使用AMOS解释结构方程模型

合集下载

amos 结构方程模型

amos 结构方程模型

amos 结构方程模型
AMOS(Analysis of Moment Structures)是一种基于结构方程模型(Structural Equation Modeling)的统计分析方法和软件工具。

结构方程模型是一种统计模型,用于探索和验证可能的因果关系以及观察变量之间的相互作用。

AMOS软件通过图形界面提供了强大的分析工具,包括模型拟合指标(如χ2检验、RMSEA、CFI等)、参数估计、直接效应和间接效应的检验、路径分析等等。

它可以用于构建和测量复杂的潜在变量模型,以及分析协方差和相关矩阵的数据。

在使用AMOS进行结构方程模型分析时,需要做以下几个步骤:
1. 设计研究模型:根据研究问题和理论构建结构方程模型,包括潜在变量和观察变量。

2. 收集数据:采集适当的数据以支持模型分析。

3. 定义模型变量和指标:根据模型定义和理论设定,为模型中的每个潜在变量和观察变量定义标准化指标。

4. 运行模型:在AMOS中导入数据,并使用图形界面构建结构方程模型。

设置模型参数和约束,并设置分析选项。

5. 估计参数:使用最大似然估计法或其他适当的估计方法对模型参数进行估计。

AMOS将自动计算标准误、置信区间和假
设检验的结果。

6. 评估模型拟合度:根据拟合指标进行模型拟合度的评估,包括比较χ2检验结果、检查拟合指标的阈值,如RMSEA小于0.08、CFI大于0.90等等。

7. 解释模型结果:根据估计参数和拟合指标,解释模型结果并回答研究问题。

AMOS的使用需要一定的统计知识和经验,理解结构方程模型的原理和概念,以及解读模型结果的能力。

AMOS结构方程模型分析

AMOS结构方程模型分析

AMOS结构方程模型分析AMOS(Analysis of Moment Structures)是一种常用的结构方程模型(SEM)分析软件,可用于研究各种不同领域的问题和假设。

SEM是一种统计方法,用于测试和量化复杂的因果关系假设,以及评估模型拟合优度。

本文将介绍AMOS的基本原理、应用案例和分析步骤。

AMOS的基本原理是使用路径图表示模型中的因果关系,然后通过最小二乘估计法对模型进行参数估计。

AMOS还可以用来评估模型拟合度、进行模型比较,以及检验模型中的因果关系。

一个常见的应用案例是研究变量之间的因果关系。

例如,一个研究者可能想要了解自尊对学术成绩的影响。

在这种情况下,自尊是自变量,学术成绩是因变量。

通过收集数据,研究者可以使用AMOS来构建一个模型,来评估这两个变量之间的因果关系,并确定自尊对学术成绩的影响。

使用AMOS进行结构方程模型分析的步骤如下:1.确定研究目的和问题:首先,需要明确研究的目的和问题,确定需要评估的模型。

2.收集数据:根据研究问题,需要收集相关的数据。

数据可以是自己收集的,也可以是从其他研究中获取的。

3.确定模型的变量和参数:根据研究问题和收集到的数据,需要确定模型中的变量和参数。

变量可以是观察变量(直接测量)或潜变量(隐性构念)。

参数可以是路径系数、截距、测量误差等。

4.构建路径图:使用AMOS的图形界面,根据模型的变量和参数,构建路径图。

路径图可以直观地展示变量之间的因果关系。

5.估计模型参数:根据收集到的数据,使用最小二乘估计法对模型参数进行估计。

AMOS会自动计算最优参数估计和拟合度指标。

6.评估模型拟合度:使用拟合度指标(如X2统计量、均方差逼近指数、规范化拟合指数等),评估模型的拟合度。

较小的X2值、较大的均方差逼近指数和规范化拟合指数表示模型拟合度较好。

7.进行模型修正:如果模型的拟合度不满足要求,可以通过增加、删除或修改模型的路径和变量,进行模型修正。

8.进行统计推断:使用AMOS进行统计推断,来确定模型中的因果关系是否显著。

使用AMOS解释结构方程模型

使用AMOS解释结构方程模型

使用AMOS解释结构方程模型结构方程模型(SEM)是一种统计模型,在社会科学研究中经常使用。

它可以用来分析变量之间的复杂关系,并评估这些关系的强度和方向。

AMOS是一种流行的结构方程模型软件,通过图形用户界面提供了易于使用的界面。

在结构方程模型中,我们通常将变量分为两类:观察变量和潜在变量。

观察变量是直接可测量的变量,而潜在变量是不能直接测量的变量,它们通过观察变量的指标进行测量。

结构方程模型的目标是评估潜在变量之间的关系以及它们与观察变量之间的关系,并给出这些关系的显著性。

AMOS的使用步骤通常包括以下几个步骤:1.指定模型:在AMOS中,可以使用图形界面直观地指定结构方程模型。

可以使用不同的图形符号表示观察变量、潜在变量和它们之间的关系。

在此过程中,也可以指定约束、修正指标和错误项等。

2.估计参数:通过最大似然方法或最小二乘法,可以估计模型的参数。

最大似然方法假设数据是从特定的分布中随机抽取的,而最小二乘法假设变量之间的关系是线性的。

参数估计后,可以得到模型的适应度指标,如拟合度、标准化拟合度指标等。

3.模型拟合度:模型拟合度指标可以用来评估模型与数据之间的一致性。

可以使用不同的拟合度指标,如卡方拟合度、比率拟合度、均方根残差等来评估模型的拟合度。

一般来说,拟合度指标的数值越接近1,表示模型与数据之间的一致性越好。

4.异常值和不良拟合指标:在AMOS中,也可以检查是否存在异常值和不良拟合指标。

异常值是指不符合模型假设的数据点,而不良拟合指标是指模型与数据之间的不相符点。

5.修改模型:如果模型与数据之间的拟合度不理想,可以修改模型以提高拟合度。

可以尝试添加或删除路径、重新指定变量间的关系、修复测量误差等。

通过AMOS软件,我们可以进行多个结构方程模型的比较、多组模型的比较以及计算不同变量之间的路径系数和直接效应。

此外,AMOS还提供了可视化工具,如路径图和直观的拟合度统计图,以帮助用户更好地理解和解释模型。

AMOS结构方程模型解读

AMOS结构方程模型解读

AMOS结构方程模型解读AMOS是一种统计分析工具,用于构建和评估结构方程模型(SEM)。

结构方程模型是一种多变量统计模型,用于研究变量之间的因果关系。

AMOS通过图形界面和最大似然估计方法,帮助研究人员对结构方程模型进行建模、分析和解释。

在利用AMOS进行结构方程模型分析时,首先需要明确研究目的,确定模型的理论基础和构建逻辑。

然后,根据理论框架和变量之间的关系,绘制出模型图。

模型图可以使用AMOS的绘图工具进行绘制,它能够清晰展示变量之间的因果关系。

在模型图绘制完成后,需要进行模型估计。

AMOS使用最大似然估计方法来对模型进行拟合,估计模型中的参数值。

AMOS通过计算各个路径系数的标准误差、置信区间和显著性水平,来评估模型的拟合程度,判断模型对实际数据的拟合优度。

拟合指标是评估模型拟合度的重要指标之一、AMOS提供了多种拟合指标,包括卡方拟合指数(χ²),比较度指数(CFI)、均方根误差逼近度(RMSEA)等。

这些指标可以告诉研究人员模型是否拟合得良好,是否能够解释变量之间的关系。

在解释模型结果时,需要注意各个路径系数的显著性,判断变量之间的关系是否具有统计学意义。

AMOS会给出路径系数的显著性水平,通常使用α=0.05作为显著性水平进行判断。

如果路径系数的显著性水平小于0.05,说明该路径系数具有统计学意义,反之则没有统计学意义。

此外,在模型结果解释时,还需要考虑到模型的解释力和预测力。

解释力是指模型对变量之间关系的解释程度,包括直接效应和间接效应。

预测力是指模型对未来数据的预测能力,通过模型估计出的参数值,可以用于预测变量的取值。

总之,利用AMOS进行结构方程模型的构建和评估,需要明确研究目的,绘制模型图,估计模型参数,评估模型拟合度和解释模型结果。

使用AMOS可以帮助研究人员深入了解变量之间的关系,为决策提供有力的支持。

结构方程模型与AMOS使用教学课件

结构方程模型与AMOS使用教学课件
灵活的模型设定
支持多种结构方程模型,允许用户自 定义模型参数和变量。
Amos软件的特点与功能
强大的统计分析功能
提供多种统计检验和方法,帮助用户 深入分析数据。
输出结果可视化
Amos可以将输出结果以图形方式展 示,方便用户理解和解释。
Amos软件的特点与功能
结构方程模型分析
支持多种结构方程模型,如因果模型、路径模型、潜变量模 型等。
模型的修正与优化
要点一
模型的修正
在模型拟合过程中,如果发现模型的拟合指数不达标,可 以对模型进行修正。例如,增加或删除某些路径,或者调 整某些变量的定义范围等。
要点二
模型的优化
为了提高模型的拟合效果,可以对模型进行优化。例如, 调整某些参数的估计方法,或者使用更复杂的模型来解释 数据之间的关系等。
工具栏
提供常用工具按钮,方便用户 快速执行常用操作。
属性栏
用于设置和修改图形属性,如 节点属性、连接线属性等。
结构方程模型在Amos中的实现
和问题,确定需要考察的变量和关 系。
导入Amos软件
打开Amos软件,选择合适的文件类型,将模型 草图导入软件中。
ABCD
参数估计与检验
提供参数估计和检验功能,帮助用户确定模型参数的显著性 和意义。
Amos软件的特点与功能
模型拟合评价
可以对模型拟合程度进行评价,判断模型是否符合数据。
假设检验
支持用户进行假设检验,对模型中的特定关系进行验证。
Amos软件的安装与启动
下载安装包
从Amos官网或其他可信来源下载安装包。
安装软件
激励和管理建议。
Amos软件的高级功能
模型比较与选择
模型比较

结构方程模型amos的操作与应用

结构方程模型amos的操作与应用

结构方程模型(AMOS)的操作与应用引言结构方程模型(Structural Equation Modeling,简称SEM)是一种统计分析方法,用于研究变量之间的因果关系。

AMOS是一个常用的SEM分析软件包,能够进行参数估计、模型拟合优度检验和模型比较等。

在本文中,我们将详细讨论AMOS的操作和应用,旨在帮助读者了解如何使用AMOS进行结构方程建模。

AMOS的基本操作安装和启动AMOS软件1.从官方网站下载AMOS软件安装文件,并按照提示安装。

2.启动AMOS软件。

数据准备1.将需要分析的数据整理为适合AMOS的格式,通常是CSV或SPSS格式。

2.导入数据到AMOS软件中。

构建模型1.选择适当的测量模型和结构模型形式。

2.在AMOS中使用拖放功能构建模型结构,包括添加变量、指定因子和路径等。

参数估计与模型拟合优度检验1.运行模型估计,AMOS将根据输入数据对模型参数进行估计。

2.根据估计的参数值和数据拟合情况,进行模型拟合优度检验。

常用的指标有卡方检验、根均方误差(RMSEA)和比较度指数(CFI)等。

模型修正与改进1.根据模型拟合指标的结果,如果模型拟合不佳,需要进行模型修正和改进。

2.在AMOS中,可以通过添加或删除路径、改变指定因子等方式来改善模型拟合。

结果分析与解释1.根据模型估计结果,进行结果分析和解释。

2.可以通过检查路径系数、因子载荷等参数来判断变量之间的关系强度和方向。

AMOS的高级应用多组比较1.在分析中,可能需要比较不同组别(如男性与女性)之间的结构模型是否等价。

2.在AMOS中,可以使用多组比较功能,通过比较不同组别的结构模型参数估计值和拟合指标来判断模型等价性。

中介效应分析1.中介效应分析用于探究一个因变量和一个自变量之间的关系是否通过中介变量而产生。

2.在AMOS中,可以使用路径分析方法进行中介效应分析,并通过拟合指标和参数估计值来判断中介效应的存在与大小。

多样本分析1.在某些情况下,需要对来自不同样本的数据进行比较和分析。

结构方程amos

结构方程amos

结构方程amos结构方程模型(Structural Equation Modeling,简称SEM)是一种常用的统计分析方法,它可以帮助我们探究变量之间的关系。

在众多SEM软件中,AMOS(Analytic Modeling System)以其友好的界面和强大的功能脱颖而出,深受研究者喜爱。

本文将为您介绍AMOS软件的基本操作以及在实际研究中如何运用AMOS进行数据分析。

一、介绍结构方程模型结构方程模型是一种基于数学方程组的统计分析方法,它可以同时处理多个变量,揭示变量之间的直接和间接关系。

结构方程模型主要包括两个部分:测量模型和结构模型。

测量模型描述了潜在变量(如态度、信念等)与观测变量(如问卷题目)之间的关系;结构模型则描述了潜在变量之间的相互影响。

二、AMOS软件的基本操作1.打开AMOS软件,创建新文件。

2.在“Variable View”窗口中,添加自变量、因变量和观测变量。

3.在“Dependent View”窗口中,设置观测变量的名称、类型和度量单位。

4.在“Functional Form”窗口中,定义自变量与因变量之间的函数关系。

5.在“Model Specification”窗口中,选择模型类型(如拟合度、路径分析等)。

6.进行模型拟合,查看拟合度指标(如χ、RMSEA、CFI等)。

7.对模型进行修正,以优化拟合度。

8.输出结果,包括参数估计、拟合度指标和模型诊断等。

三、如何运用AMOS进行数据分析1.数据准备:收集相关变量的观测数据,并确保数据质量。

2.模型构建:根据研究目的和理论依据,构建结构方程模型。

3.数据输入:将数据导入AMOS软件。

4.模型拟合:运用AMOS进行模型拟合,评估模型拟合度。

5.结果分析:分析模型拟合度、参数估计和模型诊断等。

6.模型应用:根据模型结果解释变量之间的关系,为实际应用提供依据。

四、实际案例分析与解读以下是一个简化的例子:研究探讨了学生满意度(因变量)与教学质量(自变量1)和校园环境(自变量2)之间的关系。

结构方程模型建模思路及amos操作--基础准备_概述及解释说明

结构方程模型建模思路及amos操作--基础准备_概述及解释说明

结构方程模型建模思路及amos操作--基础准备概述及解释说明1. 引言1.1 概述本篇长文旨在介绍结构方程模型(Structural Equation Modeling,SEM)的建模思路及在AMOS软件中的操作流程。

结构方程模型是一种多变量统计分析方法,通过将观测变量和潜在变量结合起来建立数学模型,从而揭示背后的潜在关系和影响机制。

本文将详细解释SEM的基础概念、变量类型与测量以及模型参数估计方法。

1.2 文章结构文章主要分为五个部分。

首先,在引言中概述了本文的目标和结构。

其次,在第二部分中,我们将介绍结构方程模型的基础概念,包括对SEM的简单介绍、不同变量类型和测量方法以及常用的参数估计方法。

接下来,在第三部分中,我们将详细介绍AMOS软件,并提供相关操作准备工作,包括数据准备和输入、模型设定与修改等内容。

在第四部分中,我们将逐步解释结构方程模型的建模步骤,并阐述模型规划与理论支撑、指标选择及路径图绘制以及模型拟合评估和修正等详细内容。

最后,在第五部分中,我们将总结本研究的主要发现和启示,并提出方法的局限性和改进建议,同时展望未来的研究方向。

1.3 目的本文的目的是帮助读者全面理解结构方程模型建模思路,并能够熟练运用AMOS软件进行相应的操作。

通过具体实例和详细步骤的阐述,旨在提供一个基础准备,使读者能够在自己的研究中应用结构方程模型进行数据分析和模型测试。

同时,本文还将总结结构方程模型在研究中的应用总结与经验教训,并对其未来发展提出展望。

通过阅读本文,读者将能够更好地理解并掌握结构方程模型及其在研究领域中的价值和作用。

2. 结构方程模型基础概念:2.1 结构方程模型简介:结构方程模型(Structural Equation Modeling,简称SEM)是一种统计分析方法,被广泛应用于社会科学和心理学领域,以探索变量之间的潜在关系。

它可以同时建立观察变量与潜变量之间的关系模型,并通过拟合度指标来评估模型的适配度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AMOS输出解读惠顿研究惠顿数据文件在各种结构方程模型中被当作经典案例,包括AMOS 和LISREL。

本文以惠顿的社会疏离感追踪研究为例详细解释AMOS的输出结果。

AMOS同样能处理与时间有关的自相关回归。

惠顿研究涉及三个潜变量,每个潜变量由两个观测变量确定。

67疏离感由67无力感(在1967年无力感量表上的得分)和67无价值感(在1967年无价值感量表上的得分)确定。

71疏离感的处理方式相同,使用1971年对应的两个量表的得分。

第三个潜变量,SES(社会经济地位)是由教育(上学年数)和SEI(邓肯的社会经济指数)确定。

解读步骤1.导入数据。

AMOS在文件ex06-a.amw中提供惠顿数据文件。

使用File/Open,选择这个文件。

在图形模式中,文件显示如下。

虽然这里是预定义模式,图形模式允许你给变量添加椭圆,方形,箭头等元素建立新模型2.模型识别。

潜变量的方差和与它关联的回归系数取决于变量的测量单位,但刚开始谁知道呢。

比如说要估计误差的回归系数同时也估计误差的方差,就好像说“我买了10块钱的黄瓜,然后你就推测有几根黄瓜,每根黄瓜多少钱”,这是不可能实现的,因为没有足够的信息。

如何告诉你“我买了10块钱的黄瓜,有5根”,你便可以推出每根黄瓜2块钱。

对潜变量,必须给它们指定一个数值,要么是与潜变量有关的回归系数,要么是它的方差。

对误差项的处理也是一样。

一旦做完这些处理,其它系数在模型中就可以被估计。

在这里我们把与误差项关联的路径设为1,再从潜变量指向观测变量的路径中选一条把它设为1。

这样就给每个潜变量设置了测量尺度,如果没有这个测量尺度,模型是不确定的。

有了这些约束,模型就可以识别了。

注释:设置的数值可以是1,也可以是其它数,这些数对回归系数没有影响,但对误差有影响,在标准化的情况下,误差项的路径系数平方等于它的测量方差。

3.解释模型。

模型设置完毕后,在图形模式中点击工具栏中计算估计按钮运行分析。

点击浏览文本按钮。

输出如下。

蓝色字体用于注解,不是AMOS输出的一部分。

TitleExample6,Model A:Exploratory analysis Stability of alienation, mediated by ses.Correlations,standard deviations and means from Wheaton et al.(1977).以上是标题,全是英文,自己翻译去吧,没有什么价值,一堆垃圾。

Notes for Group(Group number1)The model is recursive.Sample size=932各组注释:Group number1是模型内定的模型名称,因为你还没有给模型取名。

它告诉你模型为递归模型,样本量为932。

Variable Summary(Group number1)Your model contains the following variables(Group number1)Observed,endogenous variablesanomia67powles67anomia71powles71educatioSEIUnobserved,endogenous variables71_alienation67_alienationUnobserved,exogenous variableseps1eps2eps3eps4sesdelta1zeta1zeta2delta2变量汇总:对模型中的变量作一些概括,内生观测变量:67无力感,67无价值感,71无力感,71无价值感,教育和SEI。

内生非观测变量:67疏离感,71疏离感。

外生非观测变量:各种误差和社会经济地位。

注释:观测变量与非观测变量的区别:一个用方形表示,一个用椭圆表示。

内生和外生的区别:箭头指向自己的就是内生,发送箭头的就是外生。

注意区分测量模式和结构模式。

Variable counts(Group number1)Number of variables in your model:17Number of observed variables:6Number of unobserved variables:11变量计数:数数模型中的变量,变量总数为17,其中观测变量有6个,非观测变量有11个;外生变量有9个,内生变量有8个。

Parameter summary (Group number 1)模型的参数概括:固定系数11个,就是模型识别中固定的11个1。

还有6个自由的系数,9个方差对应着前面外生非观测变量。

Computation of degrees of freedom (Default model)(内定模型)的自由度计算:21"样本矩"是6个观测变量的6个样本方差加上15个协方差构成(也就是6中取2的组合数)。

15个参数是模型的6个回归系数和9个被估计的方差。

样本矩与估计参数的差为6个自由度。

Number of exogenous variables:9Number of endogenous variables:8Weights CovariancesVariancesMeans InterceptsTotal Fixed 11000011Labeled 000000Unlabeled 6090015Total17090026Number of distinct sample moments:21Number of distinct parameters to be estimated:15Degrees of freedom (21-15):6(内定模型)迭代过程:极大似然估计是一个迭代过程。

这里给出迭代历史。

这个输出是可选的,你不必直接使用它。

基本上没有什么用。

Result(Default model)Minimum was achievedChi-square=71.544Degrees of freedom=6Probability level=.000卡方拟合指数:这是所有软件都使用的最普通的拟和检验。

AMOS和LISREL把它称为卡方统计量,其它软件称为卡方拟和优度和卡方拟和劣度。

卡方拟合指数检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。

原假设是模型协方差阵等于样本协方差阵。

如果模型拟合的好,卡方值应该不显著。

在这种情况下,数据拟和不好的模型被拒绝。

卡方检验的问题是样本越大,越可能拒绝模型,越可能犯第一类错误。

卡方拟和指数对违反多变量正态假设也是非常敏感。

这由卡方拟和指数的计算公式可以看出:卡方统计量=(N-1)x FN是样本量,F是模型协方差阵和样本协方差阵的最小适配函数。

这个函数比较复杂,也不知道是哪个天才搞出来的,它的计算公式中包含行列式,矩阵的迹,还要取对数,再经过一些加减运算把多维数据压缩为一个数值。

从卡方统计量的计算中可以看出,如果适配函数减少的速度没有样本量增加的速度快,即使模型协方差阵与样本协方差阵拟和的很好,但样本量的增加也会导致拒绝原假设。

这种拒绝正确建议的行为就是犯了第一类错误。

如果不服从正态分布,卡方统计量会更多地拒绝真实模型。

不过好在ML 估计比较稳健,所以即使违背了正态分布的假定,模型也能对付着用。

Maximum Likelihood EstimatesSEM使用最大似然法估计模型,而不是通常的最小二乘法。

OLS寻找数据点到回归线距离的最小平方和。

MLE寻找最大的对数似然,它反映从自变量观测值预测因变量观测值的可能性有多大。

Regression Weights:(Group number1-Default model)Estimate S.E. C.R.P Label67_alienation<---ses-.614.056-10.912***par_671_alienation<---67_alienation.705.05313.200***par_471_alienation<---ses-.174.054-3.213.001par_5 powles71<---71_alienation.849.04220.427***par_1anomia71<---71_alienation 1.000<---67_alienation.888.04320.577***par_2 anomia67<---67_alienation 1.000<---ses 1.000<---ses 5.331.43112.370***par_3回归系数是模型中带箭头的路径系数。

为了识别模型,部分系数在模型识别中已固定为1(例如,潜变量67疏离感到观测变量67无力感的路径)。

也给出路径系数的标准误。

"C.R."是临界比,它是回归系数的估计值除以它的标准误(-0.614/0.056=-10.912)。

临界比与原假设有关,在这个案例中对67疏离感和社会经济地位的原假设是回归系数为0。

如果我们处理近似标准正态分布的随机变量,在0.05的显著性水平上,临界比估计的绝对值大于 1.96称之为显著。

这样67疏离感和社会经济地位的回归系数-10.912的绝对值大于 1.96,可以说这个回归系数在0.05显著性水平上显著地不等于0。

P值给出检验原假设总体中参数是0的近似双尾概值。

它表示67疏离感和社会经济地位的回归系数显著地不等于0,p=0.001。

P值的计算假定参数估计是正态分布,它只是对大样本正确。

Variances:(Group number1-Default model)Estimate S.E. C.R.P Labelses 6.656.64110.379***par_7zeta1 5.301.48310.967***par_8zeta2 3.737.3889.623***par_9eps1 4.010.35811.186***par_10eps2 3.187.28411.242***par_11eps3 3.696.3919.443***par_12eps4 3.622.30411.915***par_13Estimate S.E. C.R.P Labeldelta1 2.944.501 5.882***par_14delta2260.63018.25614.277***par_15方差的估计,标准误和临界比和P值的解释同上。

用表格看数据总是让人眼花缭乱,还是看图示舒服些,这是上面表格数字的图形显示。

Modification Indices(Group number1-Default model)Covariances:(Group number1-Default model)M.I.Par Changeeps2<-->delta1 5.905-.424eps2<-->eps426.545.825eps2<-->eps332.071-.988eps1<-->delta1 4.609.421eps1<-->eps435.367-1.069M.I.Par Changeeps1<-->eps340.911 1.253Variances:(Group number1-Default model)M.I.Par ChangeRegression Weights:(Group number1-Default model)M.I.Par Changepowles71<---powles67 5.457.057powles71<---anomia679.006-.065anomia71<---powles67 6.775-.069anomia71<---anomia6710.352.076powles67<---powles71 5.612.054powles67<---anomia717.278-.054anomia67<---powles717.706-.070anomia67<---anomia719.065.068修正指数(MI)。

相关文档
最新文档