车间顺序加工而成。

成本计算采用综合结转法。

原材料在第一车间开始加工时一次投入,半成品不通过中间仓库收发,上一步骤完工后全部交由下一步骤继续加工。

月末在产品按约当产量法计算,各车间月末在产品完工程度均为50%。

该企业本年5月份有关成本计算资料如表1、表2所示。

表1产量记录表2月初在产品成本和本月发生费用表3产品成本计算单135070÷(88+16)=1298。

75 24960÷(88+16×50%)=260 19200÷(88+16×50%)=200表4产品成本计算单173890÷(8050%)=326。

6表5产品成本计算单244450÷(96+4)=2444.5 34300÷(96+4×50%)=350 23520÷(96+4×50%)=240表6(三)1.目的练习产品成本计算的平行结转分步法.2.资料某厂设有三个基本生产车间,第一车间生产甲半成品,交第二车间继续加工,第二车间生产乙半成品,交第三车间生产丙产成品。

第四章 交流绕组理论 _ 习题与解答 _

第四章 交流绕组理论 _ 习题与解答 _


;在电枢绕组中所感应的电势频率为
;如 3 次谐波相电势有效值为 E3,
则线电势有效值为
;同步电机三相电枢绕组中一相单独流过电流时,所产
生的 3 次谐波磁势表达式为
。三相绕组流过对称三相电流
时 3 次谐波磁势幅值为

答:
τ 3
,3f,0,

3
cos
3
π τ
x cosωt ,0
10. ★某三相两极电机中,有一个表达式为δ=F COS(5ωt+ 7θS)的气隙磁势波,这表明:
;
由数学知:相量和总是小于(或等于)其代数和,即 Et( y<τ ) < Et( y=τ ) 及 Eq(q>1) < Eq(q=1) , 故
其比值 即 K y 及 K q 总是小于 1.
4. ★在交流发电机定子槽的导体中感应电动势的频率、波形、大小与哪些因素有关?这些因
素中哪些是由构造决定的,哪些是由运行条件决定的?
绕组串联匝数有关,由构造决定;与频率、每极下磁通量有关,由运行条件决定。
6. ★★试从物理和数学意义上分析,为什么短距和分布绕组能削弱或消除高次谐波电动势?
答: 因谐波电动势 Eφν = 4.44 fν Nk pν kdν Φν ,欲要消除或削弱某次谐波电动势,只需使某次
谐波的短距系数 k pν 或分布系数 kdν 为零(或很小)即可。
τ。
答:ν −1 ν
5. ★三相对称绕组通过三相对称电流,顺时针相序(a-b-c-a),其中 ia = 10 sin ωt ,当 Ia=10A
时,三相基波合成磁势的幅值应位于
;当 Ia =-5A 时,其幅值位于

答:A 相绕组轴线处,B 相绕组轴线处。

第四章 习题解答

第四章  习题解答

1 第四章 习题解答3/150、试用实验方法鉴别晶体SiO 2、SiO 2 玻璃、硅胶和SiO 2 熔体。

它们的结构有什么不同?解答:利用X-射线粉末衍射检测。

晶体SiO 2——质点在三维空间做有规律的排列,各向异性。

SiO 2 熔体——内部结构为架状,近程有序,远程无序。

SiO 2 玻璃——各向同性。

硅胶——疏松多孔。

7/151、SiO 2 熔体的粘度在1000℃时为1014 Pa·s ,在1400℃时为107 Pa·s 。

SiO 2 玻璃粘滞流动的活化能是多少?上述数据为恒压下取得,若在恒容下获得,你认为活化能会改变吗?为什么?解答:(1)根据公式:)exp(0RTE ∆=ηη 1000℃时,η=1014 Pa·s ,T=1000+273=1273K , )1273314.8exp(10014⨯∆=E η (1) 1400℃时,η=107 Pa·s ,T =1400+273=1673K ,)1673314.8exp(1007⨯∆=E η (2) 联立(1)和(2)式解得:η0 = 5.27×10-16 Pa·s ,△E = 713.5 kJ/mol(2)若在在恒容下获得,活化能不会改变。

因为活化能是液体质点作直线运动所必需的能量。

它与熔体组成和熔体[SiO 4]聚合程度有关。

212/151、一种用于密封照明灯的硼硅酸盐玻璃,它的退火点是544℃,软化点是780℃。

求:(1)这种玻璃粘性流动的活化能;(2)它的工作范围;(3)它的熔融范围。

解答:(1)根据公式:)exp(0RTE ∆=ηη 退火点544℃, η=1012Pa·s ,T=544+273=817K , )817314.8exp(10012⨯∆=E η (1) 软化点为780℃,η=4.5×106 Pa·s ,T=780+273=1053K ,)1053314.8exp(104.506⨯∆=⨯E η (2)联立(1)和(2)式解得:η0 = 1.39×10-12 Pa·s ,△E = 373.13 kJ/mol 。

第4章 习题解答

第4章 习题解答

第4章 周期信号的频域分析习题详解4-1 试比较题4-1图所示的四种周期方波信号,说明每种信号的对称特性并写出Fourier 级数展开式。

tt(b)tt-A(c) (d)题4-1图【解】 (a))(14/4/04/4/000T jn T jn tjn T T n eejnT A dt AeTc ωωωω----==⎰)2/(Sa )2/()2/sin(πππn A n n A ==所以 tjn n a e n A t f 0)2/(Sa )2/()(ωπ∑∞-∞==000211/2cos()cos(3)cos(5)35A A t t t ωωωπ⎛⎫=+-+- ⎪⎝⎭)(t f a 实偶对称,Fourier 级数展开式中只含有直流分量与余弦分量。

)(t f a 减去直流分量后为半波镜像信号,Fourier 级数展开式中只有奇次谐波。

(b) 从图形观察:)4/()(T t f t f a b -=所以 )(t f b )2/(0)2/(Sa )2/(πωπn t n j n en A -∞-∞=∑=000211/2sin()sin(3)sin(5)35A A t t t ωωωπ⎛⎫=++++ ⎪⎝⎭)(t f b 减去直流分量实奇对称,Fourier 级数展开式中只含有直流分量与正弦分量。

)(t f b 减去直流分量后为半波镜像信号,Fourier 级数展开式中只有奇次谐波。

(c) 从图形观察:A t f t f a c -=)(2)(第4章 周期信号的频域分析 83所以 tjn n n c en A t f 0)2/(Sa )(0,ωπ∑∞≠-∞==000411c o s ()c o s (3)c o s (5)35A t t t ωωωπ⎛⎫=-+- ⎪⎝⎭)(t f c 实偶对称,且是半波镜像信号,Fourier 级数展开式中只含有奇次谐波的余弦分量。

(d) 从图形观察:)4/()(T t f t f c d -=所以 )2/(0,0)2/(Sa )(πωπn t n j n n d en A t f -∞≠-∞=∑=000411sin()sin(3)sin(5)35A t t t ωωωπ⎛⎫=++- ⎪⎝⎭)(t f d 实奇对称,且是半波镜像信号,Fourier 级数展开式中只含有奇次谐波的正弦分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 相平衡思考题答案一、是非题1、×2、√3、×4、×5、×6、× 二、选择题1、A2、D3、D4、A5、C6、B 三、填空题1、 f =C-P +2 , 2 , 3 , 12、*A p >p >*B p ,B y <B x3、)(l x B <总)(B x <)(g x B ,恒沸混合物习题解答1. 指出下列平衡系统中的物种数、组分数、相数和自由度数。

(1)NH 4HCO 3(s )在真空容器中,部分分解成 NH 3(g ),CO 2(g )和H 2O (g )达平衡;(2)Ag 2O (s )在真空容器中部分分解为Ag (s )和O 2(g ),达平衡; (3)纯水与蔗糖水溶液在只允许水分子通过的半透膜两边达渗透平衡; (4) kPa 下NaOH 水溶液与 H 3PO 4水溶液混合。

解:(1)S=4(NH 4HCO 3(s ), NH 3(g ),CO 2(g )和H 2O (g ))R =1(NH 4HCO 3(s )==== NH 3(g )+CO 2(g )+H 2O (g )) R ’=1 (p(NH 3)=p(CO 2)=p(H 2O )) C= S-R-R ’ =4-1-1 =2 P= 2f=C-P+2=2-2+2 = 2(2)S=3( Ag 2O (s ),Ag (s ),O 2(g ))R =1 (Ag 2O (s )==== Ag (s )+O 2(g ))R ’=0C= S-R-R ’ =3-1 =2 P=3f=C-P+2=2-3+2 = 1 (3)S=2(水,蔗糖)C=2 P=2f=C-P+2=2-2+2=2(4)S=3(NaOH,H 3PO 4,水)或S=6 ((Na +,OH -,H +,PO 43-,H 2PO 4-,HPO 42-)C=3 P=1 f ’=C-P+1=32. 硫酸与水可形成H 2SO 4·H 2O (s ),H 2SO 4·2H 2O (s ),H 2SO 4·4H 2O (s )三种水合物,问在101325Pa 的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有几种解:硫酸与水可形成三种水合物,则有下列三种反应H 2SO 4+H 2O====H 2SO 4·H 2O(s) H 2SO 4+2H 2O====H 2SO 4·2H 2O(s) H 2SO 4+4H 2O====H 2SO 4·4H 2O(s) S=5,R=3则 C=5-3=2在一定压力下,f *=C-P +1,当自由度最小时,则相数最大,即f ’=0, C-P+1=0则 P=3已经存在硫酸水溶液和冰两相,所以能与硫酸水溶液及冰平衡共存的硫酸水合物最多只有1种.3. 固态氨的饱和蒸气压与温度的关系有 KT Pa p 375492.27)ln(-= 液态氨的饱和蒸气压与温度的关系为KT Pa p 306338.24)ln(-= 试求:(1)氨的三相点的温度和压力;(2)氨的气化热,升华热和熔化热。

解:(1)三相点时,固态氨的饱和蒸气压与液态氨的饱和蒸气压相等,则有下式成立T T 306338.24375492.27-=-)(2.19538.2492.2730633754K T =--=三相点时的蒸气压为:688.82.195375492.27375492.27)(ln =-=-=T s p 解得 p =5932Pa(2)根据克~克方程可得:3063-=-RH mvap ∆47.253063=⨯=R H m vap ∆kJ ·mol -13754-=-RH msub ∆21.313754=⨯=R H m sub ∆kJ ·mol -1根据氨的汽化热,升华热和熔化热三者之间的关系可有下式成立:m fus m sub m vap H H H ∆∆∆-=则 m vap m sub m fus H H H ∆∆∆-== kJ ·mol -14. 在303 K 时,以60g 水和40g 酚混合,此时系统分为两层,在酚层中含酚为70﹪,在水层中含水92﹪,试计算酚层和水层各有若干克解:设酚层为m 1克,水层为m 2克 物系点:ω酚=40﹪,ω水=60﹪酚层:ω酚=70﹪,ω水=30﹪ 水层:ω酚=8﹪,ω水=92﹪ m 1+m 2 = 100g 根据杠杆规则可知:m 1( 60﹪-30﹪)=m 2(92﹪-60﹪)由此可得:m 1=克,m 2=克5. 水和一有机物构成完全不互溶的混合物系统,在外压为×104Pa 下于℃沸腾。

馏出物中有机液的质量分数为。

已知℃时,水的饱和蒸气压为×104Pa ,试求:(1)℃时该有机液体的饱和蒸气压; (2)该有机物的摩尔质量。

解:(1)该系统是完全不溶的双液系,则Pa p p p 41079.9(((⨯=+=**有机)水)总)Pa p p 441078.2(-1079.9(⨯=⨯=**水)有机)(2)根据题意已知:70((.m m m =+水)(有机)有机)则 水)有机)(37(m m =对于完全不互溶的双液系则有:(水)有机)(有机)水)有机水)M m M m p p ⨯⨯=**(()(( 所以 144.106(1078.23701.181001.7(((((-**=⨯⨯⨯⨯⨯=⋅⋅⋅=mol g m m m p m M p M 水)(水)水)(有机)有机)水)水)有机) 6. 25℃丙醇(A )-水(B )系统气、液两相平衡时,两组分蒸气分压与液相组成的关系(1)画出完整的压力-组成图(包括蒸气分压及总压,液相线及气相线);(2)组成为3.0=B x 的系统平衡压力16.4=p kPa 下气、液两相平衡,求平衡时气相组成B y 及液相组成B x ;(3)上述系统5mol ,在16.4=p kPa 下达平衡时,气相、液相的量各为多少摩尔气相中含丙酮和水各多少摩尔(4)上述系统10kg ,在16.4=p kPa 下达平衡时,气相、液相的量各为多少千克 解:(1)根据题中的要求,则还需要不同液相组成所对应的系统总压力p 和气相组成B y 即B A p p p +=,pp y BB =,利用题中数据计算结果如下表所示:kPa p A /0 kPa p B /0 kPa p /B y根据表中的数据便可画出B x p ~图,如图所示。

图中最上端的曲线为液相组成与总压力关系曲线,称为液相线。

而在液相线之下并与液相线在c 点处相切的曲线为总压力与气相组成的关系曲线,称气相线。

由图可知,丙酮与水组成的平衡系统产生极大的正偏差。

图中下部的两曲线分别表示丙酮和水的蒸气分压与液相组成的关系曲线。

(2)系统组成为3.0,=O B x 的气-液两相平衡系统,在总压力为时,其气-液两相之组成可由(1)中所列的表中查的:200.0=B x ,430.0=B y 。

(3)已知系统的物质的量n=5mol,系统的总组成3.0,=O B x ,在总压力为时,气、液两相的组成已在(2)中列出。

因此利用杠杆规则便可求出气、液两相的量,其示意图如下所示:BO B OB B x x x y g n l n --=,,)()( n g n l n =+)()( 联立两式可得: 83.2200.0430.030.0430.05)(,=--⨯=--⨯=BB O B B x y x y n l n mol17.283.25)()(=-=-=l n n g n mol 因气相中B 的组成430.0=B y ,所以气相中B 的物质的量为:B B y g n g n ⨯=)()(=×=)()()(g n g n g n B A -==因系统的压力,温度与(3)相同,所以气、液两相的组成不变。

气相及液相的平均摩尔质量分别为:B B A A M y M y g M +=)(=×+×=·mol -1 B B A A M x M x l M +=)(=×+×=·mol -1由杠杆规则可得:13.0)()()3.043.0()()()()(⨯-=-=g M l m m g M g m l M l m 整理可得液相的质量为: )(l m =气相的质量为:)()(l m m g m -=== kg7. 已知下,苯和甲苯的沸腾温度和汽化热分别为℃, kJ·mol -1和℃,·mol -1。

今以苯和甲苯组成理想溶液,若使该溶液在,100℃沸腾,问溶液的组成如何解:由克-克方程㏑12p p =R rH m ∆(11T -21T )纯苯在100℃的饱和蒸气压为 :㏑**1,2,A A p p =R H m vap ∆(11T -21T ) =5542.0)4.3532.3734.3532.373(314.81069.303=⨯-⨯**1,2,A A p p =解得 35.1762,=*A p kPa 纯甲苯在100℃的饱和蒸气压为 :㏑**1,2,B B pp =RH mvap ∆(11T -21T )=2846.0)8.3832.3738.3832..373(314.81097.313-=⨯-⨯ **1,2,B B p p =解得 23.762,=*B p kPa100℃溶液沸腾时,应满足下列关系:3.101()1(==-+**总)p x p x p A B A A kPa所以 2503.023.7635.17623.763.1013.1012,2,2,=--=--=***B A B A p p p x7496.01=-=A B x x。

相关文档
最新文档