八年级数学上册 14.2 勾股定理的应用 华东师大版

合集下载

14.2勾股定理的应用-华东师大版八年级数学上册教案

14.2勾股定理的应用-华东师大版八年级数学上册教案

14.2 勾股定理的应用-华东师大版八年级数学上册教案一、教学目标1.掌握勾股定理的应用;2.能够解决与直角三角形有关的问题;3.能够运用所学知识解决实际问题。

二、教学重点1.勾股定理的应用;2.直角三角形相关问题的解决方法。

三、教学过程1. 导入通过导师简单介绍直角三角形和勾股定理,检查学生的预习情况,确保学生对知识点有一定的了解。

2. 学习过程2.1 勾股定理的证明1.讲解勾股定理的证明过程,通过板书方式梳理思路;2.引导学生自己思考证明过程,以此来提高他们的思维能力。

2.2 直角三角形的三条边及其应用1.讲解直角三角形中的三条边,并强调斜边为直角三角形中最长的一条边;2.引导学生将勾股定理进行变形,以便更好地应用到实际问题中。

2.3 勾股定理的应用1.讲解勾股定理的应用,通过各种例题来演示;2.引导学生根据题目提供的信息,确定所需使用的知识点,依据勾股定理进行计算。

3. 练习1.分发实际问题练习题,鼓励学生独立完成;2.引导学生交流解题思路,纠正错误,互相帮助。

4. 总结1.回顾勾股定理及直角三角形的相关知识点;2.强调勾股定理是解决实际问题的有力工具。

四、作业1.完成教师分发的作业;2.总结本节课的内容,巩固所学知识点。

五、教学反思通过本节课的教学,学生对勾股定理的应用及直角三角形相关知识点有了更深入的了解。

但是,在教学过程中还需要更多地引导学生思考,让他们积极参与到学习中,并在实际问题中运用所学知识解决问题。

此外,在教学后还需要对学生的掌握情况进行检查,对薄弱环节进行有针对性的辅导和强化,提高学生的学习效果。

华师大版八年级数学上册14.2 勾股定理的应用(课件)【新版】

华师大版八年级数学上册14.2 勾股定理的应用(课件)【新版】
解: (1)图14.2.6中,AB、AC、AE、AD的长度 均为 5.
(2)图 14.2.6 中,△ABC、 △ABE 、 △ABD 、 △ACE、 △ACD、 △AED就是所要画的等 腰三角形.
知3-讲
例6 如图 14. 2. 7,已知 CD= 6 m,AD= 8 m, ∠ADC= 90°,BC = 24 m, AB= 26 m.求图 中着色部分 的面积.
知3-练
2 如图,在长方形ABCD中,点E在边AB上,将长方 形ABCD沿直线DE折叠,点A恰好落在BC边上的 点F处,若AE=5,BF=3,则CD的长是( ) A.7 B.8 C.9 D.10
应用勾股定理解决实际问题的一般思路:将实际 问题转化为数学模型,然后利用勾股定理列出方程, 再解方程求解.由于勾股定理反映了直角三角形三边 之间的关系,因此往往与方程进行联系.即应用时要 注意两点:(1)在解决实际问题时,注意从“形”到 “数”的转化;(2)在解决实际问题时,注意构造直角 三角形模型,结合方程进行求解.
知2-练
2 如图(单位:m),一个三级台阶,它的每一级的长、 宽和高分别为20 m,3 m,2 m,A和B是这个台阶 两个相对的端点,A点有一只蚂蚁,想到B点去吃可 口的食物,则蚂蚁沿着台阶面爬到B点的最短路程 是________.
知识点 3 勾股定理的其他应用
知3-讲
1.在一些求高度、宽度、长度、距离等量的问题中, 首先要结合题意画出符合要求的直角三角形,也就 是把实际问题转化为数学问题,进而把要求的量看 成直角三角形的一条边,然后利用勾股定理进行求 解.
解: 在 Rt △ADC中,
知3-讲
∵AC2 = AD2 + CD2 (勾股定理)
=82 + 62 = 100,

华东师大版八年级数学上册14.2勾股定理的应用教学设计

华东师大版八年级数学上册14.2勾股定理的应用教学设计
2.新课讲解:
-通过动态演示或实物模型,引导学生发现直角三角形三边之间的关系,从而引出勾股定理。
-结合图形,详细讲解勾股定理的公式及其推导过程,让学生深刻理解定理的内涵。
-通过例题,展示勾股定理在实际问题中的应用,如计算斜边长度、确定直角三角形的形状等。
3.课堂练习:
-设计不同难度的练习题,让学生独立完成,巩固勾股定理的知识。
2.实践应用题:设计一道与实际生活相关的勾股定理应用题,要求同学们运用所学知识解决问题。例如,假设学校旗杆的高度不易直接测量,但我们可以测得旗杆底端到地面的水平距离以及旗杆顶端到视线的垂直距离,请计算旗杆的大致高度。
3.创新思维题:请同学们思考并尝试证明勾股定理的逆定理,即在一个三角形中,如果一边的平方等于另外两边平方和,那么这个三角形是直角三角形。鼓励同学们运用多种方法进行证明,如几何法、代数法等。
2.学生在解决实际问题时,可能难以将勾股定理与问题情境有效结合。教师应通过丰富的实例,引导学生学会运用勾股定理分析问题、解决问题。
3.学生的几何直观能力和逻辑思维能力发展不平衡,部分学生可能在学习过程中感到困难。教师应关注学生的个体差异,提供不同难度的学习任务,使每个学生都能在原有基础上得到提高。
4.学生在合作学习过程中,可能存在交流不畅、分工不明确等问题。教师应引导学生学会倾听、表达和协作,提高学生的团队协作能力。
-针对学生的错误,及时进行讲解和指导,帮助学生克服难点。
4.小组合作:
-将学生分成小组,针对实际问题进行讨论和合作,培养学生的团队协作能力和解决问题的能力。
-引导学生运用勾股定理解决实际问题,如设计建筑物的高度、测量河流宽度等。
5.课堂小结:
-通过提问、总结等方式,帮助学生梳理本节课的知识点,形成知识结构。

华东师大版八年级上册数学教学设计《14.2勾股定理的应用(2)》

华东师大版八年级上册数学教学设计《14.2勾股定理的应用(2)》

华东师大版八年级上册数学教学设计《14.2勾股定理的应用(2)》一. 教材分析《14.2勾股定理的应用(2)》这一节内容,是在学生已经掌握了勾股定理的基础上进行学习的。

本节课主要让学生进一步理解并掌握勾股定理的应用,能够运用勾股定理解决实际问题。

教材通过例题和练习题的形式,帮助学生巩固知识点,提高解题能力。

二. 学情分析八年级的学生已经掌握了勾股定理的基本知识,对于运用勾股定理解决一些简单问题已经没有太大的困难。

但是,学生在解决实际问题时,可能会因为对题目的理解不够深入,而导致无法正确运用勾股定理。

因此,在教学过程中,教师需要引导学生深入理解题目,找出题目中的关键信息,从而正确运用勾股定理。

三. 教学目标1.知识与技能目标:让学生进一步理解并掌握勾股定理的应用,能够运用勾股定理解决实际问题。

2.过程与方法目标:通过例题和练习题,培养学生的解题能力,提高学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:让学生感受数学与生活的联系,培养学生的数学兴趣。

四. 教学重难点1.重点:让学生进一步理解并掌握勾股定理的应用。

2.难点:如何引导学生找出题目中的关键信息,从而正确运用勾股定理解决实际问题。

五. 教学方法1.讲授法:教师通过讲解例题和解析练习题,引导学生掌握勾股定理的应用。

2.引导法:教师通过提问和引导,帮助学生找出题目中的关键信息,从而正确运用勾股定理。

3.练习法:学生通过做练习题,巩固所学知识,提高解题能力。

六. 教学准备1.教师准备:教师需要熟悉教材内容,了解学生的学习情况,准备相应的教学材料和课件。

2.学生准备:学生需要预习本节课的内容,了解勾股定理的应用,准备好笔记本和文具。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,例如:“一个直角三角形的两条直角边长分别为3米和4米,求这个直角三角形的斜边长。

”让学生思考并讨论如何解决这个问题,从而引出勾股定理的应用。

华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题含答案

华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题含答案

华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题含答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.你听说过亡羊补牢的故事吧!为了防止羊再次丢失,牧羊人要在如图所示的长为0.8 m、宽为0.6 m 的长方形栅栏门的相对角的顶点钉一根加固木条,则这根木条的长至少为()A.0.9 mB.1 mC.1.1 mD.1.4 m2.如图,长方形纸片ABCD中,AB=8 cm,把长方形纸片沿直线AC折叠,点B落在点E处,AE交DC于cm,则AD的长为()点F,若AF=254A.4 cmB.5 cmC.6 cmD.7 cm3.如图,正方形方格中,若小方格的边长为1,则△ABC是三角形.4.如图,钓鱼竿AC的长为10 m,露在水面上的鱼线BC长为6 m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8 m,则BB'的长为m.5.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个6×6的方格纸中,找出格点C,使△ABC的面积为1个平方单位的直角三角形的个数是个.【能力巩固】6.一辆装满货物,宽为2.4 m的卡车,欲通过如图所示的隧道,已知隧道的下半部分是长为4 m,宽为2.5 m的长方形,上半部分是以AB为直径的半圆,则卡车的高必须低于m.7.如图,小巷的左、右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7 m,梯子顶端到地面的距离AC为2.4 m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5 m,则小巷的宽为m.8.如图,这是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.9.如图,学校在校园围墙边缘开垦了一块四边形菜地ABCD,测得AB=9 m,BC=12 m,CD=8 m,AD=17 m,且∠ABC=90°,则这块菜地的面积是多少?【素养拓展】10.如图,小红和小强一起去公园荡秋千,OA为秋千绳索,小红坐上秋千,小强在离秋千3米的点B处保护.当小红荡至小强处时,小强发现小红升高了1米,于是他就算出了秋千绳索的长度,你知道他是怎么算的吗?请你试一试.参考答案【基础达标】1.B2.C3.直角4.25.6【能力巩固】6.4.17.2.78.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连结DE.在Rt△DEF中,根据勾股定理,得DE=√DF2+EF2=√1202+902=150(cm)h=220-150=70(cm).即彩旗下垂时的最低处离地面的最小高度h为70 cm.9.解:如图,连结AC.∵∠ABC=90°,AB=9 m,BC=12 m∴AC=√AB2+BC2=√92+122=15(m).∵CD=8 m,AD=17 m∴AC2+CD2=152+82=289,AD2=172=289∴AC 2+CD 2=AD 2∴△ACD 是直角三角形 ∴∠ACD=90°∴S 四边形ABCD =S △ABC +S △ACD =12AB ·BC+12AC ·CD=12×9×12+12×15×8=54+60=114(m 2) ∴这块菜地的面积为114 m 2. 【素养拓展】10.解:因为OA=OB ,AC=1米,CB=3米,设OA=OB=x 米,则OC=(x-1)米.在Rt △OBC 中,由勾股定理得OB 2=OC 2+BC 2,即x 2=(x-1)2+32,解得x=5. 故秋千绳索长为5米.。

《14.2勾股定理的应用》作业设计方案-初中数学华东师大版12八年级上册

《14.2勾股定理的应用》作业设计方案-初中数学华东师大版12八年级上册

《勾股定理的应用》作业设计方案(第一课时)一、作业目标本课时作业的主要目标是巩固学生对勾股定理的理解,熟悉勾股定理的应用场景,掌握基本应用题型的解法,提高运用勾股定理解决实际问题的能力。

二、作业内容1. 基础知识练习:通过完成勾股定理的基本公式及其变形式练习题,强化学生对勾股定理相关概念的理解。

2. 经典例题解析:选取几道典型的勾股定理应用题,进行详细解析,让学生掌握解题思路和解题方法。

3. 自主探究题:设计几道与勾股定理相关的实际问题,要求学生运用所学知识进行分析和解答,培养学生的应用能力和创新思维。

4. 拓展延伸题:提供一些与勾股定理相关的拓展知识,如勾股定理的证明方法、勾股定理在几何学中的地位等,让学生进行拓展阅读和思考。

三、作业要求1. 认真完成每一道题目,注重解题过程和思路的梳理。

2. 对于经典例题解析部分,要认真听讲,理解并掌握解题方法。

3. 自主探究题要求独立思考,尽可能运用所学知识进行分析和解答。

4. 拓展延伸题要求学生在完成基础练习后进行阅读和思考,提出自己的见解和疑问。

5. 作业要求规范书写,注意数学符号的使用和公式的正确性。

四、作业评价1. 评价标准:根据学生完成作业的准确度、解题思路的清晰度、解题过程的规范性等方面进行评价。

2. 评价方式:采取教师批改、同学互评、自我评价等多种方式进行评价。

3. 反馈方式:及时将作业评价结果反馈给学生,指出学生在解题过程中存在的问题和不足,提出改进意见和建议。

五、作业反馈1. 教师根据学生完成作业的情况,总结学生在学习过程中存在的问题和不足,提出相应的解决方案。

2. 对于学生在解题过程中出现的共性问题,可以在课堂上进行讲解和纠正,帮助学生更好地掌握知识点。

3. 对于表现优秀的学生,要及时给予表扬和鼓励,激发学生的学习积极性和自信心。

4. 针对学生的不同需求和特点,教师可以提供个性化的辅导和指导,帮助学生更好地掌握勾股定理的应用。

通过这样的作业设计方案,旨在通过多种形式和层次的练习,帮助学生全面掌握勾股定理的应用,提高解决实际问题的能力。

14.2 勾股定理的应用 第1课时 勾股定理的实际应用 华东师大版数学八年级上册课件

14.2 勾股定理的应用 第1课时 勾股定理的实际应用 华东师大版数学八年级上册课件

解:过点 B 作 BC 垂直于 A 所在水平直线于点 C,根据题意可得,点 A 与点 B 的 水平距离为 8-4+1=5(m),竖直距离为 3+9=12(m),∴AC=5 m,BC=12 m,∴AB = 52+122 =13(m),∴A,B 两点之间的距离为 13 m
8.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角 的距离为 0.7 米,顶端距离地面 2.4 米.如果保持梯子底端位置不动,将梯子斜靠在右 墙时,顶端距离地面 2 米,则小巷的宽度为( C )
A.10 cm B.12 cm C.15 cm D.17 cm
3.(例题 1 变式)如图所示,有一块砖高 AN=5 cm,长 ND=10 cm,CD 上的点 B 距点 D 的距离 BD=8 cm,地面上 A 处的一只蚂蚁到 B 处吃食,需要爬行的最短路径 是多少?
解:将砖的右侧面展开与上面在同一平面内,最短路径为 AB= (5+8)2+102 = 269 (cm)
A.50.5 寸 B.52 寸 C.101 寸 D.104 寸
10.如图,在离水面高度为 8 米的岸上,有人用绳子拉船靠岸,开始时绳子 BC 的 长为 17 米,此人以 1 米/秒的速度收绳,7 秒后船移动到点 D 的位置,问船向岸边移动 了多少米?(假设绳子是直的)
解:在 Rt△ABC 中,∠CAB=90°,BC=17 米,AC=8 米,∴AB= BC2-AC2 = 15(米).由题意,得 CD=17-1×7=10(米).∴AD= CD2-AC2 =6(米).∴BD=AB-AD =15-6=9(米).答:船向岸边移动了 9 米
数学 八年级上册 华师版
14.2 勾股定理的应用 第1课时 勾股定理的实际应用
知识点❶ 立体图形中两点之间的最短距离 1.小南同学报名参加了学校的攀岩选修课,攀岩墙近似一个长方体的两个侧面, 如图所示,从点 A 攀爬到点 B 的最图,一圆柱体的底面周长为 24 cm,高 AB 为 9 cm,BC 是直径,一只蚂蚁从 点 A 出发沿着圆柱体的表面爬行到点 C 的最短路程是( C )

初中数学华师版八年级数学上册优秀教学课件PPT 第14章 勾股定理14.2 勾股定理的应用

 初中数学华师版八年级数学上册优秀教学课件PPT 第14章  勾股定理14.2 勾股定理的应用

AC = AB2 +BC2 = 42 +102 答:爬行的最短路程约 = 116 10.7(7 cm) 为 10.77 cm.
讲授新课
一 勾股定理的应用 把几何体适当展开成平面图形,再利用“两点
之间,线段最短”性质来解决问题.
例1 如果圆柱换成如图的棱长为
B
10 cm 的正方体盒子,蚂蚁沿着表
面需要爬行的最短路程又是多少呢?
分析:蚂蚁实际上是在圆柱的半个侧面内爬动,
如果将这半个侧面展开,得到长方形 ABCD,
根据“两点之间,线段最短”,所求的最短路
程就是这一展开图 — — 长方形ABCD 的对角
线 AC 之长.
A
B
C
B
C
A
D
解:如图,在 Rt△ABC 中,
A
BC = 底面周长的 一半 = 10 cm.由勾股定理,可得
D1 A1
D
A
B1
C1 D
D1
C1
2
C
B
A 1 A1
3
B1
AC1 AB12 B1C12 42 22 4.47 (cm)
5.10>4.47>4.24 所以由 A 爬到 C1 需要爬行的最短路程是4.24.
例3 一辆装满货物的卡车,
其外形高 2.5 米,宽 1.6 米,要 A
B
开进厂门形状如图所示的某工
2.3 米
厂,问这辆卡车能否通过该工
厂的厂门(厂房上方为半圆形拱
门)?说明理由.
D 2米
C
解:在Rt△ONM 中,∠MNO = 90°,由勾股定理,得
MN= OM 2 ON 2 1 0.82 0.6(米). MH=0.6+2.3=2.9 (米)>2.5 (米). A 答:卡车能通过厂门.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档