傅里叶级数1
傅里叶级数公式总结

傅里叶级数公式总结傅里叶级数是一种电磁波、声波等周期性信号的频谱分析方法,通过将一个周期性函数展开成无穷多个正弦和余弦函数的和来描述这个函数。
傅里叶级数公式是傅里叶级数的数学表达式,也是傅里叶分析的核心工具之一。
傅里叶级数公式可以表示为:\[f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}(a_{n}\cos(\fra c{2\pi n}{T}x)+b_{n}\sin(\frac{2\pi n}{T}x))\]其中,\(f(x)\)是一个周期为\(T\)的函数,\(a_0\)、\(a_n\)、\(b_n\)是系数,可以通过傅里叶级数的积分公式计算得到。
在这个公式中,\(a_0\)表示函数的直流分量,即函数在一个周期内的平均值。
而\(a_n\)和\(b_n\)则表示函数在一个周期内的振幅和相位信息。
傅里叶级数公式的意义在于它将一个周期函数分解成许多不同频率的正弦和余弦函数的和。
通过傅里叶级数分析,我们可以得到函数在不同频率上的能量分布情况,从而揭示了周期性信号的频谱特性。
通过傅里叶级数公式,我们可以深入理解周期函数的谐波分量以及它们在函数中的作用。
具体来说,\(a_n\)和\(b_n\)分别对应了频率为\(n/T\)的正弦和余弦波的振幅,而相位则决定了每个谐波分量在函数中的位置。
傅里叶级数公式的应用十分广泛。
在信号处理中,它可以用于滤波、降噪、频谱分析等方面。
在图像处理中,傅里叶级数可以用于图像的频域分析和图像的压缩。
在通信领域,傅里叶级数也被广泛应用于调制解调和信号检测等方面。
总之,傅里叶级数公式是一种重要的数学工具,它能够将周期函数分解成不同频率的正弦和余弦波的和,揭示了周期性信号的频谱特性。
通过傅里叶级数的分析,我们可以更好地理解周期性信号的谐波分量和它们在函数中的作用。
傅里叶级数公式的应用广泛,可以用于信号处理、图像处理、通信等领域,对于这些领域的研究和实际应用具有重要的指导意义。
十五章傅里叶级数

2
2
2
当只给出一种周期旳体现式时,傅里叶级数在两端点旳值
可用 上述公式求之.
例1:设
x, f (x) 0,
0 x x 0
求f
旳傅里叶级数展开式.
解: 函数f 及其周期延拓后的图象如图所示,
y
3 2 O 2 3 4
x
显然 f 是按段光滑旳,故由收敛定理,它能够展开成傅里叶级数。
因为
第十五章 傅里叶级数
§15.1 傅里叶级数
一、 三角级数 • 正交函数系
二、以 2 为周期旳函数旳傅里叶级数
三、收敛定理
§15.1 傅里叶级数
一、三角函数 正交函数系
在科学试验与工程技术旳某些现象中,常会遇到一种周期运动,最简
单旳周期运动,可用正弦函数 A sin(x ) 来描写。
所体现旳周期运动也称为简谐运动,其中 A 为振幅, 为初相角,
f (x) cos kxdx
a0 cos kxdx 2
(an cos nx cos kx bn sin nx cos kx)dx n1
cos2 kxdx
f (x) cos kxdx ak
ak
1
f (x) cos kxdx
(k 1, 2, )
同理可得:
bk
1
f (x) sin kxdx
f 的傅里叶级数收敛于f 在点x的左,右极限的算术平均值,即
f
(x
0) 2
f
(x 0)
a0 2
(an
n1
cos nx bn
sin nx)
其中an ,bn为f的傅里叶系数。
推论:
若f 是以2为周期的连续函数,且在[, ]上按段光滑,则 f 的
傅里叶级数

(3)
n1
若(3)收敛, 则它所描述的是更为一般的周期运动现象.
数学分析 第十五章 傅里叶级数
高等教育出版社
§1 傅里叶级数 三角级数 · 正交函数系 以2π为周期的函数的傅里叶级数
收敛定理
对于级数(3), 只须讨论 1 (如果 1 可
用 x 代换x )的情形. 由于
sin(nx n ) sinn cos nx cosn sin nx,
(an cos nx cos kx bn sin nx cos kx). (11) n1
从第十三章§1 习题4知道, 由级数(9)一致收敛, 可
得级数(11)也一致收敛. 于是对级数(11)逐项求积,
π
有 f ( x)cos kxdx π
f
(
x)
a0
π
cos
2 π
a0
2 n1
§1 傅里叶级数 三角级数 · 正交函数系 以2π为周期的函数的傅里叶级数
收敛定理
以的傅里叶系数为系数的三角级数(9)称为 f (关于三
角函数系) 的傅里叶级数, 记作
f
(x)
~
a0 2
(an
n1
cos nx
bn
sin nx).
(12)
这里记号“~”表示上式右边是左边函数的傅里叶级
数, 由定理15.2知道: 若(9)式右边的三角级数在整
(x)
a0 2
an01(aπ1n
π
cos π
nf x( x)dbxn s.in
nx
)
(9)
数学分析 第十五章 傅里叶级数
高等教育出版社
§1 傅里叶级数 三角级数 · 正交函数系 以2π为周期的函数的傅里叶级数
傅里叶级数

傅里叶级数(Fourier Series )引言正弦函数是一种常见而简单的周期函数,例如描述简谐振动的函数 就是一个以ωπ2为周期的函数。
其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相。
但在实际问题中,除了正弦函数外,还会遇到非正弦的周期函数,它们反映了较复杂的周期运动,我们也想将这些周期函数展开成由简单的周期函数例如三角函数组成的级数。
具体地说,将周期为)2(ωπ=T 的周期函数用一系列以T 为周期的正弦函数)sin(n n t n A ϕω+组成的级数来表示,记为其中),3,2,1(,,0 =n A A n n ϕ都是常数。
将周期函数按上述方式展开,它的物理意义就是把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。
在电工学上,这种展开称为谐波分析。
其中常数项0A 称为)(t f 的直流分量;)sin(11ϕω+t A 称为一次谐波(又叫做基波);而)2sin(22ϕω+t A , )3sin(33ϕω+t A 依次称为二次谐波,三次谐波,等等。
为了下面讨论方便起见,我们将正弦函数)sin(n n t n A ϕω+按三角公式变形,得 t n A t n A t n A n n n n n n ωϕωϕϕωsin cos cos sin )sin(+=+, 令x t A b A a A a n n n n n n ====ωϕϕ,cos ,sin ,200,则上式等号右端的级数就可以改写成这个式子就称为周期函数的傅里叶级数。
1.函数能展开成傅里叶级数的条件(1) 函数)(x f 须为周期函数;(2) 在一个周期内连续或只有有限个第一类间断点;(如果0x 是函数)(x f 的间断点,但左极限)0(0-x f 及右极限)0(0+x f 都存在,那么0x 称为函数)(x f 的第一类间断点)(3) 在一个周期内至多只有有限个极值点。
若满足以上条件则)(x f 能展开成傅里叶级数,且其傅里叶级数是收敛的,当x 是)(x f 的连续点时,级数收敛于)(x f ,当x 是)(x f 的间断点时,级数收敛于)]0()0([21++-x f x f 。
傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式

傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式傅里叶级数公式的计算公式提供了一种将任意周期函数表示为一组正弦和余弦函数的和的方法。
这种表示方法在信号处理、图像处理等领域具有重要应用。
在本文中,将详细介绍傅里叶级数展开和收敛性的计算公式。
一、傅里叶级数展开傅里叶级数展开是将周期为T的函数f(t)表示为一组三角函数的和。
傅里叶级数展开的计算公式如下:f(t) = a0 + Σ (an*cos(nωt) + bn*sin(nωt)),其中a0、an和bn分别为系数,ω为角频率,n为正整数。
根据这个公式,我们可以将任意周期函数表示为一组正弦和余弦函数的和。
傅里叶级数展开的关键是计算系数a0、an和bn,这里不再赘述具体的推导过程。
二、傅里叶级数收敛性的计算公式傅里叶级数的收敛性是指在何种条件下,傅里叶级数能够无限接近原函数f(t)。
傅里叶级数的收敛性可以通过计算系数a0、an和bn来确定。
1. 正弦级数的收敛性对于奇函数,即满足f(-t)=-f(t)的函数,其傅里叶级数只包含正弦函数。
对于奇函数f(t),其傅里叶级数的计算公式为:f(t) = Σ (bn*sin(nωt)),其中bn的计算公式为:bn = (2/T) * ∫[0,T] {f(t)*sin(nωt)} dt。
当函数f(t)满足一定的条件时,傅里叶级数对奇函数收敛。
这些条件包括函数f(t)在一个周期内有有限个有界不连续点,并且在这些点上的左右极限存在。
2. 余弦级数的收敛性对于偶函数,即满足f(-t)=f(t)的函数,其傅里叶级数只包含余弦函数。
对于偶函数f(t),其傅里叶级数的计算公式为:f(t) = a0/2 + Σ (an*cos(nωt)),其中a0和an的计算公式为:a0 = (2/T) * ∫[0,T] {f(t)} dt,an = (2/T) * ∫[0,T] {f(t)*cos(nωt)} dt。
同样地,当函数f(t)满足一定的条件时,傅里叶级数对偶函数收敛。
傅里叶级数逐点收敛性1

xi
xi −1 xi
f ( x ) − f * ( x ) dx = ∑ ∫
i =1 n
xi
xi −1
f ( x ) − mi dx
≤ ∑ ∫ ωi dx = ∑ ωi Δxi < ε
i =1 xi −1 i =1
由此,我们可得:
∫ f ( x ) sin pxdx ≤ ∫ f ( x ) − f ( x ) dx + ∫
∫ f ( x ) sin pxdx
a
b
的积分当 p → ∞ 时的性质,为此,先引入一个引理:
Riemann-Lebesgue 引理:设 f ( x ) 在 [ a, b ] 上可积或广义绝对可积,则有:
b ⎧sin px ⎫ lim ∫ f ( x ) ⎨ ⎬ dx = 0 ,其中 p ∈ R 。 a p →∞ ⎩cos px ⎭
证明: 证明思路是分为如下三个步骤进行: ① 对 f ( x ) 为阶梯函数证明结论; ② 对 f ( x ) 为 Riemann 可积函数证明结论; ③ 对 f ( x ) 为广义绝对可积函数证明结论。 ① 假设 f ( x ) 为一阶梯函数,即:
f ( x ) = ci , xi ≤ x < xi +1 , i = 0,1," , n − 1 , a = x0 < x1 < " < xn = b ,
因而 S n f ( x0 ) 之收敛性只与
(
)
1
π
∫
δ
0
⎡ ⎣ f ( x0 + u ) + f ( x0 − u ) ⎤ ⎦
sin ( n + 1 2 )u 2sin 1 2u
傅里叶级数的基本概念
傅里叶级数的基本概念
傅里叶级数是一种将任意周期函数表示为一系列正弦和余弦函数的方法。
它是以法国数学家傅里叶的名字命名的。
傅里叶级数的基本概念包括:
1. 周期函数:傅里叶级数适用于周期函数,即具有重复性的函数。
周期函数可以用一个周期T来描述,即f(t+T) = f(t)。
2. 基函数:傅里叶级数中的基函数是正弦和余弦函数。
正弦函数的频率是函数在一个周期内重复的次数,余弦函数则是正弦函数相位向右移动90度得到的。
基函数的频率可以用角频率ω表示。
3. 傅里叶级数公式:傅里叶级数表示一个周期函数f(t)可以表示为一个无穷级数的形式:f(t) = a0/2 + Σ(an*cos(nωt) +
bn*sin(nωt)),其中a0/2是函数的平均值,an和bn是函数的系数。
4. 傅里叶系数:傅里叶级数中的系数an和bn可以通过积分计算得到。
an表示在周期T内函数f(t)与cos(nωt)的乘积的平均值,bn则是与sin(nωt)的乘积的平均值。
这些系数代表了基函数的贡献程度。
5. 频谱:傅里叶级数可以将一个周期函数表示成一系列频率成分的和。
这些频率成分称为频谱,由基函数的频率ω和对应的系数确定。
傅里叶级数的基本概念可以帮助我们理解和分析周期函数的特性,以及应用于信号处理、图像处理和物理学等领域。
傅里叶级数 公式
傅里叶级数公式傅里叶级数是一种用正弦函数和余弦函数表示周期函数的方法。
它由法国数学家傅里叶在19世纪提出,被广泛应用于信号处理、物理学、工程学等领域。
傅里叶级数的公式如下:\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))\]在这个公式中,\(f(x)\)表示周期为\(2\pi\)的函数,\(a_0\)表示函数的直流分量,\(a_n\)和\(b_n\)分别表示函数的交流分量的系数。
傅里叶级数的优点在于可以将任意周期函数分解为一系列简单的正弦函数和余弦函数,从而更好地理解和分析周期性现象。
对于一个周期为\(2\pi\)的函数\(f(x)\),我们可以通过计算其在一个周期内的积分来求解傅里叶系数。
具体的计算方法如下:\[a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)dx\]\[a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos(nx)dx\]\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin(nx)dx\]通过计算这些积分,我们可以得到傅里叶级数的系数。
根据这些系数,我们可以重新构造出原函数\(f(x)\)的近似值。
当我们取无限多个正弦函数和余弦函数时,傅里叶级数的近似值将趋近于原函数。
傅里叶级数的应用非常广泛。
在信号处理领域,傅里叶级数可以用来分析和合成信号。
通过将信号分解为一系列正弦函数和余弦函数,我们可以更好地理解信号的频谱特性,从而设计出更好的信号处理算法。
在物理学中,傅里叶级数可以用来描述波动现象,如声波、光波等。
通过将波动现象分解为一系列正弦函数和余弦函数,我们可以更好地理解波动的性质和传播规律。
在工程学中,傅里叶级数可以用来分析和设计电路、通信系统等。
通过将电路和信号分解为一系列正弦函数和余弦函数,我们可以更好地理解电路和信号的行为,从而设计出更好的工程方案。
傅里叶级数的定义与公式
傅里叶级数的定义与公式傅里叶级数是分析函数周期性的重要工具,它在信号处理、图像处理、物理学等领域广泛应用。
在数学上,傅里叶级数可以将一个周期函数表示为一系列的正弦和余弦函数的线性组合。
通过傅里叶级数,我们可以将任意周期函数进行频域分解,从而更好地理解信号的频谱特性。
傅里叶级数的定义如下:假设函数f(x)是一个以T为周期的连续函数,在周期T上可展开成如下的正弦余弦级数:f(x) = a0 + Σ(an*cos(nω0x) + bn*sin(nω0x))其中,n为正整数, ω0=2π/T是基本频率,an和bn为函数f(x)的傅里叶系数。
而a0是傅里叶级数中的直流分量,表示函数的平均值。
要计算函数f(x)的傅里叶系数,我们可以利用傅里叶级数的公式:an = (2/T) * ∫[0,T] (f(x)*cos(nω0x)dx),n≥1bn = (2/T) * ∫[0,T] (f(x)*sin(nω0x)dx),n≥1其中,∫[0,T]表示对周期T内的函数进行积分。
傅里叶级数的计算过程可以通过数值积分方法等多种途径实现。
计算出傅里叶系数之后,我们可以通过将级数的每一项相加,逐渐逼近原始函数f(x)。
这样可以实现对任意周期函数进行分析和重建。
傅里叶级数的应用非常广泛。
在信号处理领域,傅里叶级数可用于时域和频域的转换,从而实现滤波、频谱分析和频谱合成等任务。
在图像处理领域,傅里叶级数可以用来进行图像的压缩和频域滤波等操作。
在物理学领域,傅里叶级数可以用来解决波动方程、热传导方程等偏微分方程的初值问题。
在学习和应用傅里叶级数时,我们需要注意一些问题。
首先,要判断函数是否满足周期性条件,周期必须是确定的。
其次,要注意函数的奇偶性,奇函数的傅里叶级数只包括正弦项,偶函数的傅里叶级数只包括余弦项。
此外,对于非周期函数,我们可以通过周期延拓的方式来逼近其傅里叶级数。
总之,傅里叶级数是一种重要的分析工具,可以将周期函数展开成具有不同频率的正弦和余弦函数的线性组合。
傅里叶级数
∫πcos nxdx = 0,
π
π
∫πsin nxdx = 0,
π
( n = 1,2,3,L)
0, m ≠ n ∫ πsin mx sin nxdx = π, m = n, 0, m ≠ n ∫ πcos mx cos nxdx = π, m = n,
π
∫π
π
sin mx cos nxdx = 0.
右端级数收敛吗?若收敛是否收敛于 右端级数收敛吗?若收敛是否收敛于f(x)?
f ( x)在 a, b]光滑: f ′( x )在[a , b]连续. [ 光滑: 连续. f ( x)在 a, b]按段光滑: [ 按段光滑:
f ( x )在[a , b]有定义,且至多有有限 个第一类 有定义, 间断点, 间断点, f ′( x )在 [a , b] 除有限个点外有定义且 连续,在这有限个点上 f ′( x ) 左右极限存在. 左右极限存在. 连续,
第, 古今往来,众多数学家一直在寻找用简单函数较好 地近似代替复杂函数的途径,除了理论上的需要外, 地近似代替复杂函数的途径,除了理论上的需要外, 它对实际应用的领域的意义更是不可估量. 它对实际应用的领域的意义更是不可估量. 在微积分发明之前,这个问题一直没有本质上的 在微积分发明之前, 突破. 突破. 熟知的简单函数:幂函数,三角函数. 熟知的简单函数:幂函数,三角函数.
π π
1 π bn = ∫π f ( x)sinnxdx π
( n = 1,2,3,L)
f(x)的傅里叶系数 的傅里叶系数
1 π ) an = π ∫π f ( x)cos nxdx, (n = 0,1,2,L 1 π bn = ∫π f ( x)sinnxdx, (n = 1,2,L) π 1 2π ) an = π ∫0 f ( x)cos nxdx, (n = 0,1,2,L 或 2 bn = 1 π f ( x)sin nxdx, (n = 1,2,L ) ∫0 π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节 傅里叶级数内容分布图示★ 引 言 ★ 引 例★ 三角函数系的正交性★ 傅里叶级数的概念 ★ 狄利克雷收敛定理★ 例1 ★ 例2 ★ 例3★ 非周期函数的周期延拓 ★ 例4★ 利用傅氏展开式求数项级数的和★ 正弦级数与余弦级数★ 例5 ★ 例6★ 函数的奇延拓与偶延拓★ 例7 ★ 例8★ 内容小结 ★ 课堂练习★ 习题11-8 ★ 返回讲解注意:一、三角级数 三角函数系的正交性早在18世纪中叶,丹尼尔. 伯努利在解决弦振动问题时就提出了这样的见解:任何复杂的振动都可以分解成一系列谐振动之和. 这一事实用数学语言来描述即为:在一定的条件下,任何周期为T )/2(ωπ=的函数)(t f ,都可用一系列以T 为周期的正弦函数所组成的级数来表示,即∑∞=++=10)sin()(n n n t n A A t f ϕω (8.1)其中n n A A ϕ,,0),3,2,1( =n 都是常数.十九世纪初,法国数学家傅里叶曾大胆地断言:“任意”函数都可以展成三角级数. 虽然他没有给出明确的条件和严格的证明,但是毕竟由此开创了“傅里叶分析”这一重要的数学分支,拓广了传统的函数概念. 傅里叶的工作被认为是十九世纪科学迈出的极为重要的第一个大步,它对数学的发展产生的影响是他本人及同时代的其他人都难以预料的. 而且,这种影响至今还在发展之中. 这里所介绍的知识主要是由傅里叶以及与他同时代的德国数学家狄利克雷等人的研究结果.二、函数展开成傅里叶级数傅里叶系数 ⎪⎪⎩⎪⎪⎨⎧====⎰⎰--).,3,2,1(,sin )(1),,2,1,0(,cos )(1 n nxdx x f b n nxdx x f a n n ππππππ (8.5) 将这些系数代入(8.4)式的右端,所得的三角级数∑∞=++10)sin cos (2n n n nx b nx a a (8.6)称为函数)(x f 的傅里叶级数.定理1(收敛定理,狄利克雷充分条件) 设)(x f 是周期为π2的周期函数. 如果)(x f 满足在一个周期内连续或只有有限个第一类间断点,并且至多只有有限个极值点. 则)(x f 的傅里叶级数收敛,并且(1) 当x 是)(x f 的连续点时, 级数收敛于)(x f ;(2) 当x 是)(x f 的间断点时, 收敛于2)0()0(++-x f x f . 狄利克雷收敛定理告诉我们:只要函数)(x f 在区间],[ππ-上至多只有有限个的第一类间断点,并且不作无限次振动,则函数)(x f 的傅里叶级数在函数的连续点处收敛于到该点的函数值,在函数的间断点处收敛于该点处的函数的左极限与右极限的算术平均值. 由此可见,函数展开成傅里叶级数的条件要比函数展开成幂级数的条件低得多.三、周期延拓:在区间),[ππ-或],(ππ-外补充)(x f 的定义,使它拓广成一个周期为π2的周期函数)(x F ,这种拓广函数定义域的方法称为周期延拓.四、正弦级数与余弦级数:一般地, 一个函数的傅里叶级数既含有正弦项, 又含有余弦项(例2),但是, 也有一些函数的傅里叶级数只含有正弦项(例1)或者只含有常数项和余弦项(例4),导致这种现象的原因与所给函数的奇偶性有关。
即:奇函数的傅里叶级数是只含有正弦项的正弦级数.偶函数的傅里叶级数是只含有余弦项的余弦级数.五、奇延拓与偶延拓奇延拓 令⎪⎩⎪⎨⎧<<---=≤<=0),(0,00),()(x x f x x x f x F ππ则)(x F 是定义在],(ππ-上的奇函数,将)(x F 在],(ππ-上展开成傅里叶级数,所得级数必是正弦级数. 再限制x 在],0(π上,就得到)(x f 的正弦级数展开式.偶延拓 令⎩⎨⎧<<--≤≤=0),(0),()(x x f x x f x F ππ 则)(x F 是定义在],(ππ-上的偶函数,将)(x F 在],(ππ-上展开成傅里叶级数,所得级数必是余弦级数. 再限制x 在],0(π上,就得到)(x f 的余弦级数展开式.例题选讲:函数展开成傅里叶级数例1(讲义例1)将以π2为周期的函数 ⎩⎨⎧<≤<≤--=,0,1,0,1)(ππt t t u 展开成傅里叶级数. 注:如果将本例中的函数)(t u 理解为矩形波的波形函数,则)(t u 的展开式表明:矩形波是由一系列不同频率的正弦波的叠加而成的.例2(讲义例2)设)(x f 是周期为π2的周期函数,它在),[ππ-上的表达式为⎩⎨⎧<≤<≤-=.0,0,0,)(ππx x x x f试将函数)(x f 展开成傅立叶级数.例3(讲义例3)设)(x f 是周期为π2为周期函数,它在],(ππ-的表达式为⎩⎨⎧≤<+≤<--=.0,1,0,1)(2ππx x x x f 试写出)(x f 的傅立叶级数展开式在区间],(ππ-上的和函数)(x s 的表达式.周期延拓例4(讲义例4)将函数 ⎩⎨⎧≤≤<≤--=ππx x x x x f 0,0,)( 展开成傅里叶级数.正弦级数与余弦级数例5(讲义例5)试将函数x x f =)()(ππ≤≤-x 展开成傅里叶级数.例6(讲义例6)将函数2)(x x f =)(ππ≤≤-x 展开成傅里叶级数.奇延拓与偶延拓例7(讲义例7)将函数)0(1)(π≤≤+=x x x f 分别展开成正弦级数和余弦级数.例8(讲义例8)应当如何把给定在区间()2,0π内满足狄利克雷收敛定理且连续的函数)(x f 延拓到区间),(ππ-内, 而使它的傅里叶级数展开式为∑∞=--=112.)12cos()(n n x n a x f ππ<<-x ,2,0π±≠x课堂练习1.若函数),()(x x ψϕ=-问: )(x ϕ与)(x ψ的傅里叶系数n a 、n b 与),2,1,0(, =n n n βα之间有何关系?2. 设函数2)(x x f = ),10(<≤x 而)(x f 傅里叶级数为,,sin 1+∞<<-∞∑∞=x nx b n n其中),,2,1(sin )(210 ==⎰n nxdx x f b n )(x s 为此傅里叶级数的和,求.21⎪⎭⎫ ⎝⎛-s狄利克雷(Dirichlet, Peter Gustav Lejeune ,1805~1859)狄利克雷(德国数学家,1805年2月13日生于德国迪伦;1859年5月5日卒于格丁根。
狄利克雷生活的时代,德国的数学正经历着以C.F.高斯(Gauss )为前导的、由落后逐渐转为兴旺发达的时期。
狄利克雷以其出色的数学教学才能,以及在数论、分析和数学物理等领域的杰出成果,成为高斯之后与 C.G .J.雅强比(Jacobi)齐名的德国数学界的一位核心人物。
狄利克雷出身于行政官员家庭,他父亲是一名邮政局长。
狄利克雷少年时即表现出对数学的浓厚兴趣,据说他在12岁前就自攒零钱购买数学图书。
1817年入波恩的一所中学,除数学外,他对近代史有特殊爱好;人们称道他是个能专心致志又品行优良的学生。
两年后,他遵照父母的意愿转学到科隆的一所教会学校,在那里曾从师物理学家G.欧姆(Ohm),学到了必要的物理学基础知识。
16岁通过中学毕业考试后,父母希望他攻读法律,但狄利克雷已选定数学为其终身职业。
当时的德国数学界,除高斯一人名噪欧洲外,普遍水平较低;又因高斯不喜好教学,于是狄利克雷决定到数学中心巴黎上大学,那里有一批灿如时星的数学家,诸如P.S.拉普拉斯、A.勒让德等。
1822年5月,狄利克雷到达巴黎,选定在法兰西学院和巴黎理学院攻读。
1825年,狄利克雷向法国科学院提交他的第一篇数学论文,题为“某些五次不定方程的不可解”。
他利用代数数论方法讨论形如555.z A y x =+的方程。
几周后,勒让德利用该文中的方法证明了z y x ''=''+''当5=n 时无整数解;狄利克雷本人不久也独立证明了同一结论。
1825年11月,法伊将军去。
1826年,狄利克雷在为振兴德国自然科学研究而奔走的A.洪堡的影响下,返回德国,在布雷斯劳大学获讲师资格,后升任编外教授(介于正式教授和讲师之间的职称)。
1828年,狄利克雷又经洪堡的帮助来到学术空气较浓厚的柏林,任教于柏林军事学院。
同年,他又被聘为柏林大学编外教授(后升为正式教授),开始了他在柏林长达27年的教学与研究生涯。
由于他讲课清晰,思想深邃,为人谦逊,谆谆善诱,培养了一批优秀数学家,对德国在19世纪后期成为国际上又一个数学中心产生了巨大影响。
1831年,狄利克雷成为柏林科学院院士。
1855年高斯去世,狄利克雷被选定作为高斯的继续任到格丁根大学任教。
与在柏林繁重的教学任务相比,他很欣赏在格丁根有更多自由支配的时间从事研究。
可惜美景不长,1858年夏他去世瑞士蒙特勒开会,作纪念高斯的演讲,在那里突发心脏病。
狄利克雷虽平安返回了格丁根,但在病中遭夫人中风身亡的打击,病情加重,于1859年春与世长辞。
傅里叶(Fourier,Jean Baptiste Joseph ,1768~1830)傅里叶,法国数学家,1768的3月21日生于法国奥塞尔;1830年5月16日卒于巴黎。
傅里叶出身平民,父亲是位裁缝。
9岁时双亲亡故,以后由教会送入镇上的军校就读,表现出对数学的特殊爱好。
他还有志于参加炮兵或工程兵,但因家庭地位低贫而遭拒绝。
后来希望到巴黎在更优越的环境下追求他有兴趣的研究。
可是法国大革命中断了他的计划,于1789年回到家乡奥塞尔的母校执教。
在大革命时期,傅里叶以热心地方事务而知名,并因替当时恐怖行为的受害者申辩而被捕入狱。
出狱后,他曾就读于巴黎师范学校,虽为期甚短,其数学才华却给人以深刻印象。
1795年,当巴黎综合工科学校成立时,即被任命为助教。
这一年他还讽刺地被当作罗伯斯庇尔的支持者而被捕,经同事营救获释。
1989年,蒙日选派他跟随破仑远征埃及。
在开罗,他担任埃及研究院的秘书,并从事许多外交活动。
但同时他仍不断地进行个人的业余研究,即数学物理方面的研究。
1801年回到法国后,傅里叶希望继续执教于巴黎综合工科学术,但因拿仑常识他的行政才能,任命他为伊泽尔地区首府格勒诺布尔的高级官员。
由于正声卓著,1808年拿仑又授予他男爵称号。
此后几经宦海浮沉,1815年,付里叶终于在拿破仑百日王朝的尾期辞去爵位和官职,毅然返回巴黎以图全力投入学术研究。
但是,失业、贫困以及政法名声的落潮,这时的付里叶处于一生中最艰难的时期。
由于得到昔日现事和学生的关怀,为他谋得统计局主管之职,工作不繁重,所入足以为生,使他得以继续从事研究。