刘徽的数学贡献复习过程

合集下载

刘徽的数学贡献

刘徽的数学贡献

刘徽的数学贡献1.极限观念与割圆术极限意识在春秋战国时已出现,实际加以应用的是刘徽。

刘徽已领悟到数列极限的要谛,故能有重要创获。

刘徽的杰出贡献首推他在《九章算术注》中创立的割圆术,其所用方法包含初步的极限概念和直线曲线转化的思想。

在一千五百年前能运用这种思想,是难能可贵的。

有了割圆术,也就有了计算圆周率的理论和方法。

圆周率是圆周长和直径的比值,简称π值。

π值是否正确,直接关系到天文历法、度量衡、水利工程和土木建筑等方面的应用,所以精确计算π值,是数学上的一个重要任务。

2.关于体积计算的刘徽定理一般地说,柱体或多面体的体积计算较比容易解决,而圆锥、圆台之类的体积就难以求得。

刘徽经过苦心思索,终于找到了一条途径,他分别做圆锥的外切正方锥和圆台的外切正方台,结果发现:“求圆亭(圆台)之积,亦犹方幂中求圆幂,圆面积与其外切正方形的面积之比为π∶4,由此他推得:圆台(锥)的体积与其外切正方台(锥)的体积之比,也是π∶4。

很显然,如果知道了正方台(锥)的体积,即可求得圆台(锥)的体积。

刘徽这个成果,看似简单,实际起着继往开来的重要作用,故有的现代数学家称之为“刘徽定理”。

在古代没有微积分的时候,这条定理起着微积分的作用,在现代数学中仍有共价值。

刘宋时祖冲之、祖暅父子继承刘徽定理而得出更为进步的祖氏原理。

在西方,直到1635年意大利数学家卡瓦列利才有了与祖氏父子类似的思想,比祖氏父子已晚了一千一百多年,比刘徽更迟了一千三百多年。

3.十进小数的应用在数学计算或实际应用中总不免出现奇零小数,在刘徽以前,一般是用分数或命名制来表示,如“一升又五分升之三”,即升。

或七分八厘九毫五忽”等,在位数较少时,尚可凑合,当小数位数太多时,便很不方便,因之刘徽建立了十进分数制。

他以忽为最小单位,不足忽的数,统称之为微数,开平方不尽时,根是无限小数,这又是无限现象。

他说:“微数无名者以为分子,其一退以十为分母,再退以百为母,退之弥下,其分弥细,则朱幂(已经开出去的正方形面积)虽有所弃之数(未能开出的部分),不定言之也”。

数学史复习总结整理篇

数学史复习总结整理篇

数学史复习第0章数学史――人类文明史的重要篇章一、数学史研究哪些内容?P1数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。

二、了解数学史有何意义?P1~5数学史不是单纯的数学成就的编年记录,而是数学家在自然科学领域内克服困难、战胜危机和发现真理的斗争记录。

❖(1)了解数学史有助于数学的进一步发展❖(2)对数学家创造过程的了解则可以使我们从前人的探索与奋斗中汲取教益,获得鼓舞和增强信心❖(3)了解数学史就有助于全面了解数学科学❖(4)了解数学史就有助于全面了解整个人类文明史❖(5)要想当好数学教师,充实数学史知识是非常必要的三、历史上关于数学概念的定义有哪些? P6-8历史上对数学的定义,有几种著名的论断:❖数学是量的科学。

(希腊哲学家亚里士多德,公元前4世纪)❖凡是以研究顺序和度量为目的的科学都与数学有关。

(法国数学家笛卡儿,17世纪)❖数学是研究现实世界的空间形式与数量关系的科学。

(恩格斯)❖数学可以定义为这样一门学科,我们永远不知道其中所说的是什么,也不知道所说的内容是否正确。

(罗素)❖数学这个领域已被称为模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。

(数学的新定义)四、数学史通常采用哪些线索进行分期?本书对数学史如何分期? P9不同的线索将给出不同的分期,通常采用的线索如:1.按时代顺序;2.按数学对象、方法等本身的质变过程;3.按数学发展的社会背景。

对数学史作出如下的分期:❖Ⅰ.数学的起源与早期发展(公元前6世纪前)❖Ⅱ.初等数学时期(公元前6世纪一16世纪)❖ (1)古代希腊数学(公元前6世纪一6世纪)❖ (2)中世纪东方数学(3世纪一15世纪)❖ (3)欧洲文艺复兴时期(15世纪一16世纪)❖Ⅲ.近代数学时期(或称变量数学建立时期,17世纪一18世纪)❖Ⅳ.现代数学时期(1820’一现在)❖ (1)现代数学酝酿时期(1820’一1870)❖ (2)现代数学形成时期(1870—1940’)❖ (3)现代数学繁荣时期(或称当代数学时期,1950一现在)第1章数学的起源与早期发展一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?P13-14巴比伦楔形数字(六十进制)、玛雅数字(二十进制)、古埃及的象形数字、中国甲骨文数字、希腊阿提卡数字、中国筹算数码、印度婆罗门数字(十进制)二、“河谷文明”指的是什么?P16历史学家往往把兴起于埃及、美索不达米亚、中国和印度等地域的古代文明称为“河谷文明”.早期数学,就是在尼罗河、底格里斯河与幼发拉底河、黄河与长江、印度河与恒河等河谷地带首先发展起来的.三、关于古埃及数学的知识主要依据哪两部纸草书?纸草书中问题绝大部分都是实用性质,但有个别例外,请举例。

简述刘徽的主要数学贡献

简述刘徽的主要数学贡献

简述刘徽的主要数学贡献
刘徽是中国古代数学家之一,他的主要数学贡献包括以下几个方面:
1. 著作了《九章算术注》和《海岛算经》
刘徽为《九章算术》做了注释,在注释的过程中,他证明了大量几何问题的解法,其中包括一些重要的数学定理,如刘徽定理和刘徽体积公式等。

此外,他还著作了《海岛算经》,其中讨论了测量和几何问题。

2. 创新了数学方法
刘徽在数学方法上有很多创新,其中包括“齐同术”、“分数的通分”、“刘徽倍数术”等。

这些方法不仅为当时的数学研究提供了重要的工具,而且对于现代数学的发展也有很大的影响。

3. 证明了大量数学定理
刘徽在数学中证明了大量定理,其中包括“刘徽定理”、“刘徽体积公式”、“刘徽割圆术”等。

这些定理不仅在当时的数学研究中具有重要的意义,而且对于现代数学的研究也有很大的启示作用。

4. 提出了数学教育思想
刘徽在数学教育方面也有很大的贡献,他提出的“以筹为意”、“广引事例”、“审于接通,而精于证明”等教育思想,对于当时的数学教育产生了深远的影响,并且对于我们今天的数学教育也具有重要的启示作用。

总之,刘徽是中国古代数学史上的杰出人物之一,他的数学贡献对于中国数学的发展产生了深远的影响,并且对于我们今天的数学研究和实践也具有重要的启示作用。

浅谈古代数学家刘徽的贡献及其思想

浅谈古代数学家刘徽的贡献及其思想

浅谈古代数学家刘徽的贡献及其思想刘徽的数学贡献1.极限观念与割圆术极限意识在春秋战国时已出现,实际加以应用的是刘徽。

刘徽已领悟到数列极限的要谛,故能有重要创获。

刘徽的杰出贡献首推他在《九章算术注》中创立的割圆术,其所用方法包含初步的极限概念和直线曲线转化的思想。

在一千五百年前能运用这种思想,是难能可贵的。

有了割圆术,也就有了计算圆周率的理论和方法。

圆周率是圆周长和直径的比值,简称π值。

π值是否正确,直接关系到天文历法、度量衡、水利工程和土木建筑等方面的应用,所以精确计算π值,是数学上的一个重要任务。

2.关于体积计算的刘徽定理一般地说,柱体或多面体的体积计算较比容易解决,而圆锥、圆台之类的体积就难以求得。

刘徽经过苦心思索,终于找到了一条途径,他分别做圆锥的外切正方锥和圆台的外切正方台,结果发现:“求圆亭(圆台)之积,亦犹方幂中求圆幂,圆面积与其外切正方形的面积之比为π∶4,由此他推得:圆台(锥)的体积与其外切正方台(锥)的体积之比,也是π∶4。

很显然,如果知道了正方台(锥)的体积,即可求得圆台(锥)的体积。

刘徽这个成果,看似简单,实际起着继往开来的重要作用,故有的现代数学家称之为“刘徽定理”。

在古代没有微积分的时候,这条定理起着微积分的作用,在现代数学中仍有共价值。

刘宋时祖冲之、祖暅父子继承刘徽定理而得出更为进步的祖氏原理。

在西方,直到1635年意大利数学家卡瓦列利才有了与祖氏父子类似的思想,比祖氏父子已晚了一千一百多年,比刘徽更迟了一千三百多年。

3.十进小数的应用在数学计算或实际应用中总不免出现奇零小数,在刘徽以前,一般是用分数或命名制来表示,如“一升又五分升之三”,即升。

或七分八厘九毫五忽”等,在位数较少时,尚可凑合,当小数位数太多时,便很不方便,因之刘徽建立了十进分数制。

他以忽为最小单位,不足忽的数,统称之为微数,开平方不尽时,根是无限小数,这又是无限现象。

他说:“微数无名者以为分子,其一退以十为分母,再退以百为母,退之弥下,其分弥细,则朱幂(已经开出去的正方形面积)虽有所弃之数(未能开出的部分),不定言之也”。

简述刘徽的主要数学贡献

简述刘徽的主要数学贡献

简述刘徽的主要数学贡献刘徽是中国南北朝时期著名的数学家、天文学家、地理学家和制图学家,他是中国数学史上的杰出人物,被誉为“中国数学之父”。

他活动的时间大约是3世纪末到4世纪初,是《九章算术》以后,中国数学高度发展时期的代表人物之一。

刘徽在各个领域都有卓越的贡献。

其中最著名的莫过于《九章算术》中的“方程”,也就是横轴定位法。

横轴定位法是代数方程解法中的一种古老方法,被认为是中国数学史上的一个创举。

这种方法可以将方程转化为一条直线和一个曲线的交点问题,从而求出未知量。

在《九章算术》中,横轴定位法主要用于解决代数方程的根问题。

刘徽在《九章算术》中还发展了类似“勾股定理”的几何定理,通过几何形象的证明,使得许多在古代算法中不易理解的问题更加清晰易懂。

此外,刘徽还借鉴了古代埃及和巴比伦的数学知识,融入到中国数学中来,丰富了中国数学的内涵。

除了代数方程,刘徽在天文学、地理学和制图学方面也有很多重要的贡献。

在天文学方面,他在《太和历》中提出了较为准确的日、月、岁的等差数列和中气定位方法。

这些方法大大提高了天文学的准确性,促进了中国天文学的发展。

在地理和制图方面,刘徽曾编纂了《水经注》和《世经》等著作,对中国地理和制图的发展产生了深远影响。

同时,刘徽还是一位伟大的教育家和思想家。

他提倡数学教育,将数学视为一种重要的文化传承和技能培养。

在他的《九章算术》中,提出了“师必自深”,即“教师必须自己掌握深刻的知识和技能,才有资格向学生灌输知识”。

总之,刘徽是中国数学史上的巨匠,其贡献不仅体现在数学领域,而且广泛涉及天文学、地理学、制图学、教育学等多个领域。

他的成就为后世数学家提供了许多启示,对世界数学的发展也产生了深远的影响。

浅谈古代数学家刘徽的贡献及其思想

浅谈古代数学家刘徽的贡献及其思想

92019年7月上第13期总第134期历史文化早在古代时期,中国数学发展水平已经在世界上名列前茅,尤其是魏晋南北朝时期的刘徽,作为该时期杰出的数学家,他总结了大量的数学理论概念,为我国的数学思想和方法做出杰出贡献,并为中国传统数学理论发展奠定了坚实基础。

其中,刘徽在《九章算术注》中总结了体积公理、十进分数理论、正负数定义及有关运算法则、方程的定义及其应用、刘徽原理以及割圆术等,这些数学方面的成就在中国古代历史中占据着重要的地位[1]。

一、古代数学家刘徽的贡献概述我国古代数学家刘徽被称为中国历史上最伟大的数学家之一,并在世界数学历史上占有一定地位,其编写的《海岛算经》和《九章算术注》是我国历史上重要的数学著作。

诞生于东汉的《九章算术注》中主要注解了246个问题,比如几何图形面积计算、正负数运算、分数四则运算以及解联立方程等。

这些成就远远领先于其他国家的数学水平,但是由于很多问题的解法非常原始,很多证明过程缺失。

对此,刘徽进行了补充证明,有效的证明过程进一步展现出刘徽的创造力。

同时,刘徽是世界上提出十进小数理论的人,同时对无理数立方根进行了有效表示。

刘徽通过相应的转化能够对分数的平均值进行计算,其中关于代数方面的成就非常明显,刘徽正式提出加减运算浅谈古代数学家刘徽的贡献及其思想◎李秀艳(唐山市路北区鹤祥实验小学 河北 唐山 063020)【摘 要】阐述古代数学家刘徽的数学思想,对刘徽的极限思想、数形结合思想、转化思想、逻辑推理思想及其贡献进行论述。

刘徽是中国历史上最伟大的数学家之一,其编写的《海岛算经》和《九章算术注》远远领先于其他国家的数学水平,创造出具有代表性、复杂性和创造性的题目,并积极倡导直观性和推理性解答数学题。

【关键词】数学思想 数学理论 数学思维【中图分类号】G623.5 【文献标识码】A 【文章编号】1674-3520(2019)13-09-02 【收稿日期】2019-06-15【作者简介】李秀艳(1970- ),女,汉族,河北唐山人,本科,唐山市路北区鹤祥实验小学,中小学高级职称;研究方向:小学数学。

《九章算术》的数学贡献.doc

《九章算术》的数学贡献.doc

《九章算术》的数学贡献刘徽是我国古代伟大的数学家.他于公元263年注写了《九章算术》,在现存文献中,第一次对我国古代这部最著名的数学著作中正确的解法进行了全面论述和创造性证明,并对其中某些错误给予驳正,取得了很大的成就,奠定了我国古代数学的理论基础.(1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。

《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。

“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.《九章算术》中有比较完整的分数计算方法,包括四则运算,通分、约分、化带分数为假分数等等。

其步骤与方法大体与现代的雷同。

分数加减运算,《九章算术》已明确提出先通分,使两分数的分母相同,然后进行加减。

加法的步骤是“母互乘子,并以为实,母相乘为法,实如法而一”这里“实”是分子。

“法”是分母,“实如法而一”也就是用法去除实,进行除法运算,《九章算术》还注意到两点:其一是运算结果如出现“不满法者,以法命之”。

就是分子小于分母时便以分数形式保留。

其二是“其母同者,直相从之”,就是分母相同的分数进行加减,运算时不必通分,使分子直接加减即可。

《九章算术》中还有求最大公约数和约分的方法。

求最大公约数的方法称为“更相减损”法,其具体步骤是“可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也。

以等数约之。

”这里所说的“等数”就是我们现在的最大公约数。

可半者是指分子分母都是偶数,可以折半的先把它们折半,即可先约去2。

不都是偶数了,则另外摆(即副置)分子分母算筹进行计算,从大数中减去小数,辗转相减,减到余数和减数相等,即得等数。

在《九章算术》的第二、三、六等章内,广泛地使用了各种比例解应用问题。

粟米章的开始就列举了各种粮食间互换的比率如下:“粟米之法:粟率五十,粝米三十,粺米二十七,糳米二十四,……”(图1-23)这是说:谷子五斗去皮可得糙米三斗,又可舂得九折米二斗七升,或八拆米二斗四升,……。

小学数学教材中的数学史――数学家刘徽

小学数学教材中的数学史――数学家刘徽

小学数学教材中的数学史――数学家刘徽【摘要】刘徽的数学成绩在中国乃至世界数学史上都产生了深远阻碍,人教版小学数学教材别离介绍了刘徽在小数、面积计算、圆周率计算和正负数表示方面的成绩,文章对以上内容作了详细介绍,同时还介绍了刘徽的其他数学成绩,为小学数学教师进一步了解刘徽的数学成绩提供帮忙.中国论文网 /9/【关键词】刘徽;小数;割圆术;负数;阳马术刘徽是我国数学史上一位伟大的数学家,他在数学方面取得的成就在中国乃至世界数学史上都产生了深远影响.他一生取得了许多数学成就,尤其是他在几何、分数、重差术等方面的研究对数学发展具有深刻的意义.基于刘徽对数学发展所做的重大贡献,人教版小学数学教材分别在四年级下册第33页“小数的意义和性质”部分介绍了刘徽对小数发展的贡献(图1);在五年级上册“梯形的面积”部分介绍了刘徽的“出入相补”原理(图2);在六年级上册“圆的面积”部分介�B了刘徽的“割圆术”(图3);在六年级下册“负数”部份介绍了刘徽对负数进展的奉献(图4).其内容之多仅次于《九章算术》,因此,为了让小学一线数学教师能够更详细地了解刘徽的数学成绩,并将其在教学中进行渗透,以下将结合小学数学教材进一步详细介绍刘徽的数学成绩.一、徽数“徽数”也就是我们今天的小数.公元3世纪左右,刘徽在注解《九章算术》时,我国的长度单位是:丈、尺、寸、分、厘、毫、秒、忽,忽是最小的单位,刘徽在研究中遇到忽以下的数,他没有继续命名,而是创造了十进小数,刘徽称作“徽数”,他在《九章算术注》的方田章圆田术注、少广章开方术注和少广章开立圆术注中分别用到了十进小数.这是世界上对小数的最早认识.[1]二、出入相补原理出入相补原理是指:一个平面图形从一处移置它处,面积不变.即若把图形分割成若干块,那么各部分面积的和等于原来图形的面积,因而,图形移置前后各面积间的和、差有简单的相等关系.立体的情形也是这样.刘徽在《海岛算经》的“测望术”中使用这一原理,历史上这一原理至迟在战国时代就已经被广泛认识和应用了.[2]今天的小学数学教材利用出入相补原理进行三角形、梯形等平面图形面积的推导.三、割圆术割圆术是刘徽为《九章算术》方田章“圆田术”作注时引入的.《九章算术》提出了圆田术:半周半径相乘得积步.这就是圆面积公式:其中S,L,r分别是圆面积、周长和半径.在刘徽之前人们用圆内接正六边形的周长代替圆周长.为了证明这一公式,刘徽提出了割圆术,刘徽从圆的内接正六边形出发,将边数逐次加倍(图5),并计算逐次得到的正多边形的周长和面积.刘徽指出:“以六觚之一面乘半径,因而,三之,得十二觚之幂.若又割之,次以十二觚之一面乘半径,因而,六之,则得二十四觚之幂.割之弥细,所失弥少.割之又割,以至于不可割,则与圆合体而无所失矣.”也就是说,当分割的次数无限增加时,则存在圆内接正多边形面积的极限,此极限就是圆面积,即刘徽计算到了圆内接正192边形,求得圆周率的近似值.他自己也认为“此率尚微少”.[3]南北朝时期的祖冲之算出了圆周率数值的上下限:592 6<π< 592 7一般认为这个“正数”范围的获得是沿用了刘徽的割圆术.事实上,如果按刘徽割圆术从正六边形出发连续算到正24576边形,恰好可以得到祖冲之的结果.[4]四、负数负数一般定义为小于零的数.中国古代没有负数一词,但有“负”(亦作负算).目前国内外一致公认最早的负数记法出现于中国的《九章算术》.《九章算术》“正负术”中给出正确的负数运算法则,公元263年(魏景元四年)刘徽的《九章算术注》把正与负看成是相对存在的数的两种情况,刘徽指出“正算赤,负算黑.否则以邪正为异”.说明负数可以用黑色算筹或者以斜画的筹表示,刘徽在世界数学史上第一个采取了把数的正负与加减运算关系统一起来的做法.[3,5]五、其他成就(一)阳马术《九章算术》“商功章”阳马术给出阳马的体积公式为其三条直角边乘积的三分之一,即(二)球体积计算刘徽作球的外切立方体,再在立方体内作两个与球半径相同的互相垂直的圆柱,刘徽称这两个圆柱的公共部分为“牟合方盖”(图7).他指出用水平面去截球和“牟合方盖”所得的面积比为π∶4,因此,球和“牟合方盖”的体积比也为π∶4,只要能够求出“牟合方盖”的体积即可取得球的体积.[8]但是,刘徽没有能够直接求出“牟合方盖”的体积.并将刘徽的思想上升为理论,提出了祖��原理“缘幂势既同,那么积不容异”,[9]即两个等高立体若是在所有等高处的水平截面积相同,那么两个立体的体积相同.(三)重差术刘徽在《海岛算经》中借助于相似勾股形的比例关系和中国古代的“重差术”计算山上的松高,这是刘徽对中国古代重差理论的进一步发展,展示了勾股比例和重差测量的演化历程.[3] 【。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刘徽的数学贡献
1.极限观念与割圆术极限意识在春秋战国时已出现,实际加以应用的是刘徽。

刘徽已领悟到数列极限的要谛,故能有重要创获。

刘徽的杰出贡献首推他在《九章算术注》中创立的割圆术,其所用方法包含初步的极限概念和直线曲线转化的思想。

在一千五百年前能运用这种思想,是难能可贵的。

有了割圆术,也就有了计算圆周率的理论和方法。

圆周率是圆周长和直径的比值,简称π值。

π值是否正确,直接关系到天文历法、度量衡、水利工程和土木建筑等方面的应用,所以精确计算π值,是数学上的一个重要任务。

2.关于体积计算的刘徽定理一般地说,柱体或多面体的体积计算较比容易解决,而圆锥、圆台之类的体积就难以求得。

刘徽经过苦心思索,终于找到了一条途径,他分别做圆锥的外切正方锥和圆台的外切正方台,结果发现:“求圆亭(圆台)之积,亦犹方幂中求圆幂,圆面积与其外切正方形的面积之比为π∶4,由此他推得:圆台(锥)的体积与其外切正方台(锥)的体积之比,也是π∶4。

很显然,如果知道了正方台(锥)的体积,即可求得圆台(锥)的体积。

刘徽这个成果,看似简单,实际起着继往开来的重要作用,故有的现代数学家称之为“刘徽定理”。

在古代没有微积分的时候,这条定理起着微积分的作用,在现代数学中仍有共价值。

刘宋时祖冲之、祖暅父子继承刘徽定理而得出更为进步的祖氏原理。

在西方,直到1635年意大利数学家卡瓦列利才有了与祖氏父子类似的思想,比祖氏父子已晚了一千一百多年,比刘徽更迟了一千三百多年。

3.十进小数的应用在数学计算或实际应用中总不免出现奇零小数,在刘徽以前,一般是用分数或命名制来表示,如“一升又五分升之三”,即升。

或七分八厘九毫五忽”等,在位数较少时,尚可凑合,当小数位数太多时,便很不方便,因之刘徽建立了十进分数制。

他以忽为最小单位,不足忽的数,统称之为微数,开平方不尽时,根是无限小数,这又是无限现象。

他说:“微数无名者以为分子,其一退以十为分母,再退以百为母,退之弥下,其分弥细,则朱幂(已经
开出去的正方形面积)虽有所弃之数(未能开出的部分),不定言之也”。

用现代方法写其方根近似值是忽。

4.改进了线性方程组的解法《九章算术》中有一章专讲线性方程组问题。

用一种“直除法”求解,即解方程组时把多个未知数逐步减少到一个未知数,然后反过来求出所有未知数的值。

“直除法”的消元(未知数)要通过对应项系数累减的办法来完成,比较麻烦。

刘徽对“直除法”加以改进,在解二元一次方程组时,用了“互乘对减”的方法,一次消去一项,如同后来的加减消元法。

刘徽虽然只用过一次“互乘对减法”,但他知此法带有普遍性,可以推广到任何元数的线性方程组。

刘徽还使用配分比例法解线性方程组,也是有创造性的成果。

在欧洲,直到十六世纪法国数学家布丢解线性方程的方法才与《九章算术》的“直除法”相似,然而已比《九章算术》晚了一千七百多年,而且没有刘徽改进的解法好。

5.总结和发展了重差术我国古代,将用“表”(标杆)或“矩”(刻划以留标记)进行两次测望的测量方法称做“重差术”。

《九章算术注》中第九章《句股》,主要讲测量高、深、广、远问题,说明当时测量数学和测绘地图已有相当水平。

刘徽《重差》一卷所以被改称《海岛算经》就是因为其第一题是讲测量海岛的。

“重差”之名,古已有之,刘徽对之进行了深入而具体的研究,他解释重差的含义说:“凡望极高,测绝深,而兼知其远者,必用重差,勾股则必以重差为率,故曰:重差也”。

刘徽的《海岛算经》共答案。

其解法都可以变成平面三角公式,起着与三角同等的作用,可说是我国古代特有的三角法。

相关文档
最新文档