避雷器与浪涌保护器
spd及避雷知识汇总

SPD(浪涌保护器)定义Surge Protective Device(SPD),浪涌保护器,又名电涌保护器、防雷器、避雷器,用于保护用电设备免遭雷电电磁脉冲或操作过电压破坏。
实物图简介1. 电涌保护器的种类名目繁多的避雷器在我国的市场上已经超过了上百种,如何对不同品牌、不同型号的避雷器进行分类也许就摆在我们面前。
分类从组合结构分;现在市场上的避雷器有几下几种:1)间隙类————开放式间隙、密闭式间隙2)放电管类———开放式放电管密封式放电管3)压敏电阻类——单片、多片4)抑制二极管类5)压敏电阻/气体放电管组合类----简单组合、复杂组合6)碳化硅类按照其保护性质有可以分为:开路式避雷器、短路式避雷器或开关型、限压型;按照工作状态(安装形式)又可分为:并联避雷器和串联式避雷器。
结构及特性2避雷器的结构及特性2.1间隙避雷器2.1.1开放式间隙避雷器间隙避雷器的工作原理:基于电弧放电技术,当电极间的电压达到一定程度时,击穿空气电弧在电极上进行爬电。
优点:放电能力强,通流量大(可以达到100KA)漏电流小热稳定性好缺点:残压高,反映时间慢,存在续流工艺特点:由于金属电极在放电时承受较大电流,所以容易造成金属的升华,使放电腔内形成金属镀膜影响避雷器的启动和正常使用。
放电电极的生产主要还是集中在国外一些避雷器生产企业,,电极的主要成分是钨金属的合金。
工程应用:该种结构的避雷器主要应用在电源系统做B级避雷器使用。
但由于避雷器自身的原因容易引起火灾,避雷器动作后(飞出)脱离配电盘等事故。
根据型号的不同适合与各种配电制式。
工程安装时一定要考虑安装距离,避免引起不必要的损失和事故。
2.1.2 密闭式间隙避雷器现在国内市场有一种多层石墨间隙避雷器,这种避雷器主要利用的是多层间隙连续放电,每层放电间隙相互绝缘,这种叠层技术不仅解决了续流问题而且是逐层放电,无形中增大了产品自身的通流能力。
优点:放电电流大测试最大50KA(实际测量值)漏电流小无续流无电弧外泻热稳定性好缺点:残压高,反映时间慢工艺特点:石墨为主要材料,产品内采用全铜包被解决了避雷器在放电时的散热问题,不存在后续电流问题,最大的特点是没有电弧的产生,且残压与开放式间隙避雷器比较要低很多。
雷欧力 交流电源电涌保护器(SPD)技术 说明书

欧雷克I级电涌保护器(Surge Protection Device,简称SPD )(又称防雷器、避雷器、浪涌保护器、过压保护器),适用于交流380V (50Hz/60Hz )及以下的TN-S、TN-C-S、TT、IT等供电系统因雷击而产生的电磁脉冲(EMP )保护,用于雷击区域的LPZ OA或LPZB区与LPZ1区交界处,其设计依据符合GB18802.1,IEC61643-1技术标准。
交流电源电涌保护器(SPD)技术说明书产品介绍防雷器技术参数1、可选遥信端子报警功能,便于远程报警监控。
2、最高可承受100KA(8/20μs)雷电流冲击。
3、反应速度快,动作响应时间小于25ns。
4、阻燃外壳设计,可方便地安装在35mm电气导轨上。
5、内置热脱扣失效脱离装置,使保护器因过热、击穿失效时能自动断开。
6、可视告警窗口颜色表示保护的工作状态,绿色(正常)、红色(故障)。
功能特点电涌保护器(SPD )是电子设备雷电防护中不可缺少的一种装置,其作用原理是在正常情况下,电涌保护器处于极高的电阻状态,从而保证电源系统正常工作;当系统线路上出现电涌过电压、过电流时,SPD的电阻突变或持续下降为低阻抗,SPD立即在纳秒级的时间内导通,将电涌能量通过SPD泄放入大地;当电涌过后,电涌保护器又迅速恢复为高阻状态,从而不影响系统正常供电。
工作原理防雷器安装注意事项1、防雷器并联安装于线路当中,且记。
2、线路请勿接反或接错。
3、防雷器安装在被保护设备前端越近效果越好。
4、设备需要定期检查,产品劣化后必须立即更换。
5、切记不可带电作业。
产品应用和安装位置该系列I级电涌保护器适用于雷击区域的LPZOA区或LPZOB区与LPZ1区区界面处,通常并联安装在埋地穿管进线低压入户端主配电柜处,做第一级防雷保护。
-1--2-防雷器安装方法及图示L1L2L3N(4P)单线接线法侧面4PL1L2L3N(4P)凯文件接线法T EL :0755-******** A DD :广东省深圳市龙华区观澜狮径路核电工业园A 栋2楼 Web:T EL :0755-******** A DD :广东省深圳市龙华区观澜狮径路核电工业园A 栋2楼 Web:。
避雷器、过电压保护器、浪涌保护器的区别

避雷器、过电压保护器、浪涌保护器的区别
1、避雷器: 又称:surge
arrester,能释放雷电或兼能释放电力系统操作过电压能量,保护电工设备免受瞬时过电压危害,又能截断续流,不致引起系统接地短路的电器装置。
避雷器通常接于带电导线与地之间,与被保护设备并联。
当过电压值达到规定的动作电压时,避雷器立即动作,流过电荷,限制过电压幅值,保护设备绝缘;电压值正常后,避雷器又迅速恢复原状,以保证系统正常供电。
2、过电压保护器[1]为一种新型的过电压保护器,主要用于保护发电机、变压器、真空开关、母线、电动机等电气设备的绝缘免受过电压的损害,过电压保护器是限制雷电过电压和操作过电压的一种先进的保护电器。
3、浪涌保护器对间接雷电和直接雷电影响或其他瞬时过压的电涌进行保护,适用于家庭住宅、第三产业以及工业领域电涌保护的要求,具有相对相,相对地,相对中线,中线对地及其组合等保护模式。
是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。
当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害
从三者功能看避雷器保护的是雷电带来的高电压破坏力,过电压保护器保护的是雷电和供电网络带来的电压过高造成的损害,浪涌保护器保护的是雷电带来的高电压、高电流带来的损害。
防雷器的电压等级及防护等级

防雷器也称:避雷器,浪涌保护器,SPD防雷器分类:电压开关型SPD:无电涌出现呈高阻抗,当出现电涌电压时突变为低阻抗的SPD.电压限压型SPD:无电涌出现呈高阻抗,水电用电流和电压的增加,阻抗跟着连续变小的SPD。
B级防雷器(第〡等级):由于特殊设计,能够直接承受直击雷的能量和释放部分直击雷及电流的防雷器。
C级防雷器(第〢等级):能够释放远距离或传导雷击的能量和释放部分直接雷击电流的防雷器。
D级防雷器(第〣等级):为了保护终端负载而设计的精密保护防雷器。
电压要求:电压等级的选择。
信号防雷器的最高工作电压的选择,是依据通信线路的工作电压来确定的。
一般来说,信号防雷器的最高工作电压必须大于通信线路工作电压的1.2倍。
参数:标称电压Un:与被防护系统的额定电压相符,例如:230/380V。
工作电压:在电网电压波动范围内具备正常运行的能力。
最大持续运行电压Uc:加在浪涌防护器接线端的最大连续工作电压的有效值。
Uc值必须与标称电压相符,在使用说明的规定范围内。
标称电压un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器类型,它标出交流或直流电压的有效值。
额定电压uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。
额定放电电流ISN:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。
最大放电电流IMAX:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
避雷器的主要种类、特点及应用场合:防雷器的种类基本上分三大类型:一是电源避雷器(安装时主要是并联方式,也串联方式)按电压的不同,分220V的单相电源防雷器和380V的三相电源防雷器。
二是信号防雷器,多数用于计算机网络、通信系统上,安装的方式是串联。
三是天馈线防雷器,使它适用于有发射机天线系统和接收无线电信号设备系统,连接方式也是串联。
防雷工程专业术语及雷电浪涌保护器名词解释

防雷工程专业术语及雷电浪涌保护器名词解释1、雷电次数当雷暴进行时,隆隆的雷声持续不断,若其间雷声的时间间隔小于15分钟时,不论雷声断续传播的时间有多长,均算作是一次雷暴:若其间雷声的停息时间在15分钟以上时,就把前后分作是两次雷暴。
2、雷电小时就是说在该天文小时内发生过雷暴,更通俗些说是在这个时间里曾听到过雷声而不论雷暴持续时间的长短如何。
某一地区的〃年雷电小时数〃也就是说该地区一年中有多少个天文小时发生过雷暴,而不管在某一小时内雷暴是足足继续了一小时之久,还是只延续了数分钟。
3、宙暴日数也叫做雷电日数。
这是我们所最熟悉的。
只要在这一天内曾经发生过雷暴,听到过雷声,而不论雷暴延续了多长时间,都算作一个雷电日。
"年雷电日数”等于全年雷电日数的总和。
4、雷暴月数也叫做雷电月数,即指在这一个月内曾发生过雷暴。
〃年雷暴月数”也就是指一年中有多少个月发生过雷暴。
5.标称导通电压UIn1A又称为动作电压,当通过SPD的直流电流达至ImA峰值时,SPD两端的电压为动作电压。
6.最大持续运行电压UC指允许持久施加在SPD上的最大交流电压有效值或直流电压。
目前大家已有共识,只有在环境较好的城市或新建项目可以使用275VAC的电源浪涌保护器,在通常情况下使用Uc大于320VAC或385VAC还是一个明智的选择。
7.额定负载电流1能对SPD保护的输出端连接负载提供的最大持续额定交流电流有效值或直流电流。
8.标称放电电流In依据特殊分类试验要求,通过浪涌保护器而有8/20μS波形的涌流峰9.最大放电电流I.»x浪涌保护器能安全泄放的8/20μS波形的涌流峰值。
10.雷电脉冲电流IMP类似于自然雷电特性(峰值,电荷量和比能)的10/35OUS波形的模拟雷电电流;雷电流避雷器必须能泄放这样的雷电流数次而不损坏。
11.总放电电流多相浪涌保护器或组合型单相浪涌保护器总的脉冲电流泄放能力。
12.中断能力(后继电流灭弧能力)在UC下能被防雷器自身灭弧的主要后续电流的有效值,参看EDINVDE0675-6/A:1996-03;13.短路承受能力当同上级熔断器相连接时,防雷器能承受的最大短路电流;14.过载保护防止主电源线路因过载导致保护器过热损坏而加装的过载保护设备。
浪涌保护器和避雷器的区别

浪涌保护器和避雷器的区别对于电力系统中的电气设备而言,浪涌和雷击都是常见的问题。
浪涌和雷击会对电气设备造成不同程度的损坏,甚至可能导致设备的短路、火灾等安全事故。
为了保护电气设备的安全运行,我们通常会使用浪涌保护器和避雷器。
浪涌保护器和避雷器都属于电力系统的过电压保护装置。
它们的主要作用是为了保护电气设备免于过电压的侵害。
然而,它们在工作原理、适用范围、使用方法以及应用场合上都存在很大的差异。
浪涌保护器工作原理浪涌保护器是通过快速隔离和限制浪涌过电压,将过电压的能量释放到地线上,保护电气设备不受过电压侵害。
浪涌保护器相当于一种“消弧器”,它可以在电气设备中引入一个小的不规则电容,利用这个电容来消除过度电压。
适用范围浪涌保护器一般用于保护电气设备不受瞬态过电压和电磁脉冲的影响,比如对于机器人、医疗设备、工业设备等高敏感电子产品使用浪涌保护器可以有效的保护设备免受过电压伤害。
使用方法浪涌保护器的安装位置通常设置在供电线路与受电设备之间,可以直接与设备的输入端口相连,可以在电源线或信号线上安装,视具体的应用场景而定。
需要注意的是,浪涌保护器的工作原理需要保证地线的良好使用,因此在使用时需要注意地线的连接和接地。
避雷器工作原理避雷器是一种用来抵抗雷击过电压的设备。
其主要是通过引导电纹波的能量,将电纹波的能量放到地球上,以达到防雷的目的。
避雷器的工作原理类似于一台变压器,其主要是根据不同的电场和电荷性质之间的相互作用,将电纹波能量导入地线上。
适用范围避雷器主要用于通讯、计算机及各种电气设备中,其主要作用是防止雷击、雷电波等异常电压的伤害。
使用方法避雷器可以分为外避雷器和内避雷器两种,其安装位置的选择要根据具体的应用场合而定,对于高压变压器室、电子设备室、通讯设施等设备,通常都需要安装避雷器。
避雷器需要经过质检认证,使用时一定要严格按照厂商的安装说明、技术规范及安全操作规程等使用。
浪涌保护器与避雷器的区别总体来看,浪涌保护器和避雷器的主要区别在于:1.工作原理不同:浪涌保护器是通过限制浪涌过电压,将能量释放到地线上以保护设备;避雷器是通过引导电纹波的能量,将电纹波的能量导入地线。
避雷器(浪涌保护器)的设计与选择

避雷器(浪涌保护器)的设计与选择摘要目前,智能电子设备广泛应用于日常生产生活中,由于智能电子设备自身耐过电压的水平较低,雷电流电磁脉冲引着电源线、信号线、网线等窜入室内,危害仪器设备,给企业财产、安全生产造成了一定的损失。
为了加强建(构)筑物内部电子设备的雷电防护,正确设计选择安装避雷器(浪涌保护器),有效保护低压设备迫在眉睫。
关键词避雷器(浪涌保护器);设计;安装电子设备感应灵敏,且自身耐过电压的水平较低,雷闪期间,雷电流脉冲波会引着电源线、信号线、网线等窜入室内,危害仪器设备,给企业财产、安全生产造成了一定的损失。
2010年8月2日,中卫香山机场遭雷击,雷电流脉冲波引着电源线窜入室内,烧坏了航站楼内德国进口的电子设备主板,造成直接经济损失20多万元;2007年,中卫长河化工厂遭雷电感应袭击,配电室2个空气开关烧坏,直接经济损失2万多元。
正确设计选择安装避雷器(浪涌保护器),有效保护耐过电压水平较低且感应灵敏的电子设备,对企业安全生产、防雷减灾意义重大。
1浪涌保护器的参数浪涌保护器常用的参数包括:标准电压Un、额定电压Uc、额定放电电流Isn、最大放电电流Imax、电压保护级别Up:、响应时间Ta、数据传输速率Vs、插入损耗Ae:、回波损耗Ar。
2浪源电涌保护器选型《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:“电涌保护器必须能承受通过它们的雷电流,并应符合两个要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流”。
2.1最大放电电流按照《建筑物防雷设计规范》GB50057-94(2000年版)相关条款:“全部雷电流的50%流入建筑物的防雷装置,另外50%流入建筑物的各种外来导电物、电力线、通信线、网线等设施”。
图1进入建筑物各种设施的雷电流分配图雷电波进入建筑内电力线、信息线、金属管道等,总配电间的低配供电线雷电流的分流,如表1所示。
2.2电压保护水平Up选择合适的最大放电电流固然重要,但电涌保护器的保护水平也不能忽略。
浪涌保护器的主要技术参数

浪涌保护器的主要技术参数(最新版)目录1.浪涌保护器的定义和作用2.浪涌保护器的主要技术参数3.浪涌保护器技术参数的解释4.浪涌保护器的应用场景5.如何选择合适的浪涌保护器正文浪涌保护器,又称防雷器,是一种用于保护电子设备、仪器仪表和通讯线路安全的电子装置。
当电气回路或通信线路因外界干扰突然产生尖峰电流或电压时,浪涌保护器能够在极短时间内导通分流,从而避免浪涌对回路其他设备器材造成损害。
浪涌保护器适用于交流 50/60Hz,额定电压220V 至 380V 的供电系统(或通信系统),能够对间接雷电和直接雷电影响(或瞬时过压)的电涌进行保护。
浪涌保护器的主要技术参数包括:1.额定耐受最大冲击电流:表示浪涌保护器能够承受的最大冲击电流值,通常以 kA 为单位。
例如,CPM-R100T 型号的浪涌保护器的额定耐受最大冲击电流为 100kA。
2.标称放电电流:表示浪涌保护器在特定条件下能够正常工作的最大放电电流值,通常以 kA 为单位。
例如,CPM-R100T 型号的浪涌保护器的标称放电电流为 40kA。
3.响应时间:表示浪涌保护器从接收到浪涌信号到开始导通的时间,通常以微秒(μs)为单位。
响应时间越短,浪涌保护器的保护效果越好。
4.保护电压水平:表示浪涌保护器能够保护的电压范围,通常以伏特(V)为单位。
保护电压水平越低,浪涌保护器对设备提供的保护越全面。
5.波形:表示浪涌保护器能够承受的浪涌波形,通常以字母和数字组合表示,如 10/350us、8/20us 等。
不同的波形对应的防护能力有所不同。
在选择浪涌保护器时,需要根据实际应用场景选择合适的技术参数。
例如,在家庭住宅中,可以选择额定耐受最大冲击电流较小、保护电压水平较低的浪涌保护器;而在工业领域中,则需要选择额定耐受最大冲击电流较大、保护电压水平较低的浪涌保护器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
避雷器和电涌保护器运用说明目录一、定义二、防雷器与浪涌保护器的比较三、线路避雷器运用及其说明四、浪涌保护器设计原理、特性、运用范畴五、参考依据与文献一、定义1.避雷器避雷器是变电站保护设备免遭雷电冲击波袭击的设备。
当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。
2.浪涌保护器也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。
当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。
➢从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。
二、避雷器与浪涌保护器的比较避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。
但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢?首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。
而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。
也就是说,避雷器对二次雷、三次雷几乎不起作用。
其次,LEMP导入地后,会从地返回形成感应雷。
感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。
由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。
更何况,导线部分往往不会安装避雷器。
再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。
根据分析来回答电涌保护器(SPD,有的称浪涌保护器)和避雷器的区别:1、应用范围不同(电压):避雷器范围广泛,有很多电压等级,一般从0.4kV低压到500kV超高压都有(详见楼上分析),而SPD一般指1kV以下使用的过电压保护器;2、保护对象不同:避雷器是保护电气设备的,而SPD浪涌保护器一般是保护二次信号回路或给电子仪器仪表等末端供电回路。
3、绝缘水平或耐压水平不同:电器设备和电子设备的耐压水平不在一个数量级上,过电压保护装置的残压应与保护对象的耐压水平匹配。
4、安装位置不同:避雷器一般安装在一次系统上,防止雷电波的直接侵入,保护架空线路及电器设备;而SPD浪涌保护器多安装于二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;所以避雷器多安装在进线处;SPD多安装于末端出线或信号回路处。
5、通流容量不同:避雷器因为主要作用是防止雷电过电压,所以其相对通流容量较大;而对于电子设备,其绝缘水平远小于一般意义上的电器设备,故需要SPD对雷电过电压和操作过电压进行防护,但其通流容量一般不大。
(SPD一般在末端,不会直接与架空线路连接,经过上一级的限流作用,雷电流已经被限制到较低值,这样通流容量不大的SPD完全可以起到保护作用,通流值不重要,重要的是残压。
)6、其它绝缘水平、对参数的着眼点等也有较大差异。
7、浪涌保护器适用于低压供电系统的精细保护,依据不同的交直流电源电床可选择各种相应的规格。
电源浪涌保护器一精细由于终端设备离前级浪涌保护器距离较大,从而使得该线路上容易产生振荡过电压或感应到其他过电压。
适用于终端设备的精细电源浪涌保护,与前级浪涌保护器配合使用,则保护效果更好。
8、避雷器主材质多为氧化锌(金属氧化物变阻器中的一种),而浪涌保护器主材质根据抗浪涌等级、分级防护(IEC61312)的不同是不一样的,而且在设计上比普通防雷器精密得多。
9、从技术上来说,避雷器在响应时间、限压效果、综合防护效果、抗老化特性等方面都达不到浪涌保护器的水平。
共同点:都能防止雷电过电压因为上述原因,SPD也就应运而生。
SPD的原理是把LEMP转化为热能进行消解,由于不是导通式,反应速度非常快,可低于纳秒,可以有效防止二次雷和三次雷。
SPD 分为电源SPD,精密仪器SPD,数字线路SPD,而且也是双向作用的,因此可以有效防止感应雷。
因此,IEEE标准规定,在安装避雷器的同时应该加上SPD,以形成防雷的双保险。
此外,SPD对于内部的80%的浪涌也能起到有效抑制作用,这是避雷器所不能做到的。
总体上讲,避雷器是专门针对电气设备免受雷电冲击波所设置的防护设备,而浪涌保护器是比避雷器更先进的防护设备,除开雷电冲击波,还可以极大程度消弱电力系统自身所产生的其它破坏性浪涌冲击。
在用电单位高压进线系统(10KV及以上)已装设避雷器的情况下,在低压系统中就应装设防护功能更精密的浪涌保护器。
三、避雷器运用与说明1、线路避雷器防雷的基本原理雷击杆塔时,一部分雷电流通过避雷线流到相临杆塔,另一部分雷电流经杆塔流入大地,杆塔接地电阻呈暂态电阻特性,一般用冲击接地电阻来表征。
雷击杆塔时塔顶电位迅速提高,其电位值为Ut=iRd L.di/dt (1)式中i——雷电流;Rd——冲击接地电阻;L.di/dt——暂态分量。
当塔顶电位Ut与导线上的感应电位U1的差值超过绝缘子串50的放电电压时,将发生由塔顶至导线的闪络。
即Ut-U1>U50,如果考虑线路工频电压幅值Um的影响,则为Ut-U1 Um>U50。
因此,线路的耐雷水平与3个重要因素有关,即线路绝缘子的50放电电压、雷电流强度和塔体的冲击接地电阻。
一般来说,线路的50放电电压是一定的,雷电流强度与地理位置和大气条件相关,不加装避雷器时,提高输电线路耐雷水平往往是采用降低塔体的接地电阻,在山区,降低接地电阻是非常困难的,这也是为什么输电线路屡遭雷击的原因。
加装避雷器以后,当输电线路遭受雷击时,雷电流的分流将发生变化,一部分雷电流从避雷线传入相临杆塔,一部分经塔体入地,当雷电流超过一定值后,避雷器动作加入分流。
大部分的雷电流从避雷器流入导线,传播到相临杆塔。
雷电流在流经避雷线和导线时,由于导线间的电磁感应作用,将分别在导线和避雷线上产生耦合分量。
因为避雷器的分流远远大于从避雷线中分流的雷电流,这种分流的耦合作用将使导线电位提高,使导线和塔顶之间的电位差小于绝缘子串的闪络电压,绝缘子不会发生闪络,因此,线路避雷器具有很好的钳电位作用,这也是线路避雷器进行防雷的明显特点。
以往输电线路防雷主要采用降低塔体接地电阻的方法,在平原地带相对较容易,对于山区杆塔,则往往在4个塔脚部位采用较长的辐射地线或打深井加降阻剂,以增加地线与土壤的接触面积降低电阻率,在工频状态下接地电阻会有所下降。
但遭受雷击时,因接地线过长会有较大的附加电感值,雷电过电压的暂态分量L.di/dt会加在塔体电位上,使塔顶电位大大提高,更容易造成塔体与绝缘子串的闪络,反而使线路的耐雷水平下降。
因为线路避雷器具有钳电位作用,对接地电阻要求不太严格,对山区线路防雷比较容易实现。
2 线路避雷器使用及动作情况淄博电业局管辖的110kV龙博1线和35kV南黑线、炭谢线位于丘陵和山地,多年来经常发生雷击跳闸故障,据统计110kV龙博1线在1989~1996年共发生5次雷击掉闸,35kV南黑线、炭谢线分别在1994~1997年各发生6次雷击掉闸,虽然采取了各种措施,效果均不明显。
1997年在易遭雷击的龙博1线62~64号和南黑线87、89、90号及炭谢线51号分别装设了7组共20只线路型氧化锌避雷器,安装方式是在龙博1线和南黑线各悬挂3组9只,在炭谢线51号上相和下相各悬挂1只(该杆不久前遭雷击),经过2个雷雨季节的考验,线路未发生故障及掉闸事故。
3避雷器的选型及安装维护线路避雷器有2种类型,即带串联间隙和无串联间隙2种,因运行方式不同和电站避雷器相比在结构设计上也有所区别。
线路避雷器安装时应注意:(1)选择多雷区且易遭雷击的输电线路杆塔,最好在两侧相临杆塔上同时安装;(2)垂直排列的线路可只装上下2相;(3)安装时尽量不使避雷器受力,并注意保持足够的安全距离;(4)避雷器应顺杆塔单独敷设接地线,其截面不小于25mm2,尽量减小接地电阻的影响。
投运后进行必要的维护:(1)结合停电定期测量绝缘电阻,历年结果不应明显变化;(2)检查并记录计数器的动作情况;(3)对其紧固件进行拧紧,防止松动;(4)5a拆回,进行1次直流1mA及75参考电压下泄漏电流测量。
四、浪涌保护器设计原理、特性、运用范畴➢设计原理在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。
如下图所示,MOV将火线和地线连接在一起。
MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。
这些半导体具有随着电压变化而改变的可变电阻。
当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。
反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。
如果电压正常,MOV会闲在一旁。
而当电压过高时,MOV可以传导大量电流,消除多余的电压。
随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。
按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。
打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。
另一种常见的浪涌保护装置是气体放电管。
这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现此功能。
当电压处于某一特定范围时,该气体的组成决定了它是不良导体。
如果电压出现浪涌并超过这一范围,电流的强度将足以使气体电离,从而使气体放电管成为非常良好的导体。
它会将电流传导至地线,直到电压恢复正常水平,随后它又会变成不良导体。
这两种方法都是采用并联电路设计——多余的电压从标准电路流入另一个电路。
有几种浪涌保护器产品使用串联电路设计抑制电涌——它们不是将多余的电流分流到另一条线路,而是通过降低流过火线的电量。
基本上说,这些抑制器在检测到高电压时会储存电能,随后再逐渐释放它们。
制造这种保护器的公司解释说该方法可以提供更好的保护,因为它反应速度更快,并且不会向地线分流,但另一方面,这种分流可能会干扰建筑物的电力系统。
抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。
抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7.➢抑制二极管的技术参数主要有:(1)额定击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在2.9V~4.7V范围内,而雪崩二极管的额定击穿电压常在5.6V~200V范围内。