CSM工法的设备和技术简介

合集下载

CSM工法水泥土地下连续墙基坑止水帷幕

CSM工法水泥土地下连续墙基坑止水帷幕

CSM工法水泥土地下连续墙基坑止水帷幕一、CSM工法来源CSM工法是一种创新性深层搅拌施工方法。

此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。

通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。

与其他深层搅拌工艺比较,CSM工法对地层的适应性更高,可以切削坚硬地层(卵砾石地层、岩层)。

CSM工艺来源工艺来源及原理二、双轮铣深搅设备(CSM)特点:a、设备成桩深度大,最大深度49米,远大于常规设备;b、设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有"冷缝"概念,可实现无缝连接,形成无缝墙体;c、设备功效高,原材料(水泥等)利用率高;d、设备对地层的适应性强,从软土到岩石地层均可实施切削搅拌;e、设备的自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量;f、施工过程中几乎无振动;g、履带式主机底盘,可360度旋转施工,便于转角施工。

可紧邻已有建构筑物施工,可实现零间隙施工;h、成墙厚度现有0.8m、1.0m、1.2m三种规格,可以插入大型号型钢。

双轮铣深搅(CSM)设备的主要组成及控制室见下图CSM工法主机组成图解主机操控平台设备施工时主机及其附属设施平面布置见下图:双轮铣深搅设备施工平面布置概化图三、TRD工法TRD工法(Trench-Cutting Re-mxing Deep Wall Method)是一种由主机带动插入地基中的链锯式切割箱横向移动、切割及灌注水泥浆,在槽内进行混合、搅拌、固结原来位置上的岩土,形成等厚水泥土地下连续墙的工艺。

四、TRD工法设备特点:a、适用范围广:整机高度仅10.1m,特别适宜架空高压线下方等高度受限部位施工。

b、超群的设备稳定性:通过低重心设计,与其他方法相比,机械设备的高度大大降低,施工安全性提高。

CSM水泥土地下连续墙基坑止水帷幕

CSM水泥土地下连续墙基坑止水帷幕

CSM水泥土地下连续墙基坑止水帷幕CSM工法就是一种创新性深层搅拌施工方法。

此工艺源于德国宝峨公司双轮切铣技术,就是结合现有液压铣槽机与深层搅拌技术进行创新得岩土工程施工新技术。

通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。

一、CSM工法来源CSM工法就是一种创新性深层搅拌施工方法。

此工艺源于德国宝峨公司双轮切铣技术,就是结合现有液压铣槽机与深层搅拌技术进行创新得岩土工程施工新技术。

通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。

与其她深层搅拌工艺比较,CSM工法对地层得适应性更高,可以切削坚硬地层(卵砾石地层、岩层)。

CSM工艺来源工艺来源及原理二、双轮铣深搅设备(CSM)特点:a、设备成桩深度大,最大深度49米,远大于常规设备;b、设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有"冷缝"概念,可实现无缝连接,形成无缝墙体;c、设备功效高,原材料(水泥等)利用率高;d、设备对地层得适应性强,从软土到岩石地层均可实施切削搅拌;e、设备得自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量;f、施工过程中几乎无振动;g、履带式主机底盘,可360度旋转施工,便于转角施工。

可紧邻已有建构筑物施工,可实现零间隙施工;h、成墙厚度现有0.8m、1.0m、1.2m三种规格,可以插入大型号型钢。

双轮铣深搅(CSM)设备得主要组成及控制室见下图CSM工法主机组成图解主机操控平台设备施工时主机及其附属设施平面布置见下图:双轮铣深搅设备施工平面布置概化图三、TRD工法TRD工法(Trench-Cutting Re-mxingDeep Wall Method)就是一种由主机带动插入地基中得链锯式切割箱横向移动、切割及灌注水泥浆,在槽内进行混合、搅拌、固结原来位置上得岩土,形成等厚水泥土地下连续墙得工艺。

CSM地下连续墙施工技术和设备

CSM地下连续墙施工技术和设备

CSM地下连续墙施工技术和设备法国地基建筑公司北京代表处倪庆久(Soletanche Bachy Beijing Office)摘要:CSM是C utter S oil M ixing (铣削深层搅拌技术)的缩写,现已成为了一种工法的名称,施工设备和技术是2004年由法国地基建筑公司(Soletanche Bachy)为主发明的,它是应用原有的液压铣槽机的设备结合深层搅拌技术进行创新的地下连续墙或防渗墙施工设备,结合了液压铣槽机的设备技术特点和深层搅拌技术的应用领域,将设备应用到更为复杂的地质条件中。

关键词:CSM 地下连续墙施工设备和技术液压铣槽机(俗称双轮铣)是由法国地基建筑公司发明,于1973年应用于法国里昂市的一个地铁车站的地下连续墙施工,是迄今为止技术最为先进的地下连续墙施工设备。

国内至今也在十多个工程项目中使用液压铣槽机。

国内最厚的地下连续墙就是采用液压铣槽机施工完成的,厚度达到 1.5m。

但液压铣槽机施工存在的主要问题是设备的施工成本高,配套设备多,只适用于大型的工程项目。

多头深层搅拌设备由日本发明,分为三头和五头的深层搅拌设备居多,在软土地基中应用非常多,主要用于地基加固、防渗墙施工,临时基坑支护等等。

在江南地区采用多头深层搅拌插入H型钢作为浅基坑的临时支护的实例非常多。

但多适用于松软地基,如果地质条件比较复杂,则难以施工。

同时,钻杆的旋转动力来源顶部,钻杆承受的扭矩大,钻杆损耗多。

CSM设备则是将液压铣槽机的技术加以引申,应用于更广泛的领域。

将液压铣槽机的铣轮与凯式方形导杆相连接,将该设备加装在适当改造的旋挖钻机、履带式起重机或履带式深层搅拌钻机等设备上。

将铣轮驱动所需的液压系统和注浆用的管路安装在凯式方形导杆内。

采用履带底盘获取动力或安装独立动力站的方式形成一套完整的CSM地下连续墙或防渗墙成槽施工设备。

可以以较低的价格完成设备的配置。

当然,也可以采用全新的CSM成槽设备,而不是附加在其他设备上。

CSM桩基坑支护施工工法.docx

CSM桩基坑支护施工工法.docx

.\CSM桩基坑支护施工工法完成单位:中铁建设集团有限公司中南分公司主要完成人:可华雄汪洋陈海滨陈东熊潘剑1前言长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。

CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。

我们在南昌明园九龙湾 G02、D05地块已成功运用 CSM桩施工工艺,取得了良好的实施效益。

2工法特点CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。

3适用范围双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。

本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。

4工艺原理CSM工法是一种创新性深层搅拌施工方法。

此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。

通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。

5施工工艺流程及操作要点5.1 施工工艺流程.\CSM工法桩单桩成桩工艺流程图施工准备:预挖——预挖导购用于汇集多余的泥浆;图5.1-12 成墙示意图步骤 1:将深搅铣轮对正待施工的地下墙体的轴线,不需要做导墙。

步骤2:搅拌头持续性地深入地下,在铣轮破碎土壤的同时,泵送液体材料至搅拌头底部,与掘松的土壤充分搅拌,在铣轮向下搅拌的同时加入压缩空气可以提高破碎和搅拌效果。

铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。

操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为 0.5m~1.0m/min 。

图 5.1-13双铣轮施工示意图步骤 3:在达到设计深度后,慢速拔出搅拌轮的同时连续注入水泥浆。

CSM桩基坑支护施工工法最新版本

CSM桩基坑支护施工工法最新版本

CSM桩基坑支护施工工法完成单位:中铁建设集团有限公司中南分公司主要完成人:可华雄汪洋陈海滨陈东熊潘剑1 前言长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。

CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。

我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。

2 工法特点CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。

3 适用范围双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。

本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。

4 工艺原理CSM工法是一种创新性深层搅拌施工方法。

此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。

通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。

5 施工工艺流程及操作要点5.1施工工艺流程CSM工法桩单桩成桩工艺流程图施工准备:预挖——预挖导购用于汇集多余的泥浆;图5.1-12 成墙示意图步骤1:将深搅铣轮对正待施工的地下墙体的轴线,不需要做导墙。

步骤2:搅拌头持续性地深入地下,在铣轮破碎土壤的同时,泵送液体材料至搅拌头底部,与掘松的土壤充分搅拌,在铣轮向下搅拌的同时加入压缩空气可以提高破碎和搅拌效果。

铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。

操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为0.5m~1.0m/min。

图5.1-13 双铣轮施工示意图步骤3:在达到设计深度后,慢速拔出搅拌轮的同时连续注入水泥浆。

CSM桩基坑支护施工工法

CSM桩基坑支护施工工法

C S M桩基坑支护施工工法Document number【980KGB-6898YT-769T8CB-246UT-18GG08】CSM桩基坑支护施工工法完成单位:中铁建设集团有限公司中南分公司主要完成人:可华雄汪洋陈海滨陈东熊潘剑1 前言长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。

CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。

我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。

2 工法特点CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。

3 适用范围双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。

本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。

4 工艺原理CSM工法是一种创新性深层搅拌施工方法。

此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。

通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。

5 施工工艺流程及操作要点施工工艺流程CSM工法桩单桩成桩工艺流程图施工准备:预挖——预挖导购用于汇集多余的泥浆;图成墙示意图步骤1:将深搅铣轮对正待施工的地下墙体的轴线,不需要做导墙。

步骤2:搅拌头持续性地深入地下,在铣轮破碎土壤的同时,泵送液体材料至搅拌头底部,与掘松的土壤充分搅拌,在铣轮向下搅拌的同时加入压缩空气可以提高破碎和搅拌效果。

铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。

操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为~min。

CSM桩基坑支护施工工法.精品

CSM桩基坑支护施工工法.精品

CSM桩基坑支护施工工法完成单位:中铁建设集团有限公司中南分公司主要完成人:可华雄汪洋陈海滨陈东熊潘剑1 前言长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。

CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。

我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。

2 工法特点CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。

3 适用范围双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。

本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。

4 工艺原理CSM工法是一种创新性深层搅拌施工方法。

此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。

通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。

5 施工工艺流程及操作要点5.1施工工艺流程CSM工法桩单桩成桩工艺流程图施工准备:预挖——预挖导购用于汇集多余的泥浆;图5.1-12 成墙示意图步骤1:将深搅铣轮对正待施工的地下墙体的轴线,不需要做导墙。

步骤2:搅拌头持续性地深入地下,在铣轮破碎土壤的同时,泵送液体材料至搅拌头底部,与掘松的土壤充分搅拌,在铣轮向下搅拌的同时加入压缩空气可以提高破碎和搅拌效果。

铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。

操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为0.5m~1.0m/min。

图5.1-13 双铣轮施工示意图步骤3:在达到设计深度后,慢速拔出搅拌轮的同时连续注入水泥浆。

CSM桩基坑支护现场施工工法

CSM桩基坑支护现场施工工法

C S M桩基坑支护现场施工工法Company number【1089WT-1898YT-1W8CB-9UUT-92108】C S M桩基坑支护施工工法完成单位:中铁建设集团有限公司中南分公司主要完成人:可华雄汪洋陈海滨陈东熊潘剑1前言长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。

CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。

我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。

2工法特点CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。

3适用范围双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。

本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。

4工艺原理CSM工法是一种创新性深层搅拌施工方法。

此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。

通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。

5施工工艺流程及操作要点5.1施工工艺流程CSM工法桩单桩成桩工艺流程图施工准备:预挖——预挖导购用于汇集多余的泥浆;图5.1-12成墙示意图步骤1:将深搅铣轮对正待施工的地下墙体的轴线,不需要做导墙。

步骤2:搅拌头持续性地深入地下,在铣轮破碎土壤的同时,泵送液体材料至搅拌头底部,与掘松的土壤充分搅拌,在铣轮向下搅拌的同时加入压缩空气可以提高破碎和搅拌效果。

铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。

操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为0.5m~1.0m/min。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CSM地下连续墙施工技术和设备
摘要:CSM是C utter S oil M ixing (铣削深层搅拌技术)的缩写,现已成为了一种工法的名称,施工设备和技术是2004年由法国地基建筑公司(Soletanche Bachy)为主发明的,它是应用原有的液压铣槽机的设备结合深层搅拌技术进行创新的地下连续墙或防渗墙施工设备,结合了液压铣槽机的设备技术特点和深层搅拌技术的应用领域,将设备应用到更为复杂的地质条件中。

关键词:CSM 地下连续墙施工设备和技术
液压铣槽机(俗称双轮铣)是由法国地基建筑公司发明,于1973年应用于法国里昂市的一个地铁车站的地下连续墙施工,是迄今为止技术最为先进的地下连续墙施工设备。

国内至今也在十多个工程项目中使用液压铣槽机。

国内最厚的地下连续墙就是采用液压铣槽机施工完成的,厚度达到 1.5m。

但液压铣槽机施工存在的主要问题是设备的施工成本高,配套设备多,只适用于大型的工程项目。

多头深层搅拌设备由日本发明,分为三头和五头的深层搅拌设备居多,在软土地基中应用非常多,主要用于地基加固、防渗墙施工,临时基坑支护等等。

在江南地区采用多头深层搅拌插入H型钢作为浅基坑的临时支护的实例非常多。

但多适用于松软地基,如果地质条件比较复杂,则难以施工。

同时,钻杆的旋转动力来源顶部,钻杆承受的扭矩大,钻杆损耗多。

CSM设备则是将液压铣槽机的技术加以引申,应用于更广泛的领域。

将液压铣槽机的铣轮与凯式方形导杆相连接,将该设备加装在适当改造的旋挖钻机、履带式起重机或履带式深层搅拌钻机等设备上。

将铣轮驱动所需的液压系统和注浆用的管路安装在凯式方形导杆内。

采用履带底盘获取动力或安装独立动力站的方式形成一套完整的CSM地下连续墙或防渗墙成槽施工设备。

可以以较低的价格完成设备的配置。

当然,也可以采用全新的CSM成槽设备,而不是附加在其他设备上。

看一看CSM设备的照片(图一),以明了该成槽设备的各个主要组成部分。

图一、安装在旋挖钻机上的CSM 地连墙成槽机
CSM 地连墙成槽设备的主要工作部分是位于下部的铣轮和与其相连方形导杆,由液压马达通过减速器驱动,可以同步旋转也可以单独旋转,转速可调整。

详见图二和图三。

铣轮
液压马达
刮泥板与导杆连接体
图二、CSM 成槽机的铣轮
图三、导杆部分图示
根据CSM 成槽机的技术特点,方形的凯式导杆的尺寸是 600 mm X 300 mm ,主要具有以下功能:
传递向下的由钻机桅杆给出的推进力到底部的铣轮;
确保铣轮成槽的垂直度;
垂直轴向的方位导向; 保护内部的液压油管和电缆。

一、CSM 成槽机的主要技术性能
CSM 成槽机可以装备两种不同扭矩的液压铣轮,分别是HT 5000和 HT 8000两种铣轮,
扭矩分别为50 KNm@ 320 bar 和80 KNm@ 320 bar 。

最大转速为50 RPM @ 500 l/min 。

HT 5000铣轮的成槽厚度为450mm ~ 1000mm ,HT 8000铣轮的成槽厚度为800mm ~ 1500mm 。

一次成槽的长度为2800mm 或2400mm 。

成槽的深度取决于配套的凯式方形导杆的长度,通常成槽深度不超过30m (取决于配套的导杆的长度)。

CSM 成槽机都配备了先进的LCD 监视器。


时显示施工过程中的多项技术参数,清晰明了。

特别是可以实时显示成槽过程中的垂直精度(包
括前后和左右的偏差),能够有效地保障施工质
量。

也会实时显示成槽和上提过程中注入浆液的
总量,保证成槽成过程中施工安全和注浆过程的
质量。

LCD 监视器显示信息参考图四。

二、CSM 设备的施工工艺
CSM 成槽机的施工工艺过程与深层搅拌技术非常相似,主要分为下钻成槽和上提成墙两个主要部分。

同时分一、二序槽施工成墙。

在下钻成槽的过程中,两个铣轮相对旋转,铣削地层。

同时通过凯式方形导杆施加向下的推进力,向下深入切削。

在这个过程中,通过注浆管路系统同时向槽内注入膨润土泥浆或水泥(或水泥-膨润土)浆液。

直至要求的深度。

成槽的过程到此完成。

在上提成墙的过程中,两个铣轮依然旋转,通过凯式方形导杆向上慢慢提起铣轮。

在上提过程中,通过注浆管路系统向槽内注入水泥(或水泥-膨润土)浆液,并与槽内的渣土向混合。

CSM 成槽机的施工工艺如图五所示:
下钻成槽 上提成墙
图五、CSM 成槽机的施工工艺
图四、LCD 监视器显示的信息
CSM成槽技术的施工过程中的实际效果和最终成型的墙体可以参考图六。

注浆铣削成型墙体
图六、实际效果和最终成型墙体
CSM成槽技术在成槽过程中不同于抓斗,不会形成抓取出来的渣土,最终渣土会在槽内和注入的水泥浆液混合,共同构成地下连续墙墙体。

但CSM成槽设备在下钻成槽过程中会产生一定的废浆,主要是注入的膨润土泥浆和槽内的渣土相混合,产生的废浆量约为成槽方量的10~20%,需要对这一部分的废浆进行处理。

通常可以采用泥浆净化机进行筛分分离,达到净化膨润土泥浆的目的,或是用沉淀池进行沉淀,也可以加入固化剂进行固化以方便处理。

三、CSM成槽技术的墙体材料
CSM成槽设备在施工过程中,在下钻成槽中通常通过注浆系统注入膨润土泥浆,泥浆主要起到护壁,防止槽壁坍塌的作用。

膨润土泥浆的配合比通常为 70~90 kg/m3(取决于膨润土的质量),泥浆密度约为1.05 kg/cm3,粘度要超过40 s(马氏漏斗粘度)。

当膨润土泥浆和渣土在槽内混合后,其密度则升至1.5~2 kg/cm3。

在上提成墙中,则要通过注浆系统注入水泥(水泥-膨润土)浆液。

可根据需要调配配比,统称是采用水泥浆液中加入少量的膨润土和缓凝剂。

密度控制在1.7~1.8 kg/cm3左右。

粘度在100s左右。

在槽内与渣土混合后则密度会有所升高。

最终成墙墙体的抗压强度可以达到Rc 28 = 4 ~ 12 Mpa。

这主要是应用在支护为目的的墙体中。

如果是做为以防渗为目的的防渗墙,则需要提高膨润土的添加量,降低水泥的添加量。

墙体强度可以控制在1~2 Mpa,渗透系数可以达到1×10-8m/s。

四、CSM成槽机的施工效率
以法国地基建筑公司在法国Le Havre港工程实际作业为例,CSM成槽机的下钻成槽的效率是:在膨润土泥浆保护下,用50分钟完成厚度为500mm,长度为2.8m,深度为20m 的地下连续墙的成槽;上体成墙的时间为30分钟(主要取决于注浆泵的排量)。

也就是80分钟完成一个2.8m长,深20m的地连墙施工。

施工功效远远高于其他成槽设备。

实测记录资料见图七。

图七、CSM成槽机的施工记录
五、CSM技术的主要应用
CSM地下连续墙成槽技术主要是结合了深层搅拌技术的特点,完成地下连续墙的施工。

可以做为支护结构保护基坑开挖,CSM成墙后,在槽段内插入H型钢,来承受开挖过程的弯矩。

待基坑内部结构施工完成后,再将H型钢用震动锤拔取出来,H型钢可以再重复使用,降低工程造价。

具体施工工艺见图八。

CSM设备可以直接施工防渗墙,由于采用了铣轮铣削,可以将防渗墙直接嵌入基岩,达到整体防渗要求。

采用的墙体材料和施工的手段都可以有效降低施工的成本,节约工程投资。

并达到很高的防渗指标。

CSM也可以在成槽后插入钢筋笼,形成条形桩基础。

由于CSM设备也是刚刚开发出来,还有待于进一步拓展应用的领域,也需要进一步完
善施工工艺,从而将该设备和技术有效的应用起来。

CSM设备成墙插入H型钢作为支护墙使用完成基坑内结构施工
图八、CSM作为支护墙施工的工艺
六、存在的问题
由于采用凯式方形导杆施加推进力,从而限制了CSM成槽机的成槽深度,现在多应用于20~30m深的支护墙和防渗墙的施工。

超过40m的施工实例还很少。

在CSM成槽机的成槽深度的瓶颈,也在实验采用其他非导杆的方式来实现。

5m Kelly bar
8m Kelly bar Lower guide CSM Tool Hose support Hose set
Control panel
CSM成槽机配套在HS 855履带式起重机上 CSM成槽机配套在旋挖钻机上For Evaluation Only.Copyright (c) by Foxit Software Company, 2004Edited by Foxit PDF Editor
CSM 成槽机配套在深层搅拌钻机上
For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004Edited by Foxit PDF Editor。

相关文档
最新文档