南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

合集下载

南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

NUAALet 3P (the vector space of real polynomials of degree less than 3) defined by(())'()''()p x xp x p x σ=+.(1) Find the matrix A representing σ with respect to the ordered basis [21,,x x ] for 3P .(2) Find a basis for 3P such that with respect to this basis, the matrix B representing σ is diagonal.(3) Find the kernel (核) and range (值域)of this transformation. Solution: (1)221022x x x x σσσ===+()()() 002010002A ⎛⎫⎪= ⎪ ⎪⎝⎭----------------------------------------------------------------------------------------------------------------- (2)101010001T ⎛⎫ ⎪= ⎪ ⎪⎝⎭(The column vectors of T are the eigenvectors of A)The corresponding eigenvectors in 3P are 1000010002T AT -⎛⎫⎪= ⎪ ⎪⎝⎭(T diagonalizes A ) 22[1,,1][1,,]x x x x T += . With respect to this new basis 2[1,,1]x x +, the representingmatrix of σis diagonal.------------------------------------------------------------------------------------------------------------------- (3) The kernel is the subspace consisting of all constant polynomials.The range is the subspace spanned by the vectors 2,1x x +-----------------------------------------------------------------------------------------------------------------------Let 020012A ⎛⎫⎪= ⎪ ⎪-⎝⎭.(1) Find all determinant divisors and elementary divisors of A .(2) Find a Jordan canonical form of A .(3) Compute At e . (Give the details of your computations.) Solution: (1)110020012I A λλλλ-⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭,(特征多项式 2()(1)(2)p λλλ=--. Eigenvalues are 1, 2, 2.)Determinant divisor of order 1()1D λ=, 2()1D λ=, 23()()(1)(2)D p λλλλ==-- Elementary divisors are 2(1) and (2)λλ-- .---------------------------------------------------------------------------------------------------------------------- (2) The Jordan canonical form is100021002J ⎛⎫ ⎪= ⎪ ⎪⎝⎭--------------------------------------------------------------------------------------------------------------------------(3) For eigenvalue 1, 010010011I A ⎛⎫⎪-=- ⎪ ⎪-⎝⎭ , An eigenvector is 1(1,0,0)T p = For eigenvalue 2, 1102000010I A ⎛⎫⎪-= ⎪ ⎪⎝⎭, An eigenvector is 2(0,0,1)T p =Solve 32(2)A I p p -=, 331100(2)00000101A I p p --⎛⎫⎛⎫⎪ ⎪-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭we obtain that3(1,1,0)T p =-101001010P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭, 1110001010P -⎛⎫⎪= ⎪ ⎪-⎝⎭ 1At J e Pe P -=22210100110001000101000010tt t t e e te e ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭22220000t t t t t t e e e e tee ⎛⎫-⎪= ⎪ ⎪-⎝⎭ --------------------------------------------------------------------------------------------------------------------Suppose that ∈R A and O I A A =--65.(1) What are the possible minimal polynomials of A ? Explain.(2) In each case of part (1), what are the possible characteristic polynomials of A ? Explain.Solution:(1) An annihilating polynomial of A is 256x x --.The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are6x -, 1x +, and 256x x --.---------------------------------------------------------------------------------------------------------------(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the characteristic polynomial of A have the same linear factors. Case 6x -, the characteristic polynomial is 3(6)x - Case 1x +, the characteristic polynomial is 3(1)x + Case 256x x --, the characteristic polynomial is 2(1)(6)x x +- or 2(6)(1)x x -+-------------------------------------------------------------------------------------------------------------------Let 120000A ⎛⎫=⎪⎝⎭. Find the Moore-Penrose inverse A +of A .Solution: ()12011200000A PG ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭1()(1,0)T T P P P P +-==, 111()250T T G G GG +-⎛⎫⎪== ⎪ ⎪⎝⎭110112(1,0)2055000A G P +++⎛⎫⎛⎫ ⎪⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭也可以用SVD 求.------------------------------------------------------------------------------------------------------------------Part II (选做题, 每题10分)请在以下题目中(第6至第9题)选择三题解答. 如果你做了四题,请在题号上画圈标明需要批改的三题. 否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.Let 4P be the vector space consisting of all real polynomials of degree lessthan 4 with usual addition and scalar multiplication. Let 123,,x x x be three distinct real numbers. For each pair of polynomials f and g in 4P , define 31,()()i i i f g f x g x =<>=∑.Determine whether ,f g <> defines an inner product on 4P or not. Explain.Let n n A ⨯∈R . Show that if x x A =)(σis the orthogonal projection fromn R to )(A R , then A is symmetric and the eigenvalues ofA are all 1’s and 0’s.n n A ⨯∈C . Show that x x A H is real-valued for all n C x ∈if and only if Ais Hermitian.Let n n B A ⨯∈C , be Hermitian matrices, and A bepositive definite. Show thatAB is similar to BA , and is similar to a real diagonal matrix.若正面不够书写,请写在反面.123()()()x x x x x x ---. Then ,0f f <>=. But 0f ≠. This does not define an inner product. For any x , ()()x x T A R A N A ⊥-∈=, ()x x 0T A A -=. Hence, T T A A A =. Thus. T A A =.From above, we have 2A A =. This will imply that λλ-2is an annihilating polynomial of A. The eigenvalue of A must be the roots of 02=-λλ. Thus, the eigenvalues of A are1’s and 0’s.See Thm 7.1.1, page 182. 也可以用其它方法.Since A is nonsingular, 1()AB A BA A -=. Hence, A is similar to BASince A is positive definite, there is a nonsingular hermitian matrix P such that H A PP =. 1()H H AB PP B P P BP P -==Since H P BP is Hermitian, it is similar to a real diagonal matrix.is similar to H AB P BP , H P BP is similar to a real diagonal matrix. Thus AB is similar to a real diagonal matrix.。

南航矩阵论期中考试试题2013可修改全文

南航矩阵论期中考试试题2013可修改全文

Mid-term Exam of Matrix TheoryPart IRequired Questions (4×15′=60′).Q1.1)Let A = 2−344−686−78,1.Calculate the characteristics polynomial and eigenvalues of A .2.Find the determinant divisors,invariant divisors and elementary divisors of A .2)Given B =(17−645−16)and C =(14−603−13),please determine if B and C are similar or not.And prove your conclusion.Q2.Denote V ={(a 11a 12a 21a 22)∈R 2×2|a 11=a 22}.For any X ∈V ,let T (X )=P X +XP ,where P =(0110).1.Find a basis of V and show the dimension.2.Arbitrarily given A =(a 11a 12a 21a 22)and B =(b 11b 12b 21b 22)in V ,define (A,B )=a 11b 11+2a 12b 12+a 21b 21.Please show that (A,B )is an inner product on V .3.Given an orthonormal basis of V under the inner product of 2.4.Prove that T is a linear transformation on V ,and show the matrix representation of T with respect to the basis given in item 1.Q3.Consider the inner product space C [−1,1]with inner product defined as(f,g )=∫1−1f (x )g (x )dx,∀f (x ),g (x )∈C [−1,1].11.Show that1and3x2−1are orthogonal.2.Determine∥1∥and∥3x2−1∥.3.Let S=L{1,3x2−1}be a subspace of R[x]3,find the optimal approximation of xover S.Q8.Denote R[x]3to be the vector space of zero and polynomials with degree less than3.1.Determine the dimension of R[x]3and give a basis of R[x]3.2.Define the linear transformation D on R[x]3,D(f(x))=f′(x),∀f(x)∈R[x]3.Please give the matrix representation of D with respect to the basis given in the above item.Show R(D)and ker(D).3.Prove that D is not diagonalizable.4.Define the inner product on R[x]3,(f,g)=∫1−1f(x)g(x)dx,∀f(x),g(x)∈R[x]3,please Gram-Schmidt orthogonalize the basis given in item1.Part IIPreferential Questions(2×20′=40′).Q5.For any x∈R n,several definitions are given as follows,∥x∥0=∑x i=0|x i|0,∥x∥p=(m∑i=1|x i|p)1p(0<p<1),∥x∥1=m∑i=1|x i|.(1)1.Please determine if∥x∥0,∥x∥p and∥x∥1are valid vector norms or not.And try todefense your decision.2.Especially when n=2,plot the curves of∥x∥0=1,∥x∥p=1and∥x∥1=1respectively.2Q6.Given A∈R n×n,summarize the necessary and sufficient conditions of A to be di-agonalizable,and prove at least one of them.Determine if the matrix A given in Q1is diagonalizable or not.If yes,please explain why,if not,please give the Jordan canonical form of A.Q7.Given A∈R n×n,denote W={X∈R n×n|AX=XA}.1.Show that W is a subspace of R n×n.2.DenoteD=λ10 00λ2 0............00···λn,whereλ1,λ2,···,λn are different from each other.If A=D,please determine the dimension of W.3.If A is similar to D defined as in item2,please prove that any X∈W is diagonalizable.4.Given some X∈W,if X and A are both diagonalizable,then there exists a nonsingularmatrix P∈R n×n such that P−1XP and P−1AP are diagonal simultaneously.3。

南航双语矩阵论matrixtheory第五章部分习题参考答案

南航双语矩阵论matrixtheory第五章部分习题参考答案

第五章部分习题参考答案#2. Find determinant divisors and elementary divisors of each of the following matrices.(a) 1000100015432λλλλ-⎛⎫ ⎪-⎪ ⎪- ⎪+⎝⎭ (b)001010100000λλλλ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭Solution(a ) 100010()0015432A λλλλλ-⎛⎫ ⎪- ⎪= ⎪- ⎪+⎝⎭det (())A λ4322345λλλλ=++++100det 10101λλ-⎛⎫⎪-=- ⎪ ⎪-⎝⎭. Hence, the determinant divisors are 123()()()1D D D λλλ===,4324()2345D λλλλλ=++++. Invariant divisor are 123()()()1d d d λλλ===,4324()2345d λλλλλ=++++Unfortunately, it is not easy to factorize 4324()2345d λλλλλ=++++ by hand. With the help of Maple or Matlab, we can see that ()A λ has four distinct linear elementary divisors. (b) 44()D λλ=, 123()()()1D D D λλλ===. There is a unique elementary divisor 4λ #3. Let11a a A a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ , a a B a εε⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ be n n ⨯ matrices, where 0ε≠. Show that A and B are similar.Proof The Smith normal forms of both I A λ- and I B λ-are11()n a λ⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭. A and B have the same set of elementary divisors. Hence they are similar to each other. #4. Let11a a A a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ , 11a a B a ε⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭be n n ⨯ matrices, where 0ε≠. Show that A and B are NOT similar. ProofThe determinant of I A λ- is ()n a λ- . The determinant of I B λ- is ()n a λε--. A and B have distinct characteristic polynomials. Hence, they are not similar.#11. How many possible Jordan forms are there for a 66⨯ complex matrix with characteristic polynomial 42(2)(1)x x +-?Solution The possibilities for the sets of elementary divisors are { 42(2),(1)x x +-}, {4(2),(1),(1)x x x +--}{32(2),(2),(1)x x x ++-}, {3(2),(2),(1),(1)x x x x ++--} {222(2),(2),(1)x x x ++-}, {22(2),(2),(1),(1)x x x x ++--},{22(2),(2),(2),(1)x x x x +++-}, {2(2),(2),(2),(1),(1)x x x x x +++--}{2(2),(2),(2),(2),(1)x x x x x ++++-}, {(2),(2),(2),(2),(1),(1)x x x x x x ++++--}. For each set of elementary divisors, there is a Jordan canonical form up to similarity. There are 10 Jordan canonical forms up to similarity.#12. Classify up to similarity all 33⨯ complex matrices A such that 3A I =. Solution An annihilating polynomial of A is 321(1)()()x x x x ωω-=---, where ω A is diagonalizable.The possibilities for the minimal polynomial of A are1x -, x ω-, 2x ω-;(1x -)(x ω-), (x ω-)(2x ω-), (1x -)(2x ω-);2(1)()()x x x ωω---Up to similarity, all 33⨯ complex matrices A are100010001⎛⎫ ⎪ ⎪ ⎪⎝⎭, 000000ωωω⎛⎫⎪ ⎪ ⎪⎝⎭, 222000000ωωω⎛⎫ ⎪ ⎪ ⎪⎝⎭; 10001000ω⎛⎫⎪ ⎪ ⎪⎝⎭, 1000000ωω⎛⎫ ⎪ ⎪ ⎪⎝⎭; 22000000ωωω⎛⎫ ⎪⎪ ⎪⎝⎭, 2000000ωωω⎛⎫ ⎪ ⎪ ⎪⎝⎭;221000000ωω⎛⎫⎪ ⎪ ⎪⎝⎭,210001000ω⎛⎫⎪ ⎪ ⎪⎝⎭21000000ωω⎛⎫ ⎪ ⎪ ⎪⎝⎭#14. If N is a nilpotent (幂零的) 33⨯ matrix over C , prove that 21128A I N N =+- satisfies2A I N =+, i.e., A is a square root of I N +. Use the binomial series for 1/2(1)t + to obtain asimilar formula for a square root of I N +, where N is any nilpotent n n ⨯ matrix over C .Use the result above to prove that if c is a non-zero complex number and N is a nilpotent complex matrix, then cI N +has a square root. Now use the Jordan form to prove that every non-singular complex n n ⨯ matrix has a square root.Solution If N is an n n ⨯ matrix and k N O =, then k x is an annihilating polynomial for N . The minimal polynomial of N must be of the form p x , where p n ≤ and p k ≤ since the minimal polynomial of a matrix divides its characteristic polynomial. Thus, n N O =.(1) If N is a nilpotent 33⨯ matrix, then 3N O =. By straightforward computation, we can verify that 2A I N =+.(2) If N is an n n ⨯ nilpotent matrix, n N O =.1/22111111(1)(1)((1)1)122222(1)122!(1)!n n t t t t n -----++=+++++- 1/22111111(1)(1)((1)1)122222()22!(1)!n n I N I N N N n -----++=++++-(3) Since1N c is a nilpotent matrix, 1I N c + has a square root 1/21()I N c+. cI N + has a square root 1/21/21()c I N c+.(4) Suppose that 12121()0()000()r d d d r J J P AP J J λλλ-⎛⎫ ⎪⎪==⎪ ⎪ ⎪⎝⎭. Then each ()k d k J λ has asquare root 1/2()k d k J λ since ()k d k J λ is of the form k I N λ+, where 0k λ≠ because A is nonsingular and N is nilpotent.Let 121/211/2211/2()000()000()r d d d r J J B P P J λλλ-⎛⎫⎪⎪=⎪ ⎪⎪⎝⎭, then 2B A =. Hence, A has a squareroot.#20. Prove that the minimal polynomial of a matrix is equal to the characteristic polynomial if andonly if the elementary divisors are relatively prime in pairs.Proof Suppose that a Jordan canonical form of A is1212()000()000()r d d d r J J J J λλλ⎛⎫⎪ ⎪=⎪ ⎪ ⎪⎝⎭(where 12,,,r λλλ are not necessarily distinct. Each ()i d i J λ is a Jordan block.)The minimal polynomial of A is the same as that of J . The characteristic polynomial of A is the same as that of J . The elementary divisors of A are 11()d λλ-, , ()rd r λλ-The minimal polynomial of ()i d i J λ is ()i d i λλ-. The minimal polynomial of J is the least common multiple (最小公倍式) of 11()d λλ-, , ()rd r λλ-. The characteristicpolynomial of J is 1212()()()()rd d d r p λλλλλλλ=--- .The least common divisor of 11()d λλ-, , ()rd r λλ- is equal to the product of11()d λλ-, , ()r d r λλ- if and only if ()j dj λλ-and ()k d k λλ-are relatively prime forj k ≠. Thus the minimal polynomial of a matrix is equal to the characteristic polynomial ifand only if the elementary divisors are relatively prime in pairs.。

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

《矩阵论》复习提纲与习题选讲Chapter1 线性空间和内积空间内容总结:z 线性空间的定义、基和维数;z 一个向量在一组基下的坐标;z 线性子空间的定义与判断;z 子空间的交z 内积的定义;z 内积空间的定义;z 向量的长度、距离和正交的概念;z Gram-Schmidt 标准正交化过程;z 标准正交基。

习题选讲:1、设表示实数域3]x [R R 上次数小于3的多项式再添上零多项式构成 的线性空间(按通常多项式的加法和数与多项式的乘法)。

(1) 求的维数;并写出的一组基;求在所取基下的坐标;3]x [R 3]x [R 221x x ++ (2) 在中定义3]x [R , ∫−=11)()(),(dx x g x f g f n x R x g x f ][)(),(∈ 证明:上述代数运算是内积;求出的一组标准正交基;3][x R (3)求与之间的距离;221x x ++2x 2x 1+−(4)证明:是的子空间;2][x R 3]x [R (5)写出2[][]3R x R x ∩的维数和一组基;二、 设22R ×是实数域R 上全体22×实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。

(1) 求22R ×的维数,并写出其一组基;(2) 在(1)所取基下的坐标; ⎥⎦⎤⎢⎣⎡−−3111(3) 设W 是实数域R 上全体22×实对称矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:W 是22R ×的子空间;并写出W 的维数和一组基;(4) 在W 中定义内积, )A B (tr )B ,A (T =W B ,A ∈求出W 的一组标准正交基;(5)求与之间的距离; ⎥⎦⎤⎢⎣⎡0331⎥⎦⎤⎢⎣⎡−1221 (6)设V 是实数域R 上全体22×实上三角矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:V 也是22R ×的子空间;并写出V 的维数和一组基;(7)写出子空间的一组基和维数。

南京航空航天大学矩阵论08-09A试卷及答案

南京航空航天大学矩阵论08-09A试卷及答案
(1)求 的维数,并写出 的一组基;
(2)在 中定义线性变换 :
求 在(1)中所取基下的矩阵表示;
(3)求(2)中线性变换 的值域 和核 ,并确定他们的维数;
(4)在 中能否取一组基使得(2)中线性变换 在所取基下的矩阵为对角矩阵?如果能,则取一组基;如果不能,则说明理由。
五(20分)设 为 阶Hermite矩阵,证明:
(1)存在唯一Hermite矩阵 使得 ;
(2)如果 ,则 ;
(3)如果 ,则 。
三20分)设 , ,
(1)作出 的满秩分解,计算 ;
(2)应用广义逆矩阵判断线性方程组 是否相容。若相容,求其通解;
若不相容,求其极小最小二乘解。
(3)设 是 实矩阵, 是 维实向量,证明:不相容线性方程组 的最小二乘解唯一当且仅当 列满秩
四(20分)设 表示实数域 上全体 上三角矩阵作成的线性空间(对矩阵的加法和数量乘法)。
一、(20分)设 ,
(1)求 的特等因子和最小多项式;
(3)写出
的Jordan标准形

二(20分)(1)设 ,求 , , , ;
(2)设 是 上的相容矩阵范数,证明:
(i)如果 是 阶可逆矩阵, 是 的任一特征值,则 ;
(ii)如果 是可逆矩阵,令 ,则 是 上的相容矩阵范数。

南京航空航天大学2007-2014硕士研究生矩阵论matrixTheory试题

南京航空航天大学2007-2014硕士研究生矩阵论matrixTheory试题

2 3 4 A 4 6 8 6 7 8 。 一(20 分) (1)设
2010 ~ 2011 学年《矩阵论》 课程考试 A 卷
(i)求 A 的特征多项式和 A 的全部特征值; (ii)求 A 的行列式因子,不变因子和初等因子; (iii)写出 A 的 Jordan 标准形;
1 A* A2 A* (3)证明: n 。
1 1 1 1 A 0 0 0 0 四、 (20 分)已知矩阵
(1)求矩阵 A 的 QR 分解;
1 2 0 1 b 1 1 2 1 ,向量 ,
(2)计算 A ;
17 6 14 60 A , B 45 16 3 13 ,试问 A 和 B 是否相似?并说明 (2)设
原因。
2 1 A 1 2 3 1 ,求 A 1 , A 2 , A , A F ; 二(20 分) (1)设

(3)用广义逆判断方程组 Ax b 是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、 (20 分)
(1)设矩阵
问当 t 满足什么条件时, A B 成立?
5 3 2 0 1 A 3 2 t , B 1 1 2 t 2 2 0 .5 t
五(20 分)设
A ( a ij )
为 n 阶 Hermite 矩阵,证明:
3
存在唯一 Hermite 矩阵 B 使得 A B ;
2
(2)
(3) 如果 A 0 ,则 tr ( A)tr ( A ) n 。
1
如果 A 0 ,则 tr ( A ) (tr ( A)) ;
2

南航双语矩阵论matrix theory第4章部分习题参考答案

南航双语矩阵论matrix theory第4章部分习题参考答案

)
If i is a root of p( ) 0 , then p(i ) 0 . We obtain that eigenvalue of C T with eigenvector x (1, i ,, in 2 , in 1 )T .
Exercise 16
Let be an orthogonal transformation on a Euclidean space V (an inner product space over the real number field). If W is a -invariant subspace of V, show that the orthogonal complement of W is also -invariant. Proof Let V W W , where W is -invariant. Let {u1 , u2 ,, uk } be an orthonormal basis for
0 1 T C x 0 0 0 0 1 0 0 0 0 0 0 an 0 an 1 0 an 2 1 a1
T
i i 1 2 2 i i i n2 n 1 n 1 i i i n 1 n n 1 a a a p ( i n i n 1 i 1 i i
C T x i x . Then i is an
(b) If p( ) has n distinct roots, then all roots of p( ) are eigenvalues of C T . We obtain that the characteristic polynomial of C T and p( ) have the same n distinct roots. And also they have the same degree and the same leading coefficient. Hence, the characteristic polynomial of C T is the same as p( ) . Since C and C T have the same characteristic polynomial, we know that p( ) is the characteristic polynomial of C.

南京航空航天大学MatrixTheory双语矩阵论期末考试

南京航空航天大学MatrixTheory双语矩阵论期末考试
(2) The Jordan canonical form is
--------------------------------------------------------------------------------------------------------------------------
(2) Find a basis for such that with respect to this basis,thematrixBrepresenting is diagonal.
(3) Find thekernel(核)andrange(值域)of this transformation.
Solution:
南京航空航天大学Matrix-Theory双语矩阵论期末考试
———————————————————————————————— 作者:
———————————————————————————————— 日期:
Part I (必做题,共5题,70分)
第1题(15分)
得分
Let denote the set of all real polynomials of degree less than 3 withdomain(定义域) .The addition and scalar multiplication are defined intheusual way.Definean inner product on by
第2题(15分)
得分
Let be the linear transformation on (the vector space of real polynomials of degree less than 3) defined by
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 1 0
1 1 0 0
Solve
(A 2I ) p3 p2 ,
( A 2I ) p3


0
0
0

p3


0

we
obtain
that
0 1 0 1
1 0 1
P


0
0
1 ,
0 1 0
1 1 0
(1) -----------------------------------------------------------------------------------------------------------------
(2)
1 0 1
T


0
1
0
ห้องสมุดไป่ตู้
(The column vectors of T are the eigenvectors of A)
1
p, q p(t)q(t)dt . 1
(1) Construct an orthonormal basis for P[1,1] from the basis 1, x, x2 by using the Gram-Schmidt orthogonalization process.
Suppose that AR33 and A2 5A 6I O . (1) What are the possible minimal polynomials of A? Explain. (2) In each case of part (1), what are the possible characteristic polynomials of A? Explain.
0
1 2
Determinant divisor of order D1() 1 , D2 () 1 , D3 () p() ( 1)( 2)2
Elementary divisors are ( 1) and ( 2)2 .
---------------------------------------------------------------------------------------------------------------------(2) The Jordan canonical form is --------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------is the subspace consisting of all constant polynomials.
--
第 3 页(共 3 页)
Part II (选做题, 每题 10 分) 请在以下题目中(第 6 至第 9 题)选择三题解答. 如果你做了四题,请在题号上画圈标明需要批改的三题. 否 则,阅卷者会随意挑选三题批改,这可能影响你的成绩. 第 6 题 Let P4 be the vector space consisting of all real polynomials of degree less than 4 with usual addition and
(1) Find the matrix A representing with respect to the ordered basis [1, x, x2 ] for P3 .
(2) Find a basis for P3 such that with respect to this basis, the matrix B representing is diagonal. (3) Find the kernel(核) and range (值域)of this transformation. Solution:
(2) Let f (x) x2 1 P[1,1] . Find the projection of f onto the subspace spanned by{1, x }. Solution:
(1)
1
1 1 , 1 dx 1
,2 u1
1, 2
p1 x,
Case x 1, the characteristic polynomial is (x 1)3
Case x2 5x 6 , the characteristic polynomial is (x 1)2 (x 6) or (x 6)2 (x 1)
------------------------------------------------------------------------------------------------------------------第 5 题(10 分) 得分
第 2 题(15 分) 得分
Let be the linear transformation on P3 (the vector space of real polynomials of degree less than 3) defined by ( p(x)) xp '(x) p ''(x) .
(3) Compute eAt . (Give the details of your computations.)
Solution:
第 2 页(共 3 页)
(1)
1 1 0

I

A


0
2
0

,(特征多项式
p() ( 1)( 2)2 . Eigenvalues are 1, 2, 2.)
The range is the subspace spanned by the vectors x, x2 1
----------------------------------------------------------------------------------------------------------------------第 3 题(20 分) 得分
Solution:
(1) An annihilating polynomial of A is x2 5x 6 .
The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are x 6 , x 1, and x2 5x 6 . --------------------------------------------------------------------------------------------------------------(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the characteristic polynomial of A have the same linear factors. Case x 6 , the characteristic polynomial is (x 6)3
(2)
proj x2 1,u1 u1 x2 1,u2 u2 x2 1,
1 2
1 x2 1, 2
3x 2
3x 2
----------------------------------------------------------------------------------------------------------------
P 1


0
0
1

0 1 0
--------------------------------------------------------------------------------------------------------------------
第 4 题(10 分) 得分
Let
A


1 0
2 0
0 0

.
Find
the
Moore-Penrose
inverse
A of
A.
Solution:
1
P (PT P )1 PT
(1,
,0
)
G

GT
(GGT
)1

1 5

2 0

也可以用 SVD 求.
----------------------------------------------------------------------------------------------------------------
0 0 1
The corresponding eigenvectors in P3 are
0 0 0
T 1 AT
相关文档
最新文档