列方程解应用题-和差倍问题

合集下载

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)1.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有1人只取2支,则其余每人恰好6支.问第一小组同学有多少人?铅笔有多少只?2.甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?3.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺.这根绳子有多长?环绕大树一周需要多少尺?4.某中学为了丰富学生的课外体育活动,准备购买一批新的篮球和足球总共160个.已知购买篮球的数量比足球的数量的2倍还多10个,求购买的篮球和足球的数量分别是多少个5.高台县为加快新农村建设,建设美丽乡村,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;巷道镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金多少万元?6.学校开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.求甲、乙两种笔记本的单价各是多少元?7.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.求甲、乙两种办公桌每张各多少元?8.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措。

小明家先后两次在同一电商平台以相同的单价邮购买了A、B两种型号的口罩,第一次购买20个A型口罩,30个B型日单,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元,求A、B两种型号口罩的单价.9.李欣同学昨天在文具店买了2本笔记本和4支水笔,共花了14元;王凯以同样的价格买了1本笔记本和3支水笔,共花了9元;问笔记本和水笔的单价各是多少元?10.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?11.列一元一次方程解应用题:某仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个仓库中的57,问每个仓库各有多少吨粮食?12.养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?13.我校去年有学生3100名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?14.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从树上飞下去一只,则树上、树下的鸽子就一样多了.”地上的鸽子对树上的鸽子说:“若从地上飞到树上一支鸽子,则树上鸽子是地上的3倍.”你知道树上,树下各有多少只鸽子吗?15.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍.如果我给你一袋,我们才恰好驮的一样多!”求驴子和骡子原来所驮货物分别为多少袋?16.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?17.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.18.在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?19.南充某制衣厂现有22名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润?20.某农户原有15头大牛和5头小牛,每天约用饲料325kg;两周后,由于经济效益好,该农户决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg.问每头大牛和每头小牛1天各需多少饲料?。

一元一次方程的应用——和差倍分问题专题练习解析版

一元一次方程的应用——和差倍分问题专题练习解析版

一元一次方程的应用——和差倍分问题专题练习1、在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是().A.32+x=2×18B.32+x=2(38-x)C.52-x=2(18+x)D.52-x=2×18答案:B解答:设支援拔草的有x人,则支援植树的有(20-x)人,由题意得:32+x=2(18+20-x)32+x=2(38-x).故符合题意的为B选项.2、某物流中心的A仓库有货物180吨,B仓库有货物120吨,现在需把B 仓库一部分货物运到A仓库,使B仓库货物占A仓库货物总量的30%.设把B仓库的货物运送x吨到A仓库,则可列方程().A.120-x=30%×180B.120-x=30%(180+x)C.120+x=30%×180D.180-x=30%(120+x)答案:B解答:设把B仓库的货物运送x吨到A仓库,根据题意得,120-x=30%(180+x).选B.3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是().A.2×1000(26-x)=800xB.1000(13-x)=800xC.1000(26-x)=2×800xD.1000(26-x)=800x答案:C解答:∵安排x名工人生产螺钉,∴安排(26-x)名工人生产螺母,则每天生产螺钉800x个,每天生产螺母1000(26-x)个,根据“螺母个数=2×螺钉个数”可列方程为1000(26-x)=2×800x.选C.4、已知三角形的三边长为连续整数,且周长为12c m,则它的最短边长为().A.2c mB.3c mC.4c mD.5c m答案:B解答:设大小处于中间的边长是x c m,则最大的边是(x+1)c m,最小的边长是(x-1)c m.则(x+1)+x+(x-1)=12,解得:x=4,则最短的边长是:4-1=3c m.选B.5、甲、乙、丙三种商品单价的比是6:5:4,已知甲商品比丙商品的单价多12元,则三种商品的单价之和为( ).A . 75元B . 90元C . 95元D . 100元答案:B解答:设甲、乙、丙三种商品的单价分别为6x ,5x ,4x , 则6x -4x =12,解得x =6,∴三种商品的单价之和为6×6+5×6+4×6=90.6、父亲现在32岁,儿子现在5岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的方程是( ). A . 32-x =5x B . 32-x =10(5-x )C . 32-x =5×10D . 32+x =5×10答案:B解答:x 年前,父亲年龄是:32-x ,儿子年龄是5-x ,父亲的年龄=10×儿子的年龄,列式为:32-x =10(5-x ).7、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ). A . 3x +3(100-x )=100 B . 3x -3(100-x )=100C . 3x +1003x-=100 D . 3x -1003x-=100 答案:C解答:设大和尚有x人,则小和尚有(100-x)人;根据大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,∴3x+1003x=100,故答案为C.8、长沙是中国男足的福地,3月23日中国队1:0胜韩国队,赢得12强赛的首场胜利!已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负了5场,共得23分,那么这个队胜了().A.5场B.6场C.7场D.8场答案:C解答:设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=23,解得:x=7,即这个队胜了7场.选C.9、我国明代著名数学家程大位的《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿长为x尺,根据题意列一元一次方程,正确的是().A.12x+5=x-5B.12x-5=x+5C.12(x-5)=x+5D.12(x+5)=x-5答案:D解答:绳索长为x+5或2(x-5),∴有x+5=2(x-5)即12(x+5)=x-5.二、填空题10、传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程______.答案:(2x-700)+x=5900解答:∵文创笔记本的销量比珐琅书签销量的2倍少700件,∴文创笔记本的销量为(2x-700)件,∵二者销量之和为5900件,∴可列方程为:(2x-700)+x=5900.故答案为:(2x-700)+x=5900.11、一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为______.答案:37解答:设个位数是a,十位数是b,则有①②410a ba b-=⎧⎨+=⎩①②,①+②得:2a=14,解得:a=7,将a=7代入①得:7-b=4解得:b=3,∴这个数是37.12、我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百慢头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是有100个和尚分100个馒头,正好分完,如果大和尚一人分3个,小和尚3人分一个.试间大小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为______.答案:1 31003100 xyx y⎧+=⎪⎨⎪+=⎩解答:131003100xyx y⎧+=⎪⎨⎪+=⎩.13、父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的17,则女儿现在的年龄是______.答案:12解答:父亲与女儿年龄差恒定不变.设女现x岁,则父(54-x)岁,父女年龄差为(54-2x)岁,列3x-547x-=54-2x,解得x=12.14、清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x 人,由题意可列方程为______. 答案:3x +4x =364 解答:∵有和尚x 人,∴需要3x 只碗装饭,4x 只碗装粥,根据寺中有364只碗,即可得出关于x 的一元一次方程为3x+4x =364. 三解答题15、某校购买了A ,B 两种教具共138件,共花了5400元,其中A 教具每件30元,B 教具每件50元,两种教具各买了多少件? 答案:A 教具买了75件,B 教具买了63件.解答:设A 教具买了x 件,则B 教具买了(138-x )件,依题意有: 30x +50(138-x )=5400 解得x =75,则B 教具买了:138-75=63件,答:A 教具买了75件,B 教具买了63件.16、为发展校园足球运动,某校决定购买一批足球运动装备,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,求每套队服和每个足球的价格是多少.答案:队服150元,足球100元.解答:设每个足球的价格是x 元,则每套队服是(x +50)元, 根据题意得2(x +50)=3x , 解得x =100, x +50=150.答:每套队服150元,每个足球100元. 17、列方程解应用题:改革开放40年来,我国铁路发生了巨大变化,现在的铁路运营里程比1978年的铁路运营里程多了75000公里,其中高铁更是迅猛发展,其运营里程约占现在铁路运营里程的20%,只差600公里就达到了1978年的铁路运营里程的一半.问1978年的铁路运营里程是多少公里. 答案:52000公里.解答:设1978年铁路运营里程为x 公里, 由题意,得12x -600=20%(x +75000), 解得x =52000.∴1978年铁路运营里程为52000公里.18、机械厂加工车间有90名工人,平均每人每天加工大齿轮16个或小齿轮28个,已知大齿轮和小齿轮要按1:2配成一套,问需安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?(用一元一次方程解答) 答案:42.解答:设安排x 人加工大齿轮,则(90-x )人加工小齿轮, 才能使每天加工的代销齿轮刚好配套,由题可得:()162890x x -=12,解得:x =42,∴需安排42名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套. 19、第十六届亚运会于2010年11月27日在中国广州举行,我国体育健儿发扬奋勇拼搏,敢于争先的奥运精神,在这次亚运会上共获得416枚奖牌,其中金牌数是铜牌数的2倍多3枚,而铜牌数比银牌数少21枚,请问:中国体育健儿共获得金牌、银牌、铜牌各多少枚?答案:共获得金牌199枚,银牌119枚,铜牌98枚.解答:设获得铜牌x枚,则金牌(2x+3)枚,银牌(x+21)枚,则2x+3+x+21+x=416,4x=392,x=98.∴2x+3=199,x+21=119.答:共获得金牌199枚,银牌119枚,铜牌98枚.20、列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子.答案:25个椅子,15个凳子.解答:设有x个椅子.根据题意列方程,得4x+3(40-x)=145.解方程,得:x=25.∴40-x=15.答:有25个椅子,15个凳子.21、某快递员预备送出一批美术用纸共25500包,其中包括素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为1:2:14,该快递员预备送出的这三种美术用纸各多包?答案:素描纸为1500包,手工彩色卡纸为3000包,水粉纸为21000包.解答:设素描纸包数为x,则手工彩色卡纸为2x,水粉纸为14x,∵美术用纸共25500包,∴x+2x+14x=25500,17x=25500,x=1500(包).∴2x=3000(包),14x=21000(包),答:素描纸为1500包,手工彩色卡纸为3000包,水粉纸为21000包.22、制作一张桌子要用1个桌面和4条腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,应分别计划用多少立方米木材制作桌面和桌腿?答案:计划用20立方米木材制作桌面,4立方米木材制作桌腿.解答:计划用x立方米木材制作桌面.则用(24-x)立方米木材制作桌腿.由题意,得20x×4=(24-x)×400.整理,得6x=120,解,得x=20.24-20=4.答:计划用20立方米木材制作桌面,4立方米木材制作桌腿.23、某工厂现有15m3木料,预备制作各种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿.1、已知一张圆桌由一个桌面和一条桌腿组成,如果1m3木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少m3.2、已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.(1)如果1m3木料可制作50个桌面,或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套.(2)如果3m3木料可制作20个桌面,或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子.答案:1、制作桌面的木料为5m3.2、(1)用9m3木料制作桌面,用6m3木料制作桌腿恰好配套.(2)用12m3木料制作桌面,用3m3木料制作桌腿能制作尽可能多的桌子.解答:1、设用x m3木料制作桌面,则用(15-x)立方米木料制作桌腿恰好配套,由题意得40x=20(15-x),解得:x=5.答:制作桌面的木料为5m3.2、(1)设用x m3木料制作桌面,则用(15-x)立方米木料制作桌腿恰好配套,由题意得4×50x=300(15-x),解得:x=9,∴制作桌腿的木料为:15-9=6(m3).答:用9m3木料制作桌面,用6m3木料制作桌腿恰好配套.(2)设用y m3木料制作桌面,则用(15-y)m3木料制作桌腿能制作尽可能多的桌子,由题意得4×20×3y =320×153y , 解得y =12,∴15-12=3m 3.。

和差倍分问题

和差倍分问题

2
1
/
6
/
8
1
三、和差倍分
()设未知数时,要注意单位,相等关系应时表示问题全部含义的关系;()对于方程的解必须检验是否符合实际,对于与现实生活不符的结果,要进行必要的取舍.
()一般情况下,题中多给条件在列方程时不能重复使用,也不能漏掉不用.重复使用,会得到一个恒等式,无法求得方程的解;而漏掉不用,说明所列方程可能有误.
解决此类问题,首先找到题目中表示相等关系的关键词语,如“和、差、积、商、大小、多少、几倍、几分之几”等.
设未知数可以直接设元,也可以间接设元,一般设单位“
”为未知数,方便表示.
爱智康 20
18/06/121231为了支援青海玉树地震灾区人民重建家园,初一年级某班名学生先后两次自愿捐款,共捐款元,已知第二次平均每人捐款数额比第一次平均每人捐款数额多元,问第一次和第二次平均每人捐款各多少元?40520030。

【五年级下册数学】05-列方程解应用题之和差倍问题教师版

【五年级下册数学】05-列方程解应用题之和差倍问题教师版

列方程解决问题之和差倍问题【教学目标】1.能够找出题中的未知量和已知量之间的等量关系2.能够根据这个等量关系列出相应的方程3.能熟练地解方程找出问题的答案【教学重点】1.能够找出题中的未知量和已知量之间的等量关系2.能够根据这个等量关系列出相应的方程【教学难点】1.能够找出题中的未知量和已知量之间的等量关系【教学过程】1.知识点的回顾:列方程解应用题的步骤。

2.引导学生如何找等量关系,列出方程并求解。

3.具体运用:和差倍的运用。

【知识精要】知识点1 列方程解应用题步骤认真审题;(需要画线段图的画出线段图)正确找出等量关系;列出式子或方程;解题并仔细检查或验算,写出答句。

知识点2 和差倍和倍问题和差倍问题,一般先找到问题中两者之间的关系,然后设较小的量为未知量,通过题目中所给的条件,列方程【例题解析】【例1】 一个长方形周长是122米,长比宽多11米,长和宽各是多少米?它的面积是多少? 解:设宽为x 米,则长为(11+x )米 (x+11+x )×2=122 2x+11=61 x=25宽为25米,长为36米,S=36×25=900m 2【例2】已知梯形的面积是78平方米,上底是下底的一半,上底长10.4米,高是多少米?解:设高为x 米, (10.4+10.4×2)x÷2=78 x=5【例3】广场上要做一个星形形状的花园,由四个相同的三角形组成,中间是正方形。

已知每个三角形的高为5米,面积为9平方米。

那么正方形周长为多少米?解:设三角形的底为x 米5x÷2=9 x=3.6正方形的周长为3.6×4=14.4米【例4】如图,已知AB=25cm ,CD=36cm ,BE=22.5cm ,求AC 的长.解:设AC 的长为xcm22.5x÷2=25×36÷2x=40【例5】甲、乙两个化肥厂共生产化肥640吨,甲厂的产量比乙厂的3倍多10吨,两厂各生产化肥多少吨?解:设乙厂生产化肥x 吨 3x+10+x=640 X=157.5 3×157.5+10=482.5(吨)答:甲、乙两厂各生产化肥482.5吨、157.5吨。

列一元一次方程解应用题(三)和差倍分问题讲义知识点经典例题练习

列一元一次方程解应用题(三)和差倍分问题讲义知识点经典例题练习

列方程解应用题(三)【知识要点梳理】和差倍分问题:【典型例题探究】例1.(2008海南中考)根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表1),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?表1:例2.有一只船,载重800吨,容积是795m3,现在装运铁和棉花两种物质,铁每吨体积是0.3m3,棉花每吨体积4m3,钢铁和棉花各装多少吨才能充分利用船舱的载重量和容积?例3.一个三角形三条边长的比是2:4:5,最长的一条边比最短的一条边长6厘米,求这个三角形的周长.例4.(2010北京)2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?例5. 某校组织初一师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数.(2)已知租用45座的客车日租金为每辆车250元,60座的客车日租金为每辆300元,问租用哪种客车更合算?例6. 某地抗洪救灾中,在甲处有146名战士,在乙处有78名战士,现从别处调来160名战士支援救灾,要使甲处的人数是乙处人数的3倍,则应调往甲、乙两处各多少名战士?例7. 为鼓励节约用水,某地按以下规定收取每月水费,如果每月每户用水不超过20吨,那么每吨水费按1.2元收费,如果每月每户用水超过20吨,那么超过部分按每吨2元收费,若某用户五月份的水费平均每吨1.5元,问该用户应交水费多少元?【基础达标演练】1.(2007绵阳中考)学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,共计用了112元,已知每张甲票比每张乙票贵2元,则甲乙票的票价分别是多少?2.(2009湖北恩施)手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?3.(2009北京)北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1 696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?4. 某套书分上、中、下三册,印上册用了全部印刷时间的40%,印中册用了全部印刷时间的36%,印下册用了24天.印完全套书共用了多少天?5. 甲、乙、丙、丁四位同学共集邮370枚.如果给甲补充10枚,给乙减少20枚,给丙的张数扩大到原来的2倍,给丁的张数缩小到原来的21,四个人的邮票数正好相等,那么甲原来有多少枚?6.初一年级甲、乙两个班共有100人,其中参加数学活动小组的有42人,已知甲班学生有31参加数学活动小组,乙班学生有21参加数学活动小组,求各班学生的人数.7. 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?8. 用库存化肥给麦田追肥,如果每亩施肥6千克,库存缺少200千克,如果每亩施肥5千克,库存还剩下300千克,问:有多少亩麦田?库存化肥有多少千克?9. 针对居民用水浪费现象,某市制定居民用水标准规定三口之家楼房,每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费22元,请你通过列方程求出该市三口之家楼房的标准用水量为多少立方米?10.2009年4月深圳出租车(红的一类车)白天的收费标准调整为为:起步价12.5元(即行驶距离不超过3千米都需付12.5元),行驶超过3千米以后,每增加1千米加收2.4元(不足1千米时按1千米计算).张明和王晨乘坐这种出租车去博物馆参观,下车时他们交付了24.5元车费,那么他们搭乘出租车最多走了多少千米(不计等候时间)?【能力提升训练】1.光明中学初中一年级一、二、三班,向希望学校共捐书385本,一班与二班捐书的本数之比为4:3,一班与三班捐书的本数之比为6:7,那么二班捐书多少本?2. 将一批梧桐树苗栽在马路的两旁,若每隔3米栽一棵,则剩下6棵树苗;若每隔2.5米栽一棵,则还缺154棵树苗.求这条马路的长及这批树苗的棵数.3. 黄帝故里的门票价格规定如下表:都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少元钱?(2)两班各有多少名学生?4.(2009湖南省株洲市)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.* 5.(甘肃中考)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数一半,如果在六月份内,团体票每张16元出售,共计划在六月份内售出全部剩余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?。

七年级数学上册《列一元一次方程解应用题和差倍分问题》教案、教学设计

七年级数学上册《列一元一次方程解应用题和差倍分问题》教案、教学设计
2.教学步骤:
a.让学生回顾本节课所学的内容,总结一元一次方程的应用方法。
b.强调解题过程中的关键步骤,如找出等量关系、列方程、解方程等。
c.鼓励学生提出疑问,解答学生在学习过程中遇到的问题。
d.引导学生认识到数学在生活中的重要作用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本章节所学知识,培养学生的独立思考能力和实践操作技能,特布置以下作业:
2.在将实际问题抽象为数学方程时,可能存在困难,需要进一步培养等量关系的理解和运用能力。
3.学生在差倍分问题的解题思路上可能不够清晰,需要引导和训练。
4.部分学生对数学学习的兴趣不足,需要激发学习热情,提高学习积极性。
因此,在教学过程中,教师应关注学生的个体差异,因材施教,通过生动有趣的教学方法,激发学生的学习兴趣,帮助他们克服困难,逐步提高解决实际问题的能力。同时,注重培养学生的团队合作精神,提高他们的沟通与交流能力,使学生在轻松愉快的氛围中掌握知识。
b.差倍分问题的解题步骤是什么?
c.你们在解题过程中遇到了哪些困难?如何克服?
2.教师巡回指导:在小组讨论过程中,教师巡回指导,解答学生疑问,引导学生深入思考。
3.小组汇报:各小组汇报讨论成果,分享解题经验,教师给予点评和指导。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生独立完成。
2.教学步骤:
七年级数学上册《列一元一次方程解应用题和差倍分问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的应用背景,掌握列一元一次方程解决实际问题的基本方法。
2.能够运用等量关系和代数符号准确表达现实生活中的问题,提高将实际问题转化为数学问题的能力。
3.熟练掌握和、差、倍、分等基本数学概念,并能够运用这些概念解决实际问题。

列方程解应用题——和倍问题、差倍问题

列方程解应用题——和倍问题、差倍问题

1、李爷爷家养羊284只,其中大羊的只 数是小羊只数的3倍。大羊和小羊各有多 少只? 2、果园里种着苹果树和核桃树共126棵, 苹果树的棵数是核桃树的8倍。苹果树和 核桃树各有多少棵? 3、果园里的苹果树比梨树多140棵,苹 果树的棵数是梨树的8倍。苹果树和梨树 各有多少棵?
1、图书室文艺书比科技书多180本,文 艺书的本数是科技书的3倍。文艺书和科 技书各有多少本? 2、甲、乙两数相差15,甲数是乙数的4 倍,两数各是多少? 3、少年宫合唱队和舞蹈队共有124人, 合唱队的人数是舞蹈队的3倍。合唱队和 舞蹈队分别有多少人? 4、饲养场养的白兔比黑兔多249只,白 兔是黑兔的4倍,问:饲养场养了白兔、 黑兔各是多少只?
列方程解应用题——
和倍问题 差倍问题
填空
1、舞蹈组有男生x人,女生人数是男 生的2倍,女生有( 2x )人,男女生 共有( 3x )人。
2、城郊中学图书馆有科技书m本,故 事书的本数是科技书的1.8倍,那么, m+1.8m表示(故事书和科技书一共的本数 ), 1.8m—m表示(故事书比科技书多的本数 )。
ห้องสมุดไป่ตู้
5、粮店运来大米和面粉480包,大米的 包数是面粉的3倍,运来大米和面粉各多 少包? 6、甲乙两人年龄的和为29岁,已知甲比 乙小3岁,甲、乙两人各多少岁?
7、一个长方形的周长是240米,长是宽 的1.4倍,长方形的长和宽各是多少? 8、一千克糖的价钱是一千克盐的6倍。 一千克糖比一千克盐贵5元。糖和盐每千 克各是多少钱?

列方程组解应用题的常见题型

列方程组解应用题的常见题型

、列方程组解应用题的常见题型.(1)和差倍分问题:解这类问题的基本等量关系式是:较大量=较小量+多余量,总量=倍数×1倍量.例;第一个容器有49L水,第二个容器有56L水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器容量的二分之一;如果将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是这个容器容量的三分之一,求这两个容器的容量.(2)产品配套问题:解这类问题的基本等量关系式是:加工总量成比例.例:某车间有28名工人参加生产某种特制的螺丝和螺母,已知平均每人每天只能生产螺丝12个或螺母18个,一个螺丝装配两个螺母,问应怎样安排生产螺丝和螺母的工人,才能使每天的产品正好配套?(3)速度问题:解这类问题的基本关系式是:路程=速度×时间.路程差=速度差×时间。

路程和=速度和一般又分为相遇问题、追及问题及环形道路问题例:某人从甲地骑车出发,先以12km/h的速度下山坡,后以9km/h的速度过公路到达乙地,共用55min;返回时,按原路先以8km /h的速度过公路,后以4km/h的速度上山坡回到甲地,共用1h30min,问甲地到乙地共多少千米?例:一列快车长70m,一列慢车长80m,若两车同向而行,快车从追上慢车开始到离开慢车,需要1min;若两车相向而行,快车从与慢车相遇到离开慢车,只需要12s,问快车和慢车的速度各是多少?例:甲、乙两人在200m的环形跑道上练习竞走,乙的速度比甲快,当他们都从某地同时背向行走时,每隔30s种相遇一次;同向行走时,每隔4分钟相遇一次,求甲、乙两人的竞走速度.(4)航速问题:此类问题分水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速例:甲轮从A码头顺流而下,乙轮从B码头逆流而上,两轮同时相向而行,相遇于中点,而乙轮顺流航行的速度是甲轮逆水航行的速度的2倍,已知水流速度是4km/h,求两轮在静水中的速度.(5)工程问题:解这类问题的基本关系式是:工作量=工作效率×工作时间.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.例:一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?例:.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前一天完成任务.问甲、乙两队合做了多少天?丙队加入后又做了多少天?(6)增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.例:某中学校办工厂今年总收入比总支出多30000元,计划明年总收入比总支出多69600元,已知计划明年总收入比今年增加20%,总支出比今年减少8%,求今年的总收入和总支出.(7)盈亏问题:解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.例:为了迎接新学期开学,某服装厂赶制一批校服,要求必须在规定时间内完成,在生产过程中,如果每天生产50套,这将还差100套不能如期完成任务;如果每天生产56套,就可以超额完成80套,问原计划生产校服的套数及原计划规定多少天完成?(8)数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关数的概念、特征及其表示.如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等.有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.例:一个两位数的个位数字比十位数字大5,如果把个位数字与十位数字对换,所得的新两位数与原两位数相加的和为143,求这个两位数.(9)几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式.例:有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.(10)年龄问题:解这类问题的关键是抓住两人年龄的增长数相等,两人的年龄差是永远不会变的.例:师傅对徒弟说:“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的老人了”.问这位师傅与徒弟现在的年龄各是多少岁?1一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2 有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?3.种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容
1.常用“负数”来表示与正数相反的意义,如温度、海拔中均有负数出现。
2.正数表示比0大的数,而负数表示比0小的数,负得越多数越小。
3.类似于温度计,可以将正负数分布在一条直线上,这种直线叫做数轴。我们把规定了原点、正方向、单位长度的一条直线叫做数轴。
4.数轴的画法:
1.画直线(一般画成水平的),定原点,标出原点“0”。
9、学校买来6张桌子和12把椅子,共付元,每把椅子元。每张桌子多少元(先用方程解,再用算术方法解。)
10、菜场运来萝卜25筐,黄瓜32筐,共重1870千克。已知每筐萝卜重30千克,黄瓜每筐重多少千克
11、用两段布做相同的套装,第一段布长75米,第二段长100米,第一段布比第二段布少做10套。每套服装用布多少米
【预习思考】
1. 一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为:
×=
2. 这个公式又可以演变电影院周二下午安排两场电影连映,放映时间一共是200分钟。第一场电影的放映时间是第二场电影的倍。这两场电影的放映时间分别是多少分钟
7、一支钢笔的售价比一支圆珠笔贵7元,是圆珠笔售价的3倍。钢笔和圆珠笔的售价各是多少元
8、小巧将一根长为1米的纸带剪成两段,它们的长度相差18厘米,这两段纸带分别长多少厘米
如果用方程来解决,那么一般将“1倍量”设为未知数,再根据其他条件列出方程。
【例题精讲】
例1.一个三角形的底边长厘米,面积是厘米。它的高是多少厘米
例2.用一根长为28厘米的铁丝围成一个长方形,这个长方形的长是8厘米,宽是几厘米
试一试:
1.一块梯形木版,面积是平方分米,上底是2分米,高是分米,下底长几分米
试一试:
甲、乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人
【课堂练习】
1.五(1)班有花盆的数量是五(2)班的3倍,如果五(2)班再购买20个花盆后,两班花盆数相等,两班原有花盆多少个
答案:五(1)班有30个花盆,五(2)班有10个花盆
2、小胖和小丁丁共有43本漫画书,小胖的漫画书本数比小丁丁少5本,小胖、小丁丁各有多少本漫画书
3、小丁丁买了两套丛书,两套丛书的本数相同,单价分别是6元和元,共花了元,每套丛书有多少本
4、一个长方形,长是宽的倍,如果宽增加2厘米,这个长方形就变成一个正方形,这个长方形的长和宽各是多少厘米
5、书架的上层有120本书,下层有书56本,如果两层书架又各自放上同样的本数的书,这时上层的本数是下层的倍,两层书架都放了几本书
试一试:
1.有两筐梨,甲筐梨重35千克,乙筐梨比甲筐轻7千克,从甲筐取出多少千克梨放入乙筐,两筐梨的重量相等(两种解法)
2.一辆汽车第一天行了3小时,第二天行了5小时,第一天比第二天少行90千米。平均每小时行多少千米
例5.甲水池有水2600立方米,乙水池有水1200立方米,如果甲水池里的水以每分钟23立方米的速度流入乙水池,那么多少分钟后,乙水池中的水是甲水池的4倍
2.取原点向右方向为正方向,那么,向左方向为负方向,并标出箭头。
3.选适当的长度作为单位长度,(必须一样长短)并标出……,-3,-2,-3,1,2,3……各点。(所标的数可以是正数、也可以是分数、小数、)
-3 -2 -1 0 1 2 3
【知识梳理】
解决和、差、倍问题的关键是抓住“1倍量”,找到“多倍数”。
2.一个长方形,长是宽的倍,如果宽增加2厘米,这个长方形就变成一个正方形,这个长方形的长和宽各是多少厘米
例3.果园里梨树和桃树共有365棵,桃树的棵树比梨树的2倍多5棵。果园里梨树和桃树各有多少棵
例4.有两根电线,第二根长度是第一根的倍,如果第二根剪去12米,那么两根电线的长度就相等。第二根电线原来长多少米
2.甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放入乙箱中,则两箱中洗衣粉的袋数相等。求原来两箱洗衣粉各有多少袋
答案:甲箱中有49袋,乙箱中有41袋
3.甲仓库存粮104吨,乙仓库存粮140吨,要使甲仓库的存粮是乙仓库的3倍,那么必须人乙仓库运出多少吨放入甲仓库
答案:79吨
1、今年妈妈的年龄是小巧的3倍,小巧比妈妈小24岁,小巧今年几岁
精锐教育学科教师辅导教案
学员编号: 年 级:五年级 课 时 数:3
学员姓名: 辅导科目:数 学 学科教师:
课程主题:列方程解应用题(一)
授课时间:
学习目标
1、初步掌握列方程解应用题的步骤;
2、在理解题意的基础上正确寻找“和倍”、“差倍”、“和差”应用题的等量关系,初步掌握列方程解两、三步计算的简单实际问题。
相关文档
最新文档