继电保护算法分析报告

继电保护算法分析报告
继电保护算法分析报告

继电保护算法分析

1 引言

根据继电保护的原理可知,微机保护系统的核心容即是如何采用适当而有效的保护算法提取出表征电气设备故障的信号特征分量。图1是目前在微机保护常采用的提取故障信号特征量的信号处理过程。

从图中可以看出,自故障信号输入至A/D 输出的诸环节由硬件实现,在此过程中故障信号经过了预处理(如由ALF 滤除信号中高于5次的谐波分量),然后通过保护算法从中提取出故障的特征分量(如基波分量)。很明显,只有准确且可靠地提取出故障的特征量,才能通过故障判据判断出是否发生了故障,是何种性质的故障,进而输出相应的保护动作。因此计算精度是正确作出保护反应的重要条件。就硬件部分而言,为了减少量化误差,通常采用12位甚至16位A/D 转换芯片;而就保护算法而言,提高精度除了与算法本身的性能有关,还与采样频率、数据窗长度和运算字长有关。目前针对故障特征的提取有许多不同类型的保护算法,本课题研究的是电动机和变压器的保护,根据相应的保护原理,主要涉及基于正弦量的算法和基于序分量过滤器的算法。本章将对其中几种较典型的算法作简要介绍和分析。 2 基于正弦量的特征提取算法分析

故障

图1 故障信号特征的提取过程

Fig. 1 Character extraction process of fault signal

2.1 两点乘积算法

设被采样信号为纯正弦量,即假设信号中的直流分量和高次谐波分量均已被理想带通滤波器滤除。这时电流和电压可分别表示为:

)sin(20i t I i αω+=

和 )sin(20u t U u αω+= 表示成离散形式为:

)sin(2)(0i S S k T k I kT i i αω+== (1) )sin(2)(0u S S k T k U kT u u αω+== (2)

式中,ω为角频率,I 、U 为电流和电压的有效值,S T 为采样频率,0i α和0u α为电流和

电压的初相角。设1i 和2i 分别为两个相隔2

π

的采样点1n 和2n 处的采样值(图2),即: 212π

ωω=-S S T n T n

由式(1):

10111sin 2)sin(2)(i i S S I T n I T n i i ααω=+== (3)

)sin(2)(0222i S S T n I T n i i αω+==

101cos 2)2

sin(2i i S I T n I ααπ

ω=++

= (4)

式中011i S i T n αωα+=为第n 1个采样时刻电流的相位角。

kT S

图2 两点乘积算法的采样

Fig. 2 Sampling of two-point product algorithm

将式(3)和式(4)平方后相加可得:

2

22122i i I +=

由此可求得电流的有效值为:

2

2

2

21i i I +=

将式(3)和式(4)相除可求得S T n 1时刻的电流相位为:

2

11i i arctg

i =α 同理,由式(2)可得:

11sin 2u U u α= (5) 12cos 2u U u α= (6)

类似于电流的情况,由式(5)和式(6)可得:

2

2

1u u U +=

2

1

1u u arctg

u =α 式(3)~(6)表明,若输入量为纯正弦函数,只要得到任意两个相隔

2

π

的瞬时值,就可以计算出其有效值和相位。为了避免涉及三角函数,在计算测量阻抗时可采用复数法,即把电流和电压表示为:

1

1

1

1sin cos sin cos i i i i jU U U jI I I α

ααα+=+=

利用式(3)~(6)得:

1

21

2

ji i ju u I U Z ++== (7) 由式(7)可求得测量阻抗的电阻分量和电抗分量为:

2

2212

211i i u i u i R ++=

(8) 2

2

212

112i i u i u i X +-=

(9) 式(8)和式(9)中用到了两个采样点的乘积,故称为两点乘积算法。

该算法使用了两个相隔

的采样值,即算法本身所需的数据窗长度为4

1周期,在工频场合该长度为5mS ,这即是算法的响应时间。文献表明,用正弦量任何两点相邻的采样值都可以计算出有效值和相位角,亦即理论上两点乘积算法本身所需的数据窗可以是很短的一个采样间隔,但事实上由于此时的算法公式将比前者复杂得多,实际应用中由于实现算法所需的运算时间加长反而抵消了采样间隔的缩短。此外,由于算法所针对的是纯正弦量,实际的故障信号很难满足这一要求,可见算法的精度严重依赖于信号波形的正弦度。因此,尽管算法本身没有理论误差,但为了使信号尽可能接近于正弦,必须通过数字滤波的方法先滤除信号中的高频分量,这将额外地增加很大的运算工作量,使实际的算法响应时间大大超过理论值。 2.2 导数算法

设电流和电压分别为:

)

sin(2)sin(200u i t U u t I i αωαω+=+=

则1t 时刻的电流和电压分别为:

1011sin 2)sin(2i i I t I i ααω=+= (10) 1011sin 2)sin(2u u U t U u ααω=+= (11)

式中011i i t αωα+=,011u u t αωα+=。 而1t 时刻电流和电压的导数分别为:

11

cos 2i I i αω=' 或 11

cos 2i I i αω

=' (12) 11

cos 2u U u αω=' 或 11

cos 2u U u αω

=' (13)

由式(10)~(13)可得:

基波有效值 2

1

2121??

? ??'+=ωi i I (14) 2

12121??

? ??'+=ωu u U (15)

阻抗分量 2

12111

11?

?? ??'+'?

'+

=

ωωωi i u i i u R (16) 2

1211

1

1

1

?

?

?

??'+'-'=

ωωω

i i u i i u X (17) 可见,只要获得了电流电压在某一时刻的采样值和在该时刻的导数,就可以计算出相应的电流电压基波有效值、相位和阻抗。在微机的离散系统中,无法通过采样直接得到该点的导数,为此,可取t 1为两个相邻采样时刻k 和k +1的中间时刻,用差分近似表示该时刻的导数(图3)。即:

)(1

11

+-='k k S

i i T i (18) )(1

11

+-='k k S

u u T u (19) 这实际上是用直线ab 的斜率近似表示直线mn 的斜率,当S T 足够小时,这种近似将会有足够的精度。

从图3可以看到,t 1并不在采样点上,为了使采样值与导数尽可能在同一点上,对相邻两点采样值求平均值:

)(21

11++=k k i i i (20)

)(2

1

11++=k k u u u (21)

显然,当S T 足够小时,t 1与导数点将足够接近。

虽然与两点乘积算法相似,导数算法也使用了两个相邻的采样值,但其采样间隔很小,因此算法的响应速度很快。由于算法在求导数时是用差分近似微分,即算法的精度与采样频率有关,所以采样频率越高则精度越高。此外,由于算法中采用了差分方法,对信号中的直流分量具有一定的滤除能力,但对高次谐波则具有放大作用,因此类似于两点乘积算法,该算法也需要通过数字滤波器滤除高次谐波,因而算法的实际响应速度主要取决于算法本身和数字滤波器的运算时间。 2.3 半周绝对值积分算法

半周绝对值积分算法的原理是依据一个正弦量在任意半个周期绝对值积分为一常

1 kT S

图3 差分近似求导原理

Fig, 3 Approximate derivative calculation by difference method

数S ,且积分值S 与积分起始点的初相位无关,如图4中两个从不同起始点算起的半

周的两部分面积是相等的。即:

t td I

dt t I S T t ωωω

αωα

πα

α

sin 2)sin(22

??+=

+=

ω

ωωω

π

I

t td I

22sin 20

=

=?

(22)

由式(22)可求得基波分量的有效值为:

S I 2

=

(23)

式(23)的离散形式可以用梯形法或矩形法推出。如采用梯形法,可以设若干个小梯形面积之和为S '(图5),则有:

S T i i i i i i S N

N ????

?

?

?++++++='-222

2

2

12

110 S k k

T i i i N

N ???

?

???

?+??? ??+=∑-=1102221

(24)

式中:0i ,1i ,,2

N i 为半周的采样值,N 为一周的采样点数,S T 为采样间隔(周期)。

式(24)是式(22)的近似,其精度与采样频率有关。当采样频率足够高(S T 足够小)时,误差也可以足够小,即S '与S 足够接近。

i (t )

t

π

π+α

t

π 2π

α )(t i

图4 半周积分算法原理

Fig. 4 Principle of half-cycle integral algorithm

半周积分算法需要的数据窗长度为10mS ,较两点乘积算法和导数算法长。但由于这种算法只有加法运算,算法的工作量很小,可以用低端MCU 实现。此外,算法本身具有一定的滤除高频分量的能力,因为叠加在基波分量上的高频分量(通常幅度不大)在半周积分中其对称的正负半周互相抵消,剩余的未被抵消部分所占的比重减小,极端情况(正负半周刚好相等)时,可以完全抵消。但该算法不能滤除直流分量,因此对于一些要求不高的保护场合可以采用该算法,必要时可以在前级配以简单的差分滤波器来滤除直流分量。

2.4 付立叶算法(付氏算法) 2.4.1 付氏算法的基本原理

付氏算法的基本思想来自付立叶级数,它假定被采样信号是一个周期时间函数,除了基波分量,还含有不衰减直流分量和高次谐波分量,可以表示为:

t

图5 梯形法面积计算原理

Fig. 5 Principle of acreage calculation with trapezia method

∑∑∞

=∞

=++=++=1

01

0)cos sin ()sin()(k k k k k k t k b t k a X t X X t x ωωαω (25)

式中:0X 为直流分量,k X 为k 次谐波分量的幅值,k α为k 次谐波分量的初相位,ω为基波角频率,k k k X a αcos =为k 次谐波的正弦分量系数,k k k X b αsin =为k 次谐波的余弦分量系数。由付氏级数原理可求得系数k a 和k b 分别为:

???

?

???==??dt t k t x T b tdt

k t x T a T

k T

k 0

0cos )(2sin )(2

ωω 式中T 为x (t )的周期。由此可计算出各次谐波分量的幅值和初相位。继电保护常对基波分量感兴趣,此时基波(k =1)的正弦和余弦分量系数为:

?=T

tdt t x T a 01sin )(2

ω (26)

?=T

tdt t x T b 0

1cos )(2

ω (27)

基波分量的幅值和初相位分别为:

21211b a X += 1

1

1a b arctg

=α 根据数据窗的长度,在微机上实现式(26)和式(27)时可分为全波付氏算法和半波付氏算法。

2.4.2 全波付氏算法

微机实现时需对式(26)和式(27)离散化,分为矩形法和梯形法。设每周期采样点数为N ,则矩形法:

[]S S S S T N N x T x T x T T

a ωωωsin )(2sin )2(sin )1(2

1+++?=

∑==N k N

k k x T 12sin )(2π (28)

[]S S S S T N N x T x T x T T

b ωωωcos )(2cos )2(cos )1(2

1+++?=

∑==N k N

k k x T 12cos )(2π (29) 式中S T 为采样周期。当采样频率为S f ,基频为f 时,f

f N S

=。 梯形法:

???++++?=

22sin )2(sin )1(2sin )1(0sin )0(21S S S S T x T x T x x T T a ωωω ??

?

+--+

2sin )()1sin()1(S S T N N x T N N x ωω ∑-==112sin )(2N k N k k x T π

(30) ???++++?=

22cos )2(cos )1(2cos )1(0cos )0(21S S S S T x T x T x x T T b ωωω ??

?

+--+

2cos )()1cos()1(S S T N N x T N N x ωω ???

???++=∑-=11

2)(2cos )(2)0(2N k N x N k k x x T π (31) 式中x (0)和x (N )分别是k =0和k =N 时的采样值。观察式(28)~(31)可知它们是非递归离散系统的一般表达式。矩形法算式比梯形法算式更为简洁,便于编程实现,但在相同的采样频率时,精度不如梯形法。 2.4.3 半波付氏算法

全波付氏算法的数据窗为一个工频周期(20mS ),响应时间较长。为了缩短响应时间,可将数据窗缩短至半个周期,从而得到半波付氏算法。设每周期的采样点数仍为N ,则根据式(26)和式(27)可得半波付氏算法的计算公式为:

矩形法: ∑==2112sin )(4N

k N

k k x N a π

(32)

∑==2112cos )(4N

k N

k

k x N b π

(33) 梯形法: ∑

-==

12

1

12sin )(4N k N

k

k x N

a π

(34) ???

?????++=

∑=2112)2(2cos )(42

)0(4N k N x N k k x T x N

b π (35)

从滤波效果来看,全波付氏算法不仅能完全滤除各次谐波分量和稳定的直流分量,而且能较好地滤除线路分布电容引起的高频分量,因而可以对畸变波形中的基波分量平稳和精确地作出响应。从图6可以看出,半波付氏算法的滤波效果不如全波付氏算法,它不能滤除直流分量和偶次谐波分量,即它需要假设信号中的直流分量已由前置ALF 滤除。此外,两者都对按指数衰减的非周期分量呈现了很宽的连续频谱,因此付氏算法的精度受衰减的非周期分量的影响较大。

从精度来看,由于半波付氏算法的数据窗为半周,在故障发生半周后即可计算出结果,但精度不如全波付氏算法。全波付氏算法则需要在故障发生一个周期后才能计算出

1

f f

1.00.5

1

f f

1.00.5(a)全波付氏算法

(b)全波付氏算法

图6 付氏算法的频谱

Fig. 6 Frequency spectrum of Fourier algorithm

结果,响应速度较慢,但其计算精度较高。文献表明,全波付氏算法不仅对基波,而且对所有通过防混迭滤波器的谐波都具有最小的协方差估计,因此是目前微机继电保护中最普遍采用的算法。 2.5 最小二乘算法

最小二乘算法的原理是为被采样信号预设一个尽可能逼近的信号模型函数,并按最小二乘拟合原理对其进行拟合。设被采样信号为:

∑∑==++=++=L

k ck sk L

k k k t k X t k X X t k X X t x 1

01

0)cos sin ()sin()(ωωαω (36)

式中:k k sk X X αcos =,k k ck X X αsin =。

可以看出,式(36)是式(25)的前1+L 项有限和表达式。当采样间隔为S

S f T 1

=

时,则将N 个采样值1y ,2y ,,N y 代入式(36)可以得到N 个方程,表示为矩阵形式:

Y AX = (37)

其中:X T cL sL c s c s X X X X X X X ),,,,,,,(22110 =

Y ),,,(21N y y y = A ?

????

?

?

??

???=S S

S

S

S S S

S

S S

S S

T NL T NL T N T N T L T L T T

T L T L T T ωωωωωωωωωωωωcos sin cos sin 12cos 2sin 2cos 2sin 1cos sin cos sin 1

根据最小二乘拟合原理,当误差

2

δ[]=-=∑=2

1

)(N

k S k kT x y )()(AX Y AX Y T --

最小时,称AX 为y k 的最佳拟合函数。令

)()(2AX Y AX Y J T --==δ

求J 关于X 的导数并令其等于零:

022=-=??Y A AX A X

J

T T 即: Y A AX A T T = 由于A T A 是非奇异方阵,故可得:

Y A A A X T T 1)(-= (38)

式(37)中的矩阵A 的各元素均不含未知量,当采样频率f S 和采样点数N 确定时,求解式(38)可以预先将(A T A )

1A T 离线计算出来存于存中。

最小二乘算法类似于全波付氏算法,可以从信号计算出所需的各次谐波分量,但它还具有以下特点:

1. 最小二乘算法是一种波形拟合方法,当预设的信号模型能充分描述被采样信号时,这种算法可以滤除信号中任意需要滤除的分量,因而具有很好的滤波性能和很高的运算精度。显然滤波性能和精度依赖于预设信号模型的复杂度,即模型对实际信号描述的充分性,这将导致出现高阶矩阵,使运算量明显增大,对运算(硬件)平台的要求较高。

2. 可以通过预设合适的模型,一次计算出信号中各种所需的分量。例如在变压器差动保护中,不仅需要计算出基波分量的大小,还需要计算出二次谐波分量(用于励磁涌流制动)和三次谐波或五次谐波分量(用于过励磁制动)。 4 小结

通过保护算法提取故障信号中的特征分量是微机继电保护中最重要的环节,本文针对性地阐述了一些典型保护算法的原理,分析了它们各自的功能特点、性能和应用场合,表明:

1. 保护算法与滤波是密切相关的,保护系统中的模拟滤波器和数字滤波器的完善程度

不同,所选用的保护算法也因之而异,通常有些算法本身就具有良好的滤波功能。2. 就算法本身而言,其运算的精度和速度是一对矛盾,较高的精度必然伴随着较低的速度,精度和速度兼具的算法则表现为运算的复杂性,从而将速度问题转至硬件实现平台,归结为CPU的运行速度和处理能力。

3. 就系统硬件而言,A/D转换芯片的量化误差将直接影响到故障信号特征的提取精度,因而通常需要采用高精度的A/D(12位甚至16位)以减小量化误差。而这又会使运算字长变长,对速度和CPU处理能力产生影响。

数据挖掘聚类算法课程设计报告

数据挖掘聚类问题(Plants Data Set)实验报告 1.数据源描述 1.1数据特征 本实验用到的是关于植物信息的数据集,其中包含了每一种植物(种类和科属)以及它们生长的地区。数据集中总共有68个地区,主要分布在美国和加拿大。一条数据(对应于文件中的一行)包含一种植物(或者某一科属)及其在上述68个地区中的分布情况。可以这样理解,该数据集中每一条数据包含两部分内容,如下图所示。 图1 数据格式 例如一条数据:abronia fragrans,az,co,ks,mt,ne,nm,nd,ok,sd,tx,ut,wa,wy。其中abronia fragrans是植物名称(abronia是科属,fragrans是名称),从az一直到wy 是该植物的分布区域,采用缩写形式表示,如az代表的是美国Arizona州。植物名称和分布地区用逗号隔开,各地区之间也用逗号隔开。 1.2任务要求 聚类。采用聚类算法根据某种特征对所给数据集进行聚类分析,对于聚类形成的簇要使得簇内数据对象之间的差异尽可能小,簇之间的差距尽可能大。 2.数据预处理 2.1数据清理 所给数据集中包含一些对聚类过程无用的冗余数据。数据集中全部数据的组织结构是:先给出某一科属的植物及其所有分布地区,然后给出该科属下的具体植物及其分布地区。例如: ①abelmoschus,ct,dc,fl,hi,il,ky,la,md,mi,ms,nc,sc,va,pr,vi ②abelmoschus esculentus,ct,dc,fl,il,ky,la,md,mi,ms,nc,sc,va,pr,vi ③abelmoschus moschatus,hi,pr 上述数据中第①行给出了所有属于abelmoschus这一科属的植物的分布地区,接下来的②③两行分别列出了属于abelmoschus科属的两种具体植物及其分布地区。从中可以看出后两行给出的所有地区的并集正是第一行给出的地区集

《电力系统继电保护原理》课程作业答案解析

华南理工大学网络教育学院《电力系统继电保护原理》课程作业答案171801 20170910 作业答题注意事项: 1)本作业共含客观题48题(单选20题,判断28题),主观题5题。所有题目答案务必填写在答题页面的答题表格中,填写在 题目中间或下面空白处的答案以0分计。单项选择题填写字 母ABCD之一,判断题大写V字表示正确,大写X表示错误。 其它填写方法将不能正确判别;主观题答案写在答题纸页面内 各题的表格方框内,其内容框大小可自行调节; 2)不要把答案拍摄成图片再贴入本文档,不要修改本文件中答题表格格式,务必将答题文件命名为“[学生姓名][答案].doc”, 用word2003格式存储并上传到网页,谢谢! 3)提交作业答案文件时请删除所有题目,答案文件应仅含个人信息表、客观题答案表和主观题答题表,不含题目; 4)不标注本人姓名的文件名无效,仅将答案拷贝到网页编辑框而没有上传答案word附件的作业,可能会造成批阅速度、格式 正确性上的较大困难,请同学们理解。 作业题目 一、单项选择题(20题) 1、电力系统继电保护的四个基本要求,不包括()。 (A)选择性;(B)速动性;(C)灵敏性;(D)针对性。 2、使用调试最方便的保护是()。 (A)电磁式保护;(B)分立晶体管保护;(C)集成电路保护;(D)微机保护。

3、电力系统中发生概率最大故障是()。 (A)三相短路;(B)两相短路;(C)单相接地故障;(D)两相接地故障。 4、()不属于影响距离保护工作的因素。 (A)短路点过渡电阻;(B)电力系统振荡; (C)电压回路断线;(D)并联电容补偿。 5、目前,()还不能作为纵联保护的通信通道。 (A)公用无线网络通道(wireless network); (B)输电线路载波或高频通道(power line carrier); (C)微波通道(microwave); (D)光纤通道(optical fiber)。 6、可以作为相邻线路的后备保护的纵联差动保护是()。 (A)分相电流纵联差动保护;(B)电流相位比较式纵联保护; (C)方向比较式纵联保护; (D)距离纵联保护; 7、()是后加速保护的优点之一。 (A)能够快速地切除各段线路上发生的瞬时性故障; (B)可能使瞬时性故障米不及发展成为永久性故障,从而提高重合闸的成功率; (C)使用设备少,只需装设一套重合闸装置,简单、经济; (D)第一次是有选择性地切除故障,不会扩大停电范围,特别是在重要的高压电网中一般不允许保护无选择性的动作而后以重合闸来纠正(前加速的方式)。 8、下列方式不属于综合重合闸(简称综重)工作方式的是()。 (A)两相重合闸方式; (B)三相重合闸方式; (C)单相重合闸方式; (D)停用重合闸方式。 9、双侧电源线路的过电流保护加方向元件是为了()。 (A)保证选择性;(B)提高灵敏性;(C)加强可靠性;(D)提高速动性。 10、发电机定子绕组单相接地时,中性点对地电压()。 (A)为零;(B)上升为线电压;(C)上升为相电压;(D)上升为线电压α倍(α表示由中性点到故障点的匝数占全部绕组匝数的百分数)。 11、互感器二次侧应有安全可靠的接地,其作用是()。 A 便于测量时形成回路; B 以防互感器一、二次绕组绝缘破坏时,高电压对二次设备及人身的危害; C 有助于泄放雷电流; D 提高保护设备抗电磁干扰能力。 12、瞬时电流速断保护的动作电流应大于()。

继电保护故障分析及处理方法 赵佳丽

继电保护故障分析及处理方法赵佳丽 发表时间:2018-07-06T10:32:44.447Z 来源:《电力设备》2018年第6期作者:赵佳丽郑嘉硕王伟征 [导读] 摘要:继电保护在电力系统安全运行中主要的作用主要体现在保障电力系统的安全性、对电力系统的不正常工作进行提示、对电力系统的运行进行监控等方面,当电力系统发生故障或异常工况时,继电保护可以在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 (国网兴安供电公司内蒙古兴安盟 137400) 摘要:继电保护在电力系统安全运行中主要的作用主要体现在保障电力系统的安全性、对电力系统的不正常工作进行提示、对电力系统的运行进行监控等方面,当电力系统发生故障或异常工况时,继电保护可以在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。继电保护工作是一项技术性很强的工作,随着技术的进步,继电保护故障也随之增多,可以说继电保护技术性很大程度上体现在故障分析和处理的能力上。 关键词:继电保护;故障分析;处理方法 1 继电保护的基本要求和作用 1.1 继电保护的基本要求 继电保护装置为了完成它的任务,必须在技术上满足可靠性、选择性、速动性和灵敏性四个基本要求。这些要求之间紧密联系,既矛盾又统一,因此,需要针对不同的使用条件,分别地进行协调。对这些问题的研究分析,是电网继电保护系统运行部门的头等大事。 1.1.1可靠性 可靠性是指发生了属于保护装置该动作的故障,它能可靠动作,即不发生拒绝动作;在继电保护不需要动作时应可靠不动,不发生误动作。可靠性是继电保护的基本要求,因为误动和拒动都会给电力系统造成严重的危害。 1.1.2选择性 当供电系统发生短路故障时,继电保护装置动作,只切除故障元件,并使停电范围最小,以减小故障停电造成的损失。保护装置这种能挑选故障元件的能力称为保护的选择性。 1.1.3速动性 速动性是指保护装置应能尽快地切除短路故障,目的是提高电力系统的稳定性,降低设备的损坏程度,缩小故障及范围,提高自动重合闸和备用电源、备用设备自动投入的效果,减少用户在低电压情况下的工作时间。 1.1.4灵敏性 灵敏性是指在规定的保护范围内,保护对故障情况的反应能力。满足灵敏性要求的保护装置应在区内故障时,不论短路点的位置与短路的类型如何,都能灵敏地正确地反应出来。 1.2 继电保护的作用 1.2.1保障电力系统的安全性 在电力系统进行正常运行的工作中,如果中途某个零部件发生了故障,那么继电保护装置就可以测试到其状态,然后向其最近的断路器发出预警,作出跳闸处理,这样的话一方面既可以使元器件尽量小的受到损坏,另一方面又可以使电力系统继续正常运行,避免了以为部分元器件的故障而为整个电力系统带来瘫痪,保证了电力系统运行的稳定性。 1.2.2对电力系统的不正常工作进行提示 在电力系统的运行中,继电保护装置可以对运行中出现的不良状况进行检测,如果是有某些零部件发生了异常,那么保护装置可以根据异常的程度深浅对其进行不同程度的处置。如果是情况不太严重的,那么保护装置可以对其进行调整,避免了人工的手动操作。如果是对电力系统的运行有一定的威胁的故障那么就会发出预警报告,或者是自动切除。 1.2.3对电力系统的运行进行监控 继电保护不仅仅是一个事故处理与反应装置,同时也是监控电力系统正常运行的装置。 2 继电保护常见的故障分析 继电保护常见故障主要包括以下几个方面:产源故障,继电保护的装置生产属于技术性生产的范畴,其质量的好坏对于保护装置的运行有着直接的影响,如机电型、电磁型继电器零部件的精确度和材质等;整体性能不合格,晶体管保护装置中元器件的运行不协调、性能差异大、质量差,易引起装置的拒动或误动;运行故障,在设备运行过程中,因温度过高会导致继电设备的失灵,具体表现为住变动保护误动、开关拒合,而继电保护工作当中。电压瓦感器二次电压回路故障是最薄弱环节,电压互感器作为继电保护策略设备的起始点,对于二次系统证常的运行十分重要;隐形故障,相关资料显示,全世界有大约75%的大停电事故都同不正确的保护系统运作相关,继电保护的隐形故障已成为一种灾难性的电力机理,故很多文献中都对继电保护隐形故障的分析加以强调。对于一些重要输电线路,断路器故障的就地保护可以对监管所有跳闸元件加以确定,且在跳闸元件故障中,所有的远方和就地跳闸的指令才有效。 3 继电保护故障处理方法 继电保护工作是一项技术性很强的工作。因此,如何用最快最有效的方法去处理故障,体现技术水平,成为广大继电保护工作者所共同要探讨的课题。下面就几种常用的故障处理方法进行分析。 (1)替换法。用好的或认为正常的相同的元件代替怀疑的或认为有故障的元件,进而判断出该被替换组件的好坏,利用这个方法可以快速地缩小查找故障范围,这是处理综合自动化保护装置内部故障最常用方法。如果一些微机保护出现故障,或一些内部回路复杂的单元继电器,可以使用临近备用,或暂时处于检修的插件、继电器代替它。如替换之后故障消失,说明被替换下来的组件发生了故障,如果故障仍存在就说明故障没有发生在该组件上,要继续使用该方法进行相同的检查。 (2)短接法。所谓短接法,就是指将回路中的其中一段,或是将部分用短接线入为短接,对短接线范围内进行故障的判断,查看故障是在短接线范围内,还是在其它的地方,以此来缩小故障范围。但是这种方法有其固定的适用范围,主要用于电磁锁失灵、电流回路开路、切换继电器不动作、判断控制等转换开关的接点是否好。 (3)参照法。通过正常与非正常设备的技术参数进行比较,进而从不同处找出不正常设备故障的位置。在认为接线错误,或在定值

实验三 K-均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

电力系统继电保护原理考试题型及复习含答案

2008级《电力系统继电保护原理》考试题型及复习题 第一部分:考试题型分布 (1)单选题(10分):1分×10题 (2)多选题(10分):2分×5题 (3)简答题(25分):5分×5题 (4)分析题(20分):3题 (5)计算题(35分):3题。 第二部分:各章复习题 第一章 1.继电保护装置的基本任务是什么? 答:1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行; 2)反应电气元件的不正常运行状态,并根据运行维护的条件,而动作于信号、减负荷或跳闸。 2.试述对继电保护的四个基本要求的内容。 答:1)选择性:是指电力系统中有故障时,应由距离故障点最近的保护装置动作,仅将故障元件从电力系统中切除,使停电范围尽量减小,以保证系统中的无故障部分仍能继续安全运行; 2)速动性:在发生故障时,保护装置能迅速动作切除故障; 3)灵敏性:是指对于其保护范围内发生任何故障或不正常运行状态的反应能力。 4)可靠性:是指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护装置不应该动作的情况下,则不应该误动作。 3.如下图,线路AB、BC配置了三段式保护,试说明: (1)线路AB的主保护的保护范围,近后备、远后备保护的最小保护范围; 答:近后备最小保护范围为AB,远后备最小保护范围为AC (2)如果母线B故障(k点)由线路保护切除,是由哪个保护动作切除的,是瞬时

切除还是带时限切除; 答:是由保护2动作切除的,是带时限切除的。 (3)基于上图,设定一个故障点及保护动作案例,说明保护非选择性切除故障的情况。答:当保护1出口处附近发生短路时,由保护2瞬时切除故障,再自动重合闸,如果是瞬时性故障,则正常运行;如果是永久性故障,则再按逐级有选择性的切除故障。 第二章 1.什么是继电器的返回系数?返回系数都是小于1的吗? 答:继电器的返回电流(或电压)与继电器的动作电流(或电压)的比值即继电器的返回系数。不都是小于1,电流继电器是小于1,电压继电器是大于1 2.举例说明哪些继电器是过量动作的,哪些继电器是欠量动作的? 答:电流继电器是过量动作的,电压继电器、阻抗继电器是欠量动作的。 3.微机保护装置硬件系统由哪五部分组成?分别起什么作用? 答:由数据采集单元、数据处理单元、开关量I/O接口、通信接口、电源五部分组成; 其中数据采集单元完成将模拟输入量尽可能准确地转换为数字量的功能; 数据处理单元执行放在存储器中的程序,对由数据采集系统输入至随机存取存储器中的数据进行分析处理,以完成各种继电保护的功能。 I/O接口完成各种保护的出口跳闸、信号警报、外部接点输入及人机对话等功能; 通信接口实现多机通信或联网;电源为供给内部电路所需的电源。 4.微机保护的软件一般由哪些功能模块构成? 答:一般由两个模块构成即:主程序和中断服务程序。 5.如何选择微机保护的采样率?说明低通滤波器设计与采样率选择之间的关系。 答:如果随时间变化的模拟信号所含的最高频率成分为,则采样频率。 采用低通滤波器可以将高频分量滤掉,这样就可以降低采样率。 第三章 1.试对保护1进行电流Ⅰ、Ⅱ、Ⅲ段的整定计算(线路阻抗0.4Ω/km,电流Ⅰ、Ⅱ、Ⅲ 段的可靠系数分别是1.3、1.1、1.2,返回系数0.85,自起动系数1。

关于专题调研报告范文

关于专题调研报告范文 按照市政府的安排,5月9日至16日,**县组织由常务副县长周大曙,分管教育副县长马志列挂帅的教育发展专题调研组,对全县的教育发展情况进行专题调查。调查采取实地考察和召开座谈会相结合的方式进行,实地调查了县一中、二中、生源学校、西竺山中学等,召集部分公办学校校长、民办学校法人代表、教师、学生家长、部门负责人进行了座谈。现将情况汇报如下。 一、我县教育发展的基本情况 **县辖30个乡镇(园),人口78万,总面积2034平方公里,是典型的农业大县。全县现有各级各类公办学校356所,其中县属学校7所,乡镇中学20所,中心小学21所,村小224所,教学点73个,九年一贯制学校11所,民办学校6所。在校学生99648人,其中小学生50728人,初中学生35082人,普高学生11616人,职高学生2222人。共有教职工8260人,其中在职教职员工6426人,退(离)休教职工1834人。 近年来,我县坚持把教育放在优先发展的位置,全面落实“以县为主”的管理体制,积极筹措资金,加大教育投入,教育发展水平稳步提升。主要体现在如下六个方面: 1、教育投入不断加大。20**-20**年的教育经费支出总额分别为13595万元、13563万元、16620万元,人均教育经费支出分别为1194元、1260元、1420元。财政预算内教育经费拨款三年分别为8820万元、9137万元、10199万元,预算内教育经费拨款占教育经费支出的比例分别为65%、67%、63%,分别比上年增长3%、4%、8%,预算内教育经费拨款占财政总支出分别为36%、32%、29%。 2、队伍建设不断加强。全县共有教职工8260人,其中在职教职员工6426人(含在岗教师5791人、未聘分流教师635人),退(离)休教职工1834人;在岗教职员工中,高中教师601人,初中教师2136人,小学教师2635人,行管及工勤人员349人,局机关干部70人。研究生学历4人、本科学历1148人,大专学历2512人,中师学历1708人。在职教师中35岁以下的1757人,36岁-45岁的1920人,46岁以

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告 1.方法背景 聚类分析又称群分析,是多元统计分析中研究样本或指标的一种主要的分类方法,在古老的分类学中,人们主要靠经验和专业知识,很少利用数学方法。随着生产技术和科学的发展,分类越来越细,以致有时仅凭经验和专业知识还不能进行确切分类,于是数学这个有用的工具逐渐被引进到分类学中,形成了数值分类学。近些年来,数理统计的多元分析方法有了迅速的发展,多元分析的技术自然被引用到分类学中,于是从数值分类学中逐渐的分离出聚类分析这个新的分支。结合了更为强大的数学工具的聚类分析方法已经越来越多应用到经济分析和社会工作分析中。在经济领域中,主要是根据影响国家、地区及至单个企业的经济效益、发展水平的各项指标进行聚类分析,然后很据分析结果进行综合评价,以便得出科学的结论。 2.基本要求 用FAMALE.TXT、MALE.TXT和/或test2.txt的数据作为本次实验使用的样本集,利用C均值和分级聚类方法对样本集进行聚类分析,对结果进行分析,从而加深对所学内容的理解和感性认识。 3.实验要求 (1)把FAMALE.TXT和MALE.TXT两个文件合并成一个,同时采用身高和体重数据作为特征,设类别数为2,利用C均值聚类方法对数据进行聚类,并将聚类结果表示在二维平面上。尝试不同初始值对此数据集是否会造成不同的结果。 (2)对1中的数据利用C均值聚类方法分别进行两类、三类、四类、五类聚类,画出聚类指标与类别数之间的关系曲线,探讨是否可以确定出合理的类别数目。 (3)对1中的数据利用分级聚类方法进行聚类,分析聚类结果,体会分级聚类方法。。(4)利用test2.txt数据或者把test2.txt的数据与上述1中的数据合并在一起,重复上述实验,考察结果是否有变化,对观察到的现象进行分析,写出体会 4.实验步骤及流程图 根据以上实验要求,本次试验我们将分为两组:一、首先对FEMALE 与MALE中数据组成的样本按照上面要求用C均值法进行聚类分析,然后对FEMALE、MALE、test2中数据组成的样本集用C均值法进行聚类分析,比较二者结果。二、将上述两个样本用分即聚类方法进行聚类,观察聚类结果。并将两种聚类结果进行比较。 (1)、C均值算法思想

继电保护心得体会

继电保护心得体会 【篇一:对继电保护故障分析和处理的心得体会】 对继电保护故障分析和处理的心得体会 摘要:随着科技的发展各种类型的电气设施出现在人们日常生活和工 作中,这些电气设施对供电提出了质量和稳定性的要求,这就使如何保 证电网安全稳定成为电力工作的重要环节。在现代化电力事业的规划、经营和管理等各项活动中,继电保护是一项重要的工作,继电保护 是维护供电稳定、维持电网的正常工作、确保用电安全的重要举措。本文从电力工作的经验出发,对继电保护故障的分析和处理进行讨论, 希望对继电保护工作提供参考和借鉴。 关键词:继电保护故障分析和处理 科技的进步和经济的发展,各种类型的电气设施出现在人们日常生活 和工作中,新型电气设施对供电提出了质量和稳定性的要求,这就使如 何保证电网安全稳定成为电力工作的重要环节。在现代化电力事业 的发展规划、经营活动和监督管理等各项工作中,继电保护成为电力 工作的重中之重。 1、继电保护的概述 (1)继电保护的定义。继电保护是研究电力系统故障和危及安全运行 时应对和处理的办法和措施,探讨对电力系统故障和危及安全运行的 对策,通过自动化处理的办法,利用有触点的继电器来保护电力系统及 其元件的安全,使其免遭损害。 (2)继电保护的功能。当电力系统发生故障或异常工况时,继电保护可 以实现的最短时间和最小区域内,将故障设备和元器件断离和整个电 力系统;或及时发出警报信号由电力工作者人工消除异常工况,达到减 轻或避免电力设备和元器件的损坏对相邻地区供电质量的影响。(3) 继电保护的分类。首先,从功能和作用的角度进行划分,继电保护分为:

异常动作保护、短路故障保护。其次,从保护对象的角度进行划分,继 电保护分为:主设备保护、输电线保护等。其三,从动作原理的角度进 行划分,继电保护分为:过电压、过电流、远距离保护等。最后,从装置 结构的角度进行划分,继电保护分为:数字保护、模拟式保护、计算保护、信号保护等。 2、常见的继电保护故障分析 由于新型电力控制设备和继电保护信息系统的使用,目前电力网络继 电保护工作的整体管理水平有了显著的提升,不过,毕竟电网和电力设 施是一个复杂的、庞大的系统,由于主客观各方面的因素影响,在继电 保护工作中仍然存在较多的问题,在日常的电力工作中常见的继电保 护故障主要有如下几种类型: (1)继电保护的运行故障。继电保护的运行故障是电力系统中危害性 最大且最常见的一种故障形式,表现为:主变差动保护、开关拒合的误 动等。例如:在电路网络的长期运行中,局部温度过高有可能导致继电 保护装置失灵。继电保护的运行故障最为常见的是电压互感器的二 次电压回路故障,是电力网络运行和围护中的薄弱环节之一。(2)继电 保护的产源故障。继电保护的产源故障是保护装置本身出现的故障, 在继电保护装置的实际运行中,其元器件的质量高低于继电保护产源 故障出现频率呈反相关。在电网和用电器中,继电保护装置对于零部 件的精度差、材质等都有严格的要求,如果采用质量不合格的零部件 和元器件将会增加继电保护产源故障发生的可能性。(3)继电保护的 隐形故障。继电保护的隐形故障既是又是大规模停电事故和电力保 护系统运行故障出现的根本原因,也是引发电力火灾的主要因素,电力 企业继电保护工作人员必须引起高度的重视。 3、处理继电保护故障的措施 为了实现电力事业又好又快地发展,进一步提高电力行业的经济和社 会效益, 【篇二:电力系统继电保护和自动化专业实习总结范文】

电力系统继电保护常见故障分析与检修技术探讨 杜思宇

电力系统继电保护常见故障分析与检修技术探讨杜思宇 发表时间:2019-07-09T13:20:47.853Z 来源:《电力设备》2019年第6期作者:杜思宇邓旭浩林楠李祥黑悦 [导读] 摘要:随着电力企业的不断发展和电力系统规模的不断扩大,在为电力市场带来显著经济效益的同时也对电力系统的安全运行提出了更加严峻的考验,同时电力继电保护故障所带来的电力系统安全问题也日益突出。 (国网新疆电力有限公司昌吉供电公司新疆维吾尔自治区昌吉市 831100) 摘要:随着电力企业的不断发展和电力系统规模的不断扩大,在为电力市场带来显著经济效益的同时也对电力系统的安全运行提出了更加严峻的考验,同时电力继电保护故障所带来的电力系统安全问题也日益突出。在电力系统中继电保护能够及时反映电力设备的运行状况和切除电力系统发生的故障,把故障对电力系统造成的影响最大限度地降到最低。因此,本文对电力系统继电保护常见故障分析与检修技术进行探讨。 关键词:电力系统;继电保护;常见故障;检修技术 我国社会经济持续增长,电力事业直接关乎到社会生产力水平,一旦电力系统出现故障,将严重影响到供电服务质量,对于社会各个行业领域发展具有深远影响。但是继电保护装置同样会出现故障问题,加强继电保护故障的维修很有必要,寻求合理技术做好电力系统保养、检查和维修工作,确保电力系统可以安全稳定运行。 1电力系统继电保护概述 继电保护装置是当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障或危及其安全运行的事件时,需要向运行人员及时发出警告信号,或者直接向所工作的断路器发出跳闸命令,以终止这些事件发展的一种自动化设备。要确保电力系统安全稳定运行,需满足以下要求: 1.1可靠性 指继电保护装置该动作时应可靠动作,不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求,可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。 1.2选择性 指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。 1.3灵敏性 指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定,选择性和灵敏性的要求通过继电保护的整定实现。 1.4速动性 指保护装置应尽快地切除短路故障,其目的是提高系统的稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。 2电力系统继电保护常见故障分析 2.1电流互感饱和故障 电流互感器的饱和对继电保护装置的采样比较产生了非常不利的影响,是继电保护装置运行时会出现的问题。随着电力系统规模的不断壮大,电力系统设备的终端负荷就会不断增加。当电力系统发生短路时,会出现很大的短路电流,如果在保护装置的出口位置出现短路,产生的短路电流甚至是电流互感器一次侧额定流的几百倍。通常在稳态电流短路的状况下,随着短路电流的增大,电流互感器综合误差也会随着变大,可能会使差动等保护拒绝动作。在线路短路的情况下,由于电流互感器的电流发生了饱和现象,电流互感器感应到的二次侧额的电流就会发生畸变,就会导致保护装置无法正常动作。如果是电力系统出线出口故障,就需要用主变压器后备保护装置将短路电流切除,这样就会延长故障时间,可能导致故障范围的扩大;如果线路保护拒绝动作,就会导致保护越级动作,造成大范围断电的情况发生。 2.2产源故障 在继电保护装置的实际运行中,其生产质量是否达标将直接关系到故障的出现几率在机电型电磁型等常见的继电保护装置中,对于零部件的精度差材质等都有严格的要求,如果装置的整体性能较差,必须会增加产源故障发生的可能性另外,在使用的继电保护装置中,如果晶体管的整体质量和性能较差,有可能导致运行不协调,甚至发生拒动或误动等故障。 2.3隐形故障 据国内电力管理部门统计:以上的大规模停电事故或电力保护系统运行故障,都与继电保护的隐形故障有着密切的联系继电保护的隐形故障也是引发电力灾难的主要因素,必须引起电力企业继电保护人员的高度重视在重要输电线路的运行管理中,继电保护人员必须密切观察跳闸元件的运行情况,以保证其在发生隐形故障时可以及时发出有效的指令。 3电力系统继电保护常见故障的检修技术 3.1直观法 直观法主要是通过电力继电保护装置的气味以及颜色判断是否存在故障,直观法能处理电力继电保护中的一些简单故障,比如,可以对个别部件的运行状况进行直接的观察,然后判断电力系统的运行状态是否受到影响,也可以观察颜色是否发生变化或闻气味,来判断电力继电保护装置元件是否存在问题,若发现问题,要及时进行修理或更换,从而保证电力继电保护装置能够正常工作。在电力继电保护装置进行检测的过程中,都使用专业设备,但是有时即使利用了专业的检测设备,也很难将继电装置中的故障找出来,而此时利用直观法就能够准确找出继电保护装置发生故障的位置。 3.2替换法 用质量较好的或较为正常的相同元件代替认为产生故障的元件,通过判断元件的好坏,能够较为快速地缩小故障查找范围。这是处理自动化继电保护保护装置故障最常用的方法。如果是某些微机保护故障,或者某些内部回路复杂的单元继电器,可以使用备用或者暂时无用的插件、继电器取代疑似故障的元件,如故障消失,则说明元件的确存在问题,反之则继续查找其他元件的好坏。

继电保护典型故障分析

继电保护典型故障分析 继电保护装置是电力系统密不可分的一部分,是保障电力设备安全和防止、限制电力系统大面积停电的最基本、最重要、最有效的技术手段。实践证明,继电保护一旦发生不正确动作,往往会扩大事故,酿成严重后果。 一、继电保护事故的类型: 1.定值的问题 1)整定计算的错误 由于电力系统的参数或元器件的参数的标称值与实际值有出入,有时两者的差别比较大,则以标称值算出的定值较不准确。 2)设备整定的错误 人为的误整定有看错数据值、看错位置等现象发生过。其原因主要是工作不仔细,检查手段落后等,才会造成事故的发生。因此,在现场继电保护的整定必须认真操作、仔细核对,把好通电校验定值关,才能避免错误的出现。 3)定值的自动漂移 引起继电保护定值自动漂移的主要原因有几方面:①受温度的影响;②受电源的影响;③元器件老化的影响;④元件损坏的影响。 2.装置元器件的损坏 1)三极管击穿导致保护出口动作 2)三极管漏电流过大导致误发信号 3.回路绝缘的损坏 1)回路中接地易引起开关跳闸 2)绝缘击穿造成的跳闸 如:一套运行的发电机保护,在机箱后部跳闸插件板的背板接线相距很近,在跳闸触点出线处相距只有2mm,由于带电导体的静电作用,将灰尘吸到了接线焊点的周围,因天气潮湿两焊点之间形成导电通道,绝缘击穿,造成发电机跳闸停机事故。 3)不易检查的接地点 在二次回路中,光字牌的灯座接地比较常见,但此处的接地点不容易被发现。

4.接线错误 1)接线错误导致保护拒动 2)接线错误导致保护误动 5.抗干扰性能差 运行经验证明晶体管保护、集成电路保护以及微机保护的抗干扰性能与电磁型、整流型的保护相比较差。集成电路保护的抗干扰问题最为突出,用对讲机在保护屏附近使用,可能导致一些逻辑元件误动作,甚至使出口元件动作跳闸。 在电力系统运行中,如操作干扰、冲击负荷干扰、变压器励磁涌流干扰、直流回路接地干扰、系统和设备故障干扰等非常普遍,解决这些问题必须采取抗干扰措施。 6.误碰与误操作的问题 1)带电拔插件导致的保护出口动作 保护装置在运行中出现问题时,若继电保护人员带电拔插件,容易使保护装置的逻辑 造成混乱,造成保护装置出口动作。 2)带电事故处理将电源烧坏 工作人员在电源插件板没有停电的情况下,拔出插件进行更换,容易使电源插件烧坏。 7.工作电源的问题 1)逆变稳压电源 逆变稳压电源存在的问题:①、波纹系数过高,可能造成逻辑的错误,导致保护误动作。要求将波纹系数控制在规定的范围以内。②、输出功率不足。电源的输出功率不够,会造成输出电压的下降,如果下降幅度过大,导致比较电路基准值的变化,充电电路时间变短等一系列的问题,影响到逻辑配合,甚至逻辑判断功能错误。③、稳压性能差。电压过高或过低都会对保护性能有影响。④、保护问题。电压降低或是电流过大时,快速退出保护并发出报警,可避免将电源损坏。但电源保护误动作时有发生,这种误动作后果是严重的,对无人值班的变电站危害更大。 2)电池浮充供电的直流电源 由于充电设备滤波稳压性能较差,所以保护电源很难保证波形的稳定性,即纹波系数严重超标。 3)UPS供电的电源 在分析对保护的影响时应考虑其交流成分、电压稳定能力、带负荷能力等问题。

PAM聚类算法的分析与实现

毕业论文(设计)论文(设计)题目:PAM聚类算法的分析与实现 系别: 专业: 学号: 姓名: 指导教师: 时间:

毕业论文(设计)开题报告 系别:计算机与信息科学系专业:网络工程 学号姓名高华荣 论文(设计)题目PAM聚类算法的分析与实现 命题来源□√教师命题□学生自主命题□教师课题 选题意义(不少于300字): 随着计算机技术、网络技术的迅猛发展与广泛应用,人们面临着日益增多的业务数据,这些数据中往往隐含了大量的不易被人们察觉的宝贵信息,为了得到这些信息,人们想尽了一切办法。数据挖掘技术就是在这种状况下应运而生了。而聚类知识发现是数据挖掘中的一项重要的内容。 在日常生活、生产和科研工作中,经常要对被研究的对象经行分类。而聚类分析就是研究和处理给定对象的分类常用的数学方法。聚类就是将数据对象分组成多个簇,同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较大的差异性。 在目前的许多聚类算法中,PAM算法的优势在于:PAM算法比较健壮,对“噪声”和孤立点数据不敏感;由它发现的族与测试数据的输入顺序无关;能够处理不同类型的数据点。 研究综述(前人的研究现状及进展情况,不少于600字): PAM(Partitioning Around Medoid,围绕中心点的划分)算法是是划分算法中一种很重要的算法,有时也称为k-中心点算法,是指用中心点来代表一个簇。PAM算法最早由Kaufman和Rousseevw提出,Medoid的意思就是位于中心位置的对象。PAM算法的目的是对n个数据对象给出k个划分。PAM算法的基本思想:PAM算法的目的是对成员集合D中的N个数据对象给出k个划分,形成k个簇,在每个簇中随机选取1个成员设置为中心点,然后在每一步中,对输入数据集中目前还不是中心点的成员根据其与中心点的相异度或者距离进行逐个比较,看是否可能成为中心点。用簇中的非中心点到簇的中心点的所有距离之和来度量聚类效果,其中成员总是被分配到离自身最近的簇中,以此来提高聚类的质量。 由于PAM算法对小数据集非常有效,但对大的数据集合没有良好的可伸缩性,就出现了结合PAM的CLARA(Cluster LARger Application)算法。CLARA是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽取的样本中寻找最佳的k个中心点,返回最好的聚类结果作为输出。后来又出现了CLARNS(Cluster Larger Application based upon RANdomized

(完整word版)继电保护算法分析

继电保护算法分析 1 引言 根据继电保护的原理可知,微机保护系统的核心内容即是如何采用适当而有效的保护算法提取出表征电气设备故障的信号特征分量。图1是目前在微机保护中通常采用的提取故障信号特征量的信号处理过程。 从图中可以看出,自故障信号输入至A/D 输出的诸环节由硬件实现,在此过程中故障信号经过了预处理(如由ALF 滤除信号中高于5次的谐波分量),然后通过保护算法从中提取出故障的特征分量(如基波分量)。很明显,只有准确且可靠地提取出故障的特征量,才能通过故障判据判断出是否发生了故障,是何种性质的故障,进而输出相应的保护动作。因此计算精度是正确作出保护反应的重要条件。就硬件部分而言,为了减少量化误差,通常采用12位甚至16位A/D 转换芯片;而就保护算法而言,提高精度除了与算法本身的性能有关,还与采样频率、数据窗长度和运算字长有关。目前针对故障特征的提取有许多不同类型的保护算法,本课题研究的是电动机和变压器的保护,根据相应的保护原理,主要涉及基于正弦量的算法和基于序分量过滤器的算法。本章将对其中几种较典型的算法作简要介绍和分析。 2 基于正弦量的特征提取算法分析 2.1 两点乘积算法 设被采样信号为纯正弦量,即假设信号中的直流分量和高次谐波分量均已被理想带通滤波器滤除。这时电流和电压可分别表示为: )sin(20i t I i αω+= 和 )sin(20u t U u αω+= 表示成离散形式为: )sin(2)(0i S S k T k I kT i i αω+== (1) )sin(2)(0u S S k T k U kT u u αω+== (2) 式中,ω为角频率,I 、U 为电流和电压的有效值,S T 为采样频率,0i α和0u α为电流和 故障 图1 故障信号特征的提取过程 Fig. 1 Character extraction process of fault signal

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析 李士海 山东电力建设第三工程公司山东青岛266100 摘要:继电保护装置是现代电力系统安全的基础,是预防供电过程中大规模停电的重要技术方式。随着现代城市改建、扩建脚步的不断加快,我国电力系统也进行了大面积的改造。通过技术改造实现了城市供电的稳定与安全。作为电力系统中的重要组成部分,继电保护装置故障的发生将影响电力设备的安全、影响电力系统供电的稳定性与安全性。如何有效避免电力系统故障、及时发现电力系统故障并采取合理措施是电力维修面临的首要问题。本文就电力系统中继电保护常见的故障及解决对策做了详细探讨。 关键词:电力系统;继电保护;开关保护;替代法;继电器Pick to:the relay protection device is the foundation of modern power system security,prevention is an important technology of the power supply in the process of large-scale blackout.With the accelerating of the modern city rebuilding and expansion of pace,power system also has carried on the massive transformation of our country.Through the technical reform to realize the stability and security of urban power supply.As an important part of power system relay protection device failure will affect the safety of electric power equipment,influence the stability and security of the power system power supply.How to effectively avoid power system failure,timely find power system fault and take reasonable measures is the top issue facing the electric power maintenance. In this paper,the common fault in the power system relay protection and make a detailed discussion on countermeasures. Key words:power system;Relay protection;Switch protection;Alternative method;relay

电力系统继电保护故障分析及故障点查找方法 王国栋

电力系统继电保护故障分析及故障点查找方法王国栋 发表时间:2017-01-20T16:08:45.963Z 来源:《电力设备》2016年第22期作者:王国栋[导读] 在电网是否能够稳定运行的问题上,继电保护系统所起的作用是极其重大的。 (国网河北省电力公司武安市供电分公司河北邯郸 056300)摘要:在电网是否能够稳定运行的问题上,继电保护系统所起的作用是极其重大的。作为电力系统中组成部分之一,继电保护故障会给电网运行带来很大的影响。所以,分析继电保护故障,掌握故障查找方法,而且对故障加以有效预防或者及时进行处理,最终实现电网安全、稳定运行目的,具有重要的现实意义。文中对电力系统继电保护故障分析及故障点查找方法进行了分析,仅供参考。 关键词:电力系统;继电保护;故障分析;故障点;查找方法 1对电力系统继电保护故障的认识继电保护承担着整个电力系统运行情况的监督和检测作用,当发生电力故障的时候,能够及时切断故障点与线路的联系,避免故障问题的蔓延,对其他线路进行保护,继电保护的正常工作,对于整个电力系统的正常运行具有重要意义。当继电保护出现故障问题的时候,将无法发挥对线路的监测作用,失去其保护性能,电力系统运行的安全性和可靠性无法得到保证,很容易引发电网系统的崩溃,所以必须加强对继电故障的重视,加大监测力度,及时排除继电保护故障,确保继电保护能够正常工作,提高继电保护的准确性和可靠性。 2电力系统继电保护常见故障分析 2.1 PT二次电压回路故障 如220kVPT,变比为2200,停电的一次母线即使未接地,其阻抗虽然较大,假定为1MΩ,但从PT二次测看到的阻抗只有1000000/(2200)2≈0.2Ω,近乎短路,故反充电流较大,将造成运行中的PT二次侧小开关跳开或熔断器熔断,使运行中的保护装置失去电压,可能造成保护装置的误动或拒动。 2.2继电器触点故障 如,某变电站进行35kVI段母线倒闸操作,将35kVI段母线PT停运后,发现35kVI段母线电压二次回路仍有电压的存在,且与35kVII段母线电压一致。当时35kV母线为分列运行,母线电压并列装置在分列位置。我们在检查母线电压并列回路时发现无异常,为此我们对35kV 线路保护的电压切换回路进行了检查。检查发现,为原来运行在35kVI母的一条线路在倒闸II母运行后,其电压切换复归回路中的I母刀闸辅助触点不到位,未能将常闭触点打开,从而导致了35kVI、II段母线电压在此处有并列现象,经过对I母刀闸辅助触点的调整后,35kV母线电压正常。 2.3继电保护装置元件损坏 如:2011年4月,35kV梅田变电站10kV梅汇线915开关WXH-822线路测控保护装置在开关运行状态下出现合位灯与跳位灯同时亮的现象,经检查直流回路、开关辅助开关接点均无故障,从10kV出线柜断路器电气控制原理接线图分析,没有发现可能出问题的环节,经过认真查阅VTP-12户内高压真空断路器说明书,发现可能是整流块出现问题,断开操作电源,检查出整流块击穿故障。 2.4接线错误导致保护误动或拒动 如:新投运的一台6300KVA的主变压器,在空载及轻载负荷情况时运行正常,但在负荷上升到2000kVA时就出现差动保护跳闸的故障。对变压器做了一次带负荷测试,通过对测出的数据进行分析,最后检查核实是高压侧的差动电流线圈接反了,修正接线后再复测角差刚好相差180度,复测三相差流分别为0.03A、0.05A、0.02A,据此可以确定数据正确。 2.5直流接地问题 直流正极接地有造成保护误动的可能。因为一般跳闸线圈均接负极电源,若这些回路再发生接地或绝缘不良就会引起保护误动作。直流负极接地与正极接地同一道理,如回路中再有一点接地就可能造成保护拒绝动作。两点接地将跳闸或合闸回路短路,这时将可能烧坏继电器触点。 3电力系统继电保护故障点查找方法 3.1分段处理法 分段处理法是最常用的继电保护故障点查找方法,当电力系统在运行过程中发生继电保护故障的时候,可以按照继电保护设备规格,将其划分成不同的等级,按照固定顺序,进行逐渐排查,能够快速、准确的找出故障发生点。比如当高频保护收发信机工作不正常的时候,在对故障点进行查找的时候,线路中除了两侧的收发信机,还会有其他的通道设备,为了使查找更加方便,可以利用相关测量仪器,先对两侧的收发信机的运行性能进行测量,判断故障是否发生在收发信机设备上,如果收发信机正常,然后在对线路中的其他通道设备进行分段测量,找出故障的具体发生点。 3.2直接观察法 观察法是查找故障点的最直接方法,当继电保护装置出现故障的时候,线路中的线头可能会发生脱落现象,如果是在超负荷运载状态下出现故障问题,电气设备会因为高温发出刺鼻性气味,线圈也会被烧坏,通过对线路的直接观察,能够快速找出这些问题,对故障点进行确定,对故障设备进行维修或者更换,确保继电保护的正常运行。此外,如果高频通讯不正常的时候,可以将结合滤波器准备测量下桩头打开,观察电缆的接线是否出现断裂现象,如果接线断开,则可以断定是该环节发生继电保护故障。 3.3替换法 替换法是继电保护故障点查找方法中比较方便的一种,故障维修人员利用丰富的工作经验,根据继电保护故障的具体现象,对故障点进行大致判断,然后用相同的正常元件对其进行更换,如果故障消失,则表明被替换下来的元件存在故障问题,如果故障仍然存在,则对下一个怀疑元件进行替换。利用替换法对继电保护故障点进行查找,能够缩小查找范围,缩短查找时间,不过一定要保证所使用的替换原件与旧元件的规格、型号的一致性。 3.4参照法

相关文档
最新文档