数学分析 一致收敛函数列与函数项级数的性质

合集下载

数学分析2课件:13-1函数项级数及其一致收敛性

数学分析2课件:13-1函数项级数及其一致收敛性

x(1,1) 1 x n 1
n1
而右端极限为,
故原级数在(-1,1)不一致收敛。
但限制x [a,a],a 1,则
sup
x(a,a )
|
sn( x)
s( x) |
sup
x(a,a )
| 1 xn 1 x
1 1
x
|
sup | xn | an , x(a,a) 1 x 1 a
[( xn ) 0,单调增] 1 x
故 un( x)在数集D上一致收敛。
n1
证毕。
注1 在这个定理的条件下,可得| un( x) | 也一致收敛。
n1
注2 不是每个收敛级数都有优级数。
例8
sin n
nx
p
,
cos n
nx
p
,(
p
1)在(,)一致收
敛。
优级数均为
1 np
.
(1)n sin nx的优级数为 np
1, np
一致收敛。
xn在[a,a](a 1)的优级数为 an,一致收敛。
an为绝对收敛级数,则 an sin nx, an cos nx
n1
n1
n1
在(,)一致收敛,且| an | 就是其优级数。
n1
全体收敛点的集合称为收敛域。
un( x) s( x)
n1
——和函数。
例5
xn 1 x x2 x3
n0
lim
n
sn( x)
lim
n
1 xn 1 x
1 , 1 x 发散,
| x | 1 | x | 1
xn在( 1,1)内收敛于s( x)
1
.
n0

一致收敛函数列与函数项级数的性质

一致收敛函数列与函数项级数的性质

1 n 1
12n
2
(2n 2n2x)dx

1
lim
0 n
1
1 0dx
n
fn (x)dx
1 2
0
不相等
(2) 定理的条件是充分的, 但不必要
例3 fn (x) nxenx n 1, 2,... 在区间[0,1]上讨论.
f
(x)
lim
n
fn (x)
lim nxenx
n
0
x [0,1]
但在[0,1]上, fn(x) nxenx n 1, 2,...不一致收敛. 事实上,
{ fn(x)}的每一项在[a,b]上有连续的导数, 且{ fn(x)}在[a,b]上一致收敛,

d dx
f
(x)
d (lim dx n
fn (x))
lim n
d dx
fn (x)
3. 可微性
定理13.10 设{ fn (x)}为定义在[a,b]上的函数列, x0 [a,b]为{ fn(x)}的收敛点,
f (x)
f (x0 )
lim lim
xx0 n
fn (x)
f (x0 )
又 lim n
fn (x0 )
f (x0 )
lim
x x0
fn (x)
fn (x0 )
lim lim
n xx0
fn (x)
f (x0 )
所以
lim lim
xx0 n
fn
(x)
lim
n
lim
x x0
fn (x)
★ 在一致收敛条件下, 关于x与n极限可以交换极限顺序
fn (x) nxenx 在[0,1]的最大值为:

13.2一致收敛函数列与函数项级数级数的性质

13.2一致收敛函数列与函数项级数级数的性质

因为函数列 { fn } 在 [a , b]上一致收敛于 f ,所以
对任给的ε> 0 , 存在 N > 0 , 当 n > N 时,对一切
x ∈ [a , b],
都有
| fn ( x ) - f ( x ) | < ε
b
于是当 n > N 时有
| f n ( x ) dx f ( x ) dx |
由柯西准则知数列 { an } 收敛.

lim a n A ,
n
x x0
下面证明: lim f ( x ) A . 因为{ fn } 一致收敛于 f ,数列 { an } 收敛于 A , 因此对任给的ε > 0 , 存在 N > 0 , 当 n > N 时, 对任何 x ∈(a , x0 )∪(x0 , b) 有 | fn(x) – f (x) | <ε/3 和 | an – A | <ε/3 同时成立.特别取 n = N +1,有 | fN+1(x) – f (x) | <ε/3 和 | aN+1 – A | <ε/3
n
( iii ) lim f n ( a ) 不存在,
n
则{ f n ( x )} 在 ( a , b )内不一致收敛
定理 13.9(连续性) 设函数列 { fn } 在区间 I 上一致收敛于 f ,且 fn ( n = 1, 2, . . . ) 在 I 上连续, 则 f在 I 上也连续.
证 要证:对任何 x0 ∈I , lim f ( x ) f ( x 0 ) .
x x0
由定理 13.8, lim lim lim f ( x ) x x lim f n ( x ) lim x x f n ( x ) n n

函数列及其一致收敛性

函数列及其一致收敛性

函数列 nx(1 x )n }在区间 0,1]非一致收敛. { [
函数列及其一致收敛性
2 sup | f n ( x ) f ( x ) | . 1 n x[0,1]
显然, sup | f n ( x ) f ( x ) |} 0. lim{
n x[0,1]
nx 函 数 列 { }在 区 间0, 一 致 收 敛 [ 1] . 1 n x
2){nx(1 x)n }
1 n0 n0 1 | f n0 ( x0 ) f ( x0 ) | [( ) ] 0 . 3 3 即函数列x n }在区间0,1)非一致收敛 { [ .
1
1
函数列 f n ( x ) 一致收敛于 f ( x ) 的 y
y f ( x)
几何意义:
0, N N , 对于序号大于N
成 立 , 解 得n
l n l n , 取N [ ] lnx lnx
函数列及其一致收敛性
§9.2 函数项级数
1 , 证 明 其 在0,1)收 敛. ( 例2 设f n ( x ) n x 1 证 :x (0,1), 有 lim 0, n n x
1 1 1 | f n ( x ) f ( x ) || 0| 0, 要使不等式 n x n x n
即 0, N N , n N , x I , 有 | f n ( x) f ( x) |
sup | f n ( x ) f ( x ) | .
xI
即lim{sup | f n ( x ) f ( x ) |} 0.
n xI
充分性 lim{sup | f n ( x ) f ( x ) |} 0.

函数列与函数项级数一致收敛性解析

函数列与函数项级数一致收敛性解析

第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。

3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。

(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。

使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。

若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。

数学分析课件一致收敛函数列与函数项级数的性质

数学分析课件一致收敛函数列与函数项级数的性质
详细描述
对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。

一致收敛函数列与函数项级数级数的性质.ppt

一致收敛函数列与函数项级数级数的性质.ppt


lim
x x0
fN1( x) aN1
,
所以存在δ > 0 , 当0 < | x – x0 | <δ时,
| fN+1(x) – aN+1 | <ε/3
这样当0 < | x – x0 | <δ时,
| f (x) A|
| f ( x) f N 1( x) | | f N 1( x) aN 1 | | aN 1 A |

? lim
x x0
n1
un ( x)

n1
lim
x x0
un
(
x)
注:对函数序列{Sn ( x)}而言,应为
? lim
x x0
lim
n
Sn
(
x
)
lim
n
lim
x x0
Sn
(
x)
2.求导运算与无限求和运算交换次序问题
? d
dx n1 un ( x)
d n1 dx un ( x)
lim lim
x x0 n
fn
(
x)

lim
n
lim
x x0
fn(x) .
这表明在一致收敛的条件下,极限可以交换顺序.
证 先证数列 { an } 收敛.因为{ fn } 一致收敛,
故对任给的ε > 0 , 存在 N > 0 , 当 n > N 时,对任何 正整数 p ,对一切 x ∈(a , x0 )∪(x0 , b) 有
| fn(x) – f n+p(x) | <ε
从而
lim
x x0
|

函数序列和函数项级数的一致收敛性

函数序列和函数项级数的一致收敛性


u n
(
x
)在I上一致收敛于S
(
x
)



0,N ( ),
n1
当n N ( )时, x I ,p N * , u ( x) u ( x) .
时,
fn(x)
f
(x)

nx 1 n2x2

nx n2 x2

1 nx

1 n
n

sup
x(1,)
fn(x)
f (x)

1 n
0
一致收敛
而n sup fn ( x)
x( 0 ,1)
f (x)
f
n
(
1 n
)

0

1 1
1

1, 2
不 0, 故在(0,1)上不一致收敛.
定理2.2 (Cauchy收敛原理)
设f ( x )定义于I, n
f ( x )在I上一致收敛 n
0,N ( ),当n N ( )时,x I ,p N * ,
都有 fn p ( x) fn ( x) .
证明:
由于{ f ( x)}在I上一致收敛于f ( x),
p N * , 都有 fn p ( x) fn ( x) .
x I , fn( x)是Cauchy列,收敛.

lim
n
fn(x)
f ( x),
在 fn p ( x) fn ( x) 中令p ,
则对 x I ,有 f ( x) fn ( x) .
则称 fn(x)在I上一致收敛于f (x).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若 f n ( x ) 在 ( a , b ) 上 一 致 收 敛 , 且 x l i m b f n ( x ) 存 在 , 则 有
x li m b l n i m f n (x ) l n i m x li m b f n (x ) .
前页 后页 返回
定理13.9 (连续性) 若函数列 { f n } 在区间 I上一致收
0|xx0|时,也有
| fN1(x)aN1|3.
这 样 ,当 x 满 足 0 x x 0 时 ,
| f ( x ) A | | f ( x ) f N 1 ( x ) | | f N 1 ( x ) a N 1 |
|aN 1A|333,
前页 后页 返回
这就证明了 limf(x)A. xx0
§2 一致收敛函数列与 函数项级数的性质
一致收敛性的重要性在于可以将通 项函数的许多解析性质遗传给和函数, 如连续性、可积性、可微性等,这在 理论上非常重要.
前页 后页 返回
定理13.8 ( 极限交换定理 ) 设函数列 { f n } 在
(a,x0)U(x0,b)上一致收敛于 f ( x ) , 且对每个 n,
意 0, 存在正数 N , 当nN时, 对任意 x(a,x0)
U(x0,b), 有
|fn (x ) f(x )| 3和 |a n A | 3
同时成立. 特别当 nN1时, 有
前页 后页 返回
|fN 1 (x ) f(x )| 3 和 |a N 1 A | 3
又因为 x li m x0 fN1(x)aN1, 故存在 0 , 当
| f(x)A|
| f ( x ) f N 1 ( x ) | | f N 1 ( x ) a N 1 | | a N 1 A |
前页 后页 返回
只需证明不等式右边的每一项都可以小于事先给定 的任意正数即可. 由于 f n ( x ) 一致收敛于 f ( x ) ,a n 收敛于A , 因此对任
定理13.10 (可积性) 若函数列{ f n } 在[ a , b ] 上一致收 敛, 且每一项都连续, 则
b
b
ห้องสมุดไป่ตู้
l n i m a f n ( x ) d x a l n i m f n ( x ) d x . ( 3 )
前页 后页 返回
证 设 f 为函数列{ f n } 在 [ a , b ] 上的极限函数. 由定理
这就证明了等式 ( 3 ) .
这个定理指出: 在一致收敛的条件下, 极限运算与
积分运算的顺序可以交换.
前页 后页 返回
例1 设函数
2nnx,
0x 1 , 2n
fn(x)
2n
2nnx,
1 x 1,
2n
n
0,
1 x1, n
y
n1,2,L .
(其图象如图13-6所示).
n
显然 { fn( x)}是[ 0 , 1 ] 上的
存在 N , 当 n N 时 , 对 一 切 x [ a , b ] , 都 有
|fn (x )f(x )| .
再根据定积分的性质, 当n N时有
前页 后页 返回
b
b
b
afn (x ) af(x )d x a (fn (x ) f(x ))d x
b
afn (x )f(x )d x(b a ),
定理指出: 在一致收敛的条件下, { fn( x)}中关于独
立变量 x 与 n 的极限可以交换次序, 即(1)式成立.
类 似 地 ,若 fn (x )在 ( a ,b )上一致收敛,
且 lim xa
fn ( x)
存在, 则有 x li m a l n i m f n ( x ) l n i m x li m a f n ( x ) ;
敛, 且每一项都连续, 则其极限函数 f 在 I 上也连续.
证 设 x 0 为 I 上 任 一 点 . 由 于 x l i m x 0 f n ( x ) f n ( x 0 ) ,于 是由定理 13.8 知 lim f ( x) 也存在, 且
x x0
x li m x 0f(x ) l n i m f n (x 0 ) f(x 0 ) , 因 此 f(x )在 x 0 上 连 续 .
xli m x0 fn(x)an,则lni man和x li m x0f(x)均 存 在 且 相 等 .即
x l i m x 0 l n i m f n ( x ) l n i m x l i m x 0 f n ( x ) .
( 1 )
证 先证 { a n } 是收敛数列. 对任意 0 , 由于{ f n } 一
fn
图13 6
连续函数列, 且对任意
x[0,1], lni m fn(x)0. O
11
1
x
2n n
前页 后页 返回
又 sup|fn(x)0|n, 因此{fn(x)}在 [0,1]上一致 x [0,1]
定理13.9可以逆过来用: 若各项为连续函数的函数
列在区间 I 上其极限函数不连续, 则此函数列在区
间 I 上一定不一致收敛.
前页 后页 返回
例如: 函数列{ x n } 的各项在(1, 1] 上都是连续的, 但
其极限函数 f(x)10,,
1x1,
x1
在 x1时 不 连
续, 所以 { x n } 在 (1, 1] 上不一致收敛.
致收敛, 故存在正整数 N, 当 n>N 及任意正整数 p,
对一切 x (a ,x 0 )U (x 0 ,b )有
|fn (x)fn p(x)|.
前页 后页 返回
从而
|a n a n p | x l i m x 0 |f n ( x ) f n p ( x ) | .
于是由柯西准则可知 { a n } 是收敛数列, 设lni m anA, 即 ln i m x li m x0fn(x)A , 下面证明 x li m x 0f(x ) x li m x 0 l n i m fn (x ) A . 注意到
13.9知 f 在 [ a , b ] 上连续, 从而 fn(n1,2,L)与 f 在
[ a , b ] 上都可积. 于是(3)变为
b
b
l n i m af n ( x )d x af( x )d x .
( 3 )
因 为 在 [ a ,b ] 上 f n 一 致 收 敛 于 f ,故对于任意 0,
相关文档
最新文档