浪涌保护器的作用及分类
浪涌保护分级

浪涌保护分级(原创版)目录1.浪涌保护分级的定义与重要性2.浪涌保护分级的类别3.如何实施浪涌保护分级4.浪涌保护分级的意义和作用正文浪涌保护分级是一种针对电气设备在遭受过电压冲击时进行保护的措施。
在电力系统中,由于雷击、操作失误或其他原因,电气设备可能会遭受到瞬间电压升高的影响,这种电压波动被称为浪涌电压。
浪涌电压可能会对电气设备造成严重的损坏,因此,采取有效的浪涌保护措施是保障电力系统安全稳定运行的关键。
浪涌保护分级主要分为以下几类:1.根据浪涌保护设备的响应速度,可以分为快速响应型和慢速响应型。
快速响应型浪涌保护设备能够在瞬间对浪涌电压进行抑制,而慢速响应型浪涌保护设备则需要较长的时间来响应。
2.根据浪涌保护设备的工作原理,可以分为开关型、限压型和混合型。
开关型浪涌保护设备通过开关控制实现浪涌电压的切断;限压型浪涌保护设备通过调整电阻、电容等参数限制浪涌电压的幅值;混合型浪涌保护设备则综合采用上述两种方式进行浪涌保护。
要实施浪涌保护分级,首先要根据电气设备的特性和电力系统的实际情况,选择合适的浪涌保护设备。
在选择浪涌保护设备时,需要考虑设备的响应速度、工作原理、保护范围、抑制效果等因素。
同时,还需要制定合理的浪涌保护分级策略,确保在发生浪涌电压时,各个设备能够按照预先设定的顺序和方式进行保护。
浪涌保护分级的意义和作用主要体现在以下几个方面:1.有效保护电气设备:通过实施浪涌保护分级,可以避免浪涌电压对电气设备造成损坏,提高设备的使用寿命和运行稳定性。
2.保障电力系统安全稳定运行:浪涌保护分级能够降低电力系统因浪涌电压导致的故障率,从而确保电力系统的安全稳定运行。
3.优化资源配置:通过合理制定浪涌保护分级策略,可以实现对电力系统资源的优化配置,提高系统的运行效率和经济效益。
综上所述,浪涌保护分级在电力系统中具有重要的作用。
浅析浪涌保护器的应用及选型

浅析浪涌保护器的应用及选型浪涌保护器是一种用于保护电气设备免受浪涌电压或浪涌电流影响的装置。
在电力系统中,由于雷电、开关操作、电动机启动等原因,会产生浪涌电压或浪涌电流,如果这些浪涌电压或电流超过了设备所能承受的范围,就会对设备造成损害甚至损坏。
浪涌保护器的应用对于保护电气设备的稳定运行具有非常重要的意义。
浪涌保护器的应用场景非常广泛,不仅包括工业生产中的各种电气设备,还包括信息通信系统、建筑物电气系统、交通信号控制系统等各个领域。
在这些领域中,浪涌保护器起到了保护各种电气设备免受浪涌电压或浪涌电流的作用,保障了设备的安全稳定运行。
在选择浪涌保护器时,首先需要根据具体的应用场景和电气设备的特性来进行选择。
一般来说,可以从以下几个方面来进行选型。
需要考虑被保护设备的额定工作电压和额定工作电流。
这是选择浪涌保护器的基本参数,需要确保浪涌保护器的额定工作电压和额定工作电流能够满足被保护设备的需求。
需要考虑被保护设备的工作环境。
不同的工作环境可能会受到不同程度的雷电影响,因此需要选择适合于不同工作环境的浪涌保护器,例如户外环境需要防水防雷的浪涌保护器。
还需要考虑浪涌保护器的响应时间和耐受能力。
浪涌保护器的响应时间越短越好,能够更快地将浪涌电压或浪涌电流导入地线,减少对设备的影响。
浪涌保护器需要具有一定的耐受能力,能够承受一定程度的浪涌电压或浪涌电流而不损坏。
还需要考虑浪涌保护器的安装方式和接地方式。
不同的安装方式和接地方式对于浪涌保护器的效果有一定的影响,需要根据具体情况来进行选择。
浪涌保护器的应用及选型需要综合考虑被保护设备的特性、工作环境以及浪涌保护器本身的性能参数,选择适合的浪涌保护器才能更好地保护电气设备免受浪涌电压或浪涌电流的影响。
只有在正确选择并合理应用浪涌保护器的情况下,才能有效地保障电气设备的安全稳定运行。
一级二级三级浪涌保护器参数

一级二级三级浪涌保护器参数一级二级三级浪涌保护器参数是指电气设备的浪涌保护器可分为三级,即一级、二级、三级。
一级浪涌保护器具有最大的浪涌能量和抗扰度,用于定位和抑制大型浪涌影响和防止浪涌传播到后端设备。
二级浪涌保护器用于抑制中等强度的浪涌干扰,具有较高的抗扰度。
三级浪涌保护器有较低的浪涌保护能力,但可以有效抑制小功率的浪涌干扰。
1、一级浪涌保护器参数(1) 工作电压:一般情况下,一级浪涌保护器的工作电压为220V或380V,可根据具体情况选择合适的电压。
(2) 抗浪涌能量:一级浪涌保护器的抗浪涌能量主要取决于使用场合,如住宅区、工厂、机房等,一般要求抗浪涌能量应不小于50KJ。
(3) 吸收电流:一级浪涌保护器的吸收电流一般在2KA以上,可根据具体使用情况选择合适的吸收电流。
(4) 电流容量:一级浪涌保护器的电流容量一般在20KA以上,可根据具体使用情况选择合适的电流容量。
2、二级浪涌保护器参数(1) 工作电压:二级浪涌保护器的工作电压一般在110V-220V之间,可根据具体情况选择合适的电压。
(2) 抗浪涌能量:二级浪涌保护器的抗浪涌能量一般在10KJ以上,可根据具体使用情况选择合适的抗浪涌能量。
(3) 吸收电流:二级浪涌保护器的吸收电流一般在1KA以上,可根据具体使用情况选择合适的吸收电流。
(4) 电流容量:二级浪涌保护器的电流容量一般在10KA以上,可根据具体使用情况选择合适的电流容量。
3、三级浪涌保护器参数(1) 工作电压:三级浪涌保护器的工作电压一般介于110V和220V之间,可根据具体情况选择合适的电压。
(2) 抗浪涌能量:三级浪涌保护器的抗浪涌能量一般在5KJ以上,可根据具体使用情况选择合适的抗浪涌能量。
(3) 吸收电流:三级浪涌保护器的吸收电流一般在500mA以上,可根据具体使用情况选择合适的吸收电流。
(4) 电流容量:三级浪涌保护器的电流容量一般在5KA以上,可根据具体使用情况选择合适的电流容量。
浪涌保护器的基本认识

浪涌保护器的基本认识一、浪涌保护器简介浪涌保护器(SPD),也叫防雷器、避雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。
适用于交流50/60HZ,额定电压至380V的供电系统中,对间接雷电和直接雷电影响或其他瞬时过压的电涌进行保护,适用于家庭住宅、第三产业以及工业领域电涌保护的要求,具有相对相,相对地,相对中线,中线对地及其组合等保护模式。
二、浪涌保护器的作用1、电源浪涌保护器安装在电源线路上,在雷击环境下,有效保护用电设备的安全。
电源浪涌保护器主要安装在直流和交流配电系统的进户总配电柜和各分级配电柜中。
根据《建筑物防雷设计规范》GB50057-2010中有关防雷分区的划分及保护要求,全面的电源雷电防护分为四级。
但是实际上,会根据使用方预算及建筑物和被保护设备的重要程度,采取三级以上电源浪涌保护措施,这样能够有效地保护用电设备的安全。
2、信号浪涌保护器安装在各类信号线路上,雷击环境下,保护弱电设备的安全随着微电子设备的广泛应用,为了做好全面的防护,信号浪涌保护是非常重要的雷电防护措施,主要包括监控信号、视频信号、电话信号、网络信号、控制信号、天馈信号等六大类。
信号浪涌保护器串联安装在被保护设备(摄像机、网络交换机、电话交换机等)前端,在雷击环境下,有效降低信号线路的瞬态过电压,保证信号线路的安全,从而保护信号线路上的弱电设备。
三、浪涌保护器的原理浪涌保护器的原理跟组成浪涌保护器的元器件有很大的关系,具体如下:1、放电间隙放电间隙一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。
放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。
改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。
一级浪涌保护和二级浪涌保护

一级浪涌保护和二级浪涌保护是用于电力系统或电子设备中的浪涌保护措施。
1. 一级浪涌保护:
一级浪涌保护是指在电力系统或设备中采取的第一道浪涌保护措施。
其主要目的是通过限制或吸收突发电压的浪涌,保护设备免受可能造成损坏或故障的异常电压波动。
一级浪涌保护通常包括以下几种形式:
- 浪涌抑制器:使用浪涌抑制器,如二极管、金属氧化物压敏器(MOV)等,来吸收过电压,并确保其不传递到受保护设备上。
- 隔离变压器:通过使用隔离变压器来提供电气绝缘,以保护设备免受外部浪涌的影响。
2. 二级浪涌保护:
二级浪涌保护是第二道浪涌保护措施,其目的是在一级浪涌保护之后提供更进一步的保护。
二级浪涌保护旨在处理一级保护无法完全防御的浪涌电压。
常见的二级浪涌保护设备有:
- 浪涌保护器:使用专门设计的浪涌保护器,如避雷器、瞬态电压抑制器(TVS)等。
这些设备能够毫秒级地响应浪涌,将过电压引至地线或抵消电压峰值,以保护设备不受损害。
- 过滤器:通过安装滤波器来降低电源供应中的高频噪声和干扰,进而提供更好的浪涌保护。
一级和二级浪涌保护通常会相互配合使用,以提供全面的浪涌保护。
这两种保护措施的具体应用取决于具体设备的需求、环境条件和相关标准要求。
在电力系统和电子设备的设计和使用中,适当的浪涌保护是非常重要的,可以保证设备的正常运行和延长其寿命。
汽车充电桩浪涌保护器的应用方案和作用

汽车充电桩浪涌保护器的应用方案和作用随着电动汽车的普及,充电桩的建设也越来越多,但是充电桩也面临着雷电等自然灾害的威胁,如果没有有效的防雷措施,可能会造成充电桩的损坏,甚至引发火灾、爆炸等严重后果。
因此,为了保证充电桩的安全运行,需要在充电桩中安装浪涌保护器,以减少雷电对充电桩的影响0浪涌保护器是一种用于限制瞬态过电压和泄放电涌电流的电子装置,它可以在雷击环境下,有效地保护充电桩中的供电设备、监控设备、通信设备等。
浪涌保护器一般与被保护的设备并联,当产生过电压时,可以起到分流和限压的效果,防止过大的电流与电压对设备产生损害。
根据《电动汽车充电站(桩)防雷技术导则》,充电桩的防雷设计应先进行雷电风险评估,然后根据评估结果采取相应的防护措施。
防护措施主要包括直击雷防护和感应雷防护两方面。
直击雷防护主要是通过接闪器、下导线、接地装置等构成外部雷电防护装置,将雷击引入大地;感应雷防护主要是通过在进线线路上安装浪涌保护器等构成内部雷电防护装置,将感应雷浪涌泄放或限制。
充电桩中所用的浪涌保护器应符合《低压电涌保护器第1部分:低压配电系统的保护器性能要求和试验方法》2中的要求,产品应通过第三方测试并获得检测报告。
根据不同的安装位置和功能,地凯科技浪涌保护器可以分为以下几类:一级浪涌保护器:安装在充电站进线端或总配电柜中,主要用于承受直击雷或感应雷产生的大幅值冲击波形(10/350us),其额定冲击波形峰值(Iimp)应不小于12.5kA.二级浪涌保护器:安装在分级配电柜中或与一级浪涌保护器之间,主要用于承受感应雷产生的小幅值冲击波形(8∕20us),其额定冲击波形峰值(Imax)应不小于60kA。
三级浪涌保护器:安装在被保护设备前端或与二级浪涌保护器之间,主要用于进一步降低残余过电压,其额定冲击波形峰值(In)应不小于20kA。
信号浪涌保护器:安装在各类信号线路上,如监控信号、视频信号、电话信号、网络信号等,主要用于限制信号线路上的瞬态过电压和泄放信号线路上的瞬态过电流。
浪涌保护器及其应用

浪涌保护器及其应用随着电子技术的高速发展,个人PC机、大中型计算机及相关信息设备的大量应用,使建筑物防雷击电磁脉冲(过电压)愈来愈受到大家的重视,由此,越来越多的过电压保护产品投入市场,浪涌保护器SPD(SurgeProtectiveDevice)也逐渐为人们所熟悉。
1浪涌保护器设置的前提(1)对于设置信息系统的建筑物,是否需要防雷击电磁脉冲,应在完成直接、间接损失评估和建设、维护投资预测后认真分析和综合考虑,做到安全、适用、经济。
因为浪涌保护器较其他开关电器相对昂贵,要尽量减少开发商的经济负担,就不能不讲投资而盲目设置;(2)在工程设计阶段不知道信息系统的规模和具体位置的情况下,若预计将来会有信息系统,应在设计时将建筑物的金属支撑物、金属框架或钢筋混凝土的钢筋等自然构件、金属管道、配电的保护接地系统等与防雷装置组成一一个共用接地系统,并应在一些合适的地方(如弱电机房等处)预埋等电位联结板;(3)合理划分防雷区,根据物体可能遭受雷击的可能性和电磁场强度的衰减程度,将建筑物划分为LPZ0A区、LPZ0B区、LPZ1区……LPZn+1区,要求在两个防雷区的界面上将所有通过界面的金属物(如管道、电力和通信线路等)做等电位联结,并宜采取屏蔽措施(注意LPZ0A区与LPZ0B区之间无界面)。
2屏蔽、接地和等电位联结措施2.1屏蔽屏蔽是减少电磁干扰的基本措施,在实施过程中宜在建筑物和房间的外部设屏蔽,并以合适的路径敷设,屏蔽线路。
(1)所有与建筑物组合在一起的大尺寸金属件(如屋顶金属表面、立面金属表面、混凝土内钢筋和金属门窗框架)都应做等电位联结,并与防雷装置相连;(2)屏蔽电缆的做法:电缆屏蔽层应至少在两端并宜在防雷区交界处做等电位联结,当系统要求只在一端做等电位联结时,应采用有绝缘隔开的双层屏蔽,外层屏蔽应至少在两端做等电位联结;(3)非屏蔽电缆的做法:在分开的各建筑物之间的非屏蔽电缆应敷设在金属管道内,并确保金属管道从一端到另一端应是导电贯通的,应分别连到各分开的建筑物的等电位联结带上。
浅析浪涌保护器的应用及选型

浅析浪涌保护器的应用及选型一、浪涌保护器的应用随着现代电子设备和通信设备的普及,对电源系统的稳定和可靠性要求也越来越高。
而电力系统中浪涌是电子设备和通信设备最常见的故障源之一,因此浪涌保护器的应用就显得尤为重要。
1. 在电源系统上的应用浪涌保护器在电源系统中主要用于保护设备免受雷击和其它高能量干扰的影响。
在电源系统中,浪涌保护器通常设置在进线处,将受到的雷击和突波干扰引到地线,从而保护整个电源系统的正常运行。
浪涌保护器在通信系统中的应用同样重要。
通信设备通常会受到来自外部的雷击和浪涌干扰,因此设置浪涌保护器就显得尤为重要。
浪涌保护器可以将受到的干扰引到地线,保护通信设备免受这些干扰的影响,确保通信系统的稳定性和可靠性。
在选择浪涌保护器时,需要考虑以下几个方面。
1. 工作电压浪涌保护器的工作电压需要符合电源系统或通信系统的电压要求,通常需要根据实际情况选用合适的工作电压范围。
2. 额定放电电流浪涌保护器的额定放电电流需要满足系统的保护要求。
一般情况下,额定放电电流需要大于电源系统或通信系统可能受到的浪涌电流,以确保能够有效地保护系统。
3. 响应时间浪涌保护器的响应时间也是选型时需要考虑的重要因素。
响应时间越短,保护效果越好。
一般情况下,响应时间需要在纳秒级别,以确保能够有效地抵御突发的浪涌干扰。
4. 耐压能力浪涌保护器需要具有良好的耐压能力,能够在受到高能量的浪涌干扰时保持稳定的性能,不产生击穿或损坏。
5. 安装方式浪涌保护器的安装方式也需要考虑。
根据实际情况,可以选择直接安装在设备上,也可以选择安装在配电箱或控制箱内部。
浪涌保护器作为保护电子设备和通信设备的重要装置,在电源系统、通信系统和工业控制系统中都具有重要的应用价值。
在选型时,需要考虑工作电压、额定放电电流、响应时间、耐压能力和安装方式等因素,以确保选择到合适的浪涌保护器,保护系统的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浪涌保护器的作用及分类
雷电放电可能发生在云层之间或云层内部,或云层对地之间;另外许多大容量电气设备的使用带来的内部浪涌,对供电系统(中国低压供电系统标准:AC 50Hz 220/380V)和用电设备的影响以及防雷和防浪涌的保护,已成为人们关注的焦点。
云层与地之间的雷击放电,由一次或若干次单独的闪电组成,每次闪电都携带若干幅值很高、持续时间很短的电流。
一个典型的雷电放电将包括二次或三次的闪电,每次闪电之间大约相隔二十分之一秒的时间。
大多数闪电电流在10,000至100,000安培的范围之间降落,其持续时间一般小于100微秒。
供电系统内部由于大容量设备和变频设备等的使用,带来日益严重的内部浪涌问题。
我们将其归结为瞬态过电压(TVS)的影响。
任何用电设备都存在供电电源电压的允许范围。
有时即便是很窄的过电压冲击也会造成设备的电源或全部损坏。
瞬态过电压(TVS)破坏作用就是这样。
特别是对一些敏感的微电子设备,有时很小的浪涌冲击就可能造成致命的损坏。
供电系统浪涌的影响
供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。
雷击对地闪电可能以两种途径作用在低压供电系统上:
(1)直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。
发生的概率相对较低。
(2)间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。
内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关:
供电系统内部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。
特别是计算机、通讯等微电子设备带来致命的冲击。
即便是没有造成永久的设备损坏,但系统运行的异常和停顿都会带来很严重的后果。
比如核电站、医疗系统、大型工厂自动化系统、证券交易系统、电信局用交换机、网络枢纽等。
直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。
在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。
雷电电流在电力线上传输的距离为一公里或更远,在雷击点附近的峰值电流可达100kA或以上。
在用户进线口处低压线路的电流每相可达到5kA到10kA。
在雷电活动频繁的区域,电力设施每年可能有好几次遭受雷电直击事件引起严重雷电电流。
而对于采用地下电力电缆供电或在雷电活动不频繁的地区,上述事件是很少发生的。
间接雷击和内部浪涌发生的概率较高,绝大部分的用电设备损坏
与其有关。
所以电源防浪涌的重点是对这部分浪涌能量的吸收和抑制。
对于低压供电系统,浪涌引起的瞬态过电压(TVS)保护,最好采用分级保护的方式来完成。
从供电系统的入口(比如大厦的总配电房)开始逐步进行浪涌能量的吸收,对瞬态过电压进行分阶段抑制。
[第一道防线] 应是连接在用户供电系统入口进线各相和大地之间的大容量电源防浪涌保护器。
一般要求该级电源保护器具备100KA/相以上的最大冲击容量,要求的限制电压应小于2800V。
我们称为CLASS I 级电源防浪涌保护器(简称SPD))。
这些电源防浪涌保护器是专为承受雷电和感应雷击的大电流和高能量浪涌能量吸收而设计的,可将大量的浪涌电流分流到大地。
它们仅提供限制电压(冲击电流流过SPD时,线路上出现的最大电压成为限制电压)为中等级别的保护,因为CLASS I级的保护器主要是对大浪涌电流的吸收。
仅靠它们是不能完全保护供电系统内部的敏感用电设备。
[第二道防线] 应该是安装在向重要或敏感用电设备供电的分路配电设备处的电源防浪涌保护器。
这些SPD对于通过了用户供电入口浪涌放电器的剩余浪涌能量进行更完善的吸收,对于瞬态过电压具有极好的抑制作用。
该处使用的电源防浪涌保护器要求的最大冲击容量为40KA/相以上,要求的限制电压应小于2000V。
我们称为CLASS II 级电源防浪涌保护器。
一般的用户供电系统作
到第二级保护就可以达到用电设备运行的要求了。
[最后的防线] 可在用电设备内部电源部分使用一个内置式的电源防浪涌保护器,以达到完全消除微小瞬态的瞬态过电压的目的。
该处使用的电源防浪涌保护器要求的最大冲击容量为20KA/相或更低一些,要求的限制电压应小于1800V。
对于一些特别重要或特别敏感的电子设备,具备第三级的保护是必要的。
同时也可以保护用电设备免受系统内部产生的瞬态过电压影响。