蒙特卡洛方法的应用2
蒙特卡罗方法及其在化学中的应用

蒙特卡罗方法及其在化学中的应用蒙特卡罗(Monte Carlo)方法,是计算机科学中一种统计模拟方法,用概率统计模拟随机事件,真实地模拟复杂的系统的行为,和解决若干规律计算问题。
它曾被用来解决数学、物理和特别是量子物理中的一些复杂问题。
此外,蒙特卡罗方法还在新兴科学如化学、计算机图形学等领域得到了广泛的应用。
本文针对蒙特卡罗方法及其在化学中的应用,结合具体实例,进行深入剖析和说明。
一、蒙特卡罗方法是什么及其原理蒙特卡罗方法(Monte Carlo method),是计算机科学中模拟随机过程的方法,它利用概率统计的思想,利用随机的种子来模拟复杂的现象,计算出特定结果。
它可以快速、高效地模拟场、多物质和量子物质行为,让计算机真正发挥自己的实力,在化学物性模拟、量子化学领域获得了大量的应用。
蒙特卡罗方法的核心思想是:以概率的观点建模系统的行为,然后用随机数字种子来模拟,最终多次模拟、计算出平均结果,从而获得满足系统性能最优的输出结果。
二、蒙特卡罗方法在化学中的应用1. 量子化学领域量子化学实际上就是用相对简化的数学技巧,结合量子力学求解复杂的反应机理。
蒙特卡罗方法可以用来计算量子力学中大量的细节,从而预测不同离子、原子之间的位置关系,以及分子能量和反应能量。
例如,若要计算氯氨的自振动的能量和频率,可以用蒙特卡罗方法得出分子能量,以便计算氯氨的结构和动力学过程。
2. 化学模拟领域在化学模拟中,蒙特卡罗方法可用于模拟复分子模拟、系统对接以及描述分子性质,例如温度、压力、分子重量、分子形状、分子共振等等,从而分析分子的行为和特性,可以得到更精确、客观的结果,从而优化原有的催化剂制备工艺,增进新的制备工艺的研究。
3. 生物医学领域大多数的药品的性质和效果与它们分子结构和空间结构有关,而蒙特卡罗方法可以模拟分子内部的原子各种运动,计算出其结构安排,从而更好地究其机制、理解分子作用规律、优化新药的设计,以及抗病毒等技术的开发。
蒙特卡洛算法应用

蒙特卡洛算法应用蒙特卡洛算法是一种基于随机数模拟技术的数值计算方法,最初是应用在核物理领域中模拟中子扩散等问题。
近年来,随着计算机技术的发展,蒙特卡洛算法在各个领域得到了广泛的应用,例如计量经济学、金融风险评估、生命科学、气象学等领域。
下面,我们将具体介绍蒙特卡洛算法的应用及其优势。
一、基本原理蒙特卡洛算法的基本原理是利用随机抽样的方法,按照一定的概率分布来模拟某个系统或过程的随机性行为,通过数量统计和概率估计来得到该系统或过程的性质或规律。
例如,我们可以通过蒙特卡洛算法来求解复杂的多维积分问题,或者通过模拟股票价格走势来估计期权的价格等。
二、应用领域1. 计量经济学计量经济学是将数学和统计学方法应用于经济学研究的一门学科。
蒙特卡洛算法被广泛应用于计量经济学中的参数估计问题,例如通过蒙特卡洛模拟来得到回归系数的置信区间、方差的估计、非线性模型的参数估计等。
2. 金融风险评估在金融风险评估中,蒙特卡洛算法常常被用来模拟某个金融工具的价格变化,例如股票、期权、债券等,在此基础上计算预期收益率、波动率、价值-at-风险等指标,为投资决策提供支持。
3. 生命科学在生物学、药理学等领域中,蒙特卡洛算法被广泛应用于药物分子的建模与仿真,通过模拟分子的随机运动来计算其对蛋白质的亲和性、药效等指标,为新药发现提供重要的支持。
4. 气象学在气象学中,蒙特卡洛模拟被用来模拟气象变化、大气环流等复杂的自然现象,得到风险评估、预测和规划等方面的应用。
三、优势1. 灵活性蒙特卡洛算法不需要预先设定函数解析形式,具有很大的灵活性,适用于各种非线性、高维、复杂的数学问题。
2. 精度高蒙特卡洛算法基于大量的随机抽样,能够得到非常精确的数值解。
3. 方便性蒙特卡洛算法的实现相对简单,只需要模拟随机变量的抽取和计算即可,不需要对解析解进行处理和推导。
四、结论在众多的数值计算方法中,蒙特卡洛算法因其灵活、精确和方便而被广泛应用于各个领域。
蒙特卡罗方法在风险评估中的应用

蒙特卡罗方法在风险评估中的应用蒙特卡罗方法是一种基于随机抽样的数值计算方法,通过随机抽样来解决实际问题中的复杂计算和模拟,被广泛应用于金融、工程、科学等领域。
在风险评估中,蒙特卡罗方法可以帮助分析人员更准确地评估风险,制定相应的风险管理策略。
本文将探讨蒙特卡罗方法在风险评估中的应用,介绍其原理和优势,并结合实际案例进行说明。
一、蒙特卡罗方法原理蒙特卡罗方法是一种基于随机抽样的数值计算方法,其基本原理是通过大量的随机抽样来模拟问题的不确定性因素,从而得出问题的解或结果。
在风险评估中,蒙特卡罗方法可以用来模拟不同的风险因素,如市场波动、自然灾害等,通过大量的模拟实验来评估风险的概率分布和可能的损失情况。
二、蒙特卡罗方法在风险评估中的优势1. 考虑不确定性因素:风险评估中存在许多不确定性因素,传统的计量方法往往难以全面考虑这些因素。
蒙特卡罗方法通过随机抽样的方式,可以全面考虑各种不确定性因素,更准确地评估风险。
2. 灵活性强:蒙特卡罗方法适用于各种类型的风险评估问题,可以根据具体情况灵活调整模型和参数,适用性广泛。
3. 结果可靠性高:通过大量的随机抽样和模拟实验,蒙特卡罗方法可以得出较为可靠的结果,有助于决策者更好地理解和应对风险。
三、蒙特卡罗方法在风险评估中的应用案例以金融领域为例,假设某投资机构要评估某种金融产品的市场风险。
首先,需要确定影响市场风险的各种因素,如利率变动、汇率波动、市场需求等。
然后,利用蒙特卡罗方法进行模拟实验,通过大量的随机抽样来模拟这些因素的变动情况,得出不同情况下的市场风险概率分布和可能的损失情况。
最后,根据模拟结果,评估产品的整体风险水平,制定相应的风险管理策略。
通过蒙特卡罗方法的应用,投资机构可以更全面地了解产品的市场风险,为决策提供科学依据。
同时,还可以根据模拟结果进行风险敞口管理,降低风险带来的损失。
四、结语蒙特卡罗方法作为一种强大的数值计算方法,在风险评估中发挥着重要作用。
马尔可夫链蒙特卡罗模拟方法及其应用举例

马尔可夫链蒙特卡罗模拟方法及其应用举例随着科技的不断发展,人们可以更加准确地预测一些复杂的现象,为生产生活提供更好的帮助。
马尔科夫链蒙特卡罗模拟方法便是一种优秀的解决方案。
一、什么是马尔科夫链蒙特卡罗模拟方法?马尔可夫链蒙特卡罗模拟方法是一种利用概率统计学原理和数学计算来进行计算机模拟的方法。
这种方法建立在马尔可夫链的基础上,利用概率分布和转移矩阵进行模拟。
马尔可夫链是指一个随机过程,按照一定的规则进行状态转移。
在这个过程中,转移的下一个状态只与当前状态有关,与之前的状态无关。
这种性质称为“马尔可夫性”。
蒙特卡罗方法则是一种以概率为基础的数值计算方法,通过大量的随机采样来获得估计值。
采用蒙特卡罗方法可以在数学上得到比较复杂的解决方案。
马尔可夫链蒙特卡罗模拟方法将马尔可夫链和蒙特卡罗方法融合在一起,利用马尔可夫链的转移和状态分布特性和蒙特卡罗采样方法来对等式进行求解或概率分析。
二、马尔可夫链蒙特卡罗模拟方法的一些应用1.金融领域中的风险分析金融领域中的风险问题是一个复杂的问题,需要考虑许多不确定的因素,例如市场波动等。
利用马尔可夫链蒙特卡罗方法可以对这些不确定因素进行分析,预估市场风险。
2.物理学中的介观尺度在物理学中,许多问题都涉及到介观尺度。
由于这些尺度的存在,通常需要使用统计物理学方法进行研究。
利用马尔可夫链蒙特卡罗方法可以对这些问题进行深入分析和优化。
3.蛋白质结构预测蛋白质结构的预测是一个重要的问题。
结构预测需要进行大量的计算,而马尔可夫链蒙特卡罗方法可以对这个问题进行比较准确的模拟。
三、马尔可夫链蒙特卡罗模拟方法的局限性虽然马尔可夫链蒙特卡罗模拟方法有很多优点,但是它也存在一些局限性。
其中最主要的一个是计算时间较长。
由于需要进行大量的随机采样,所以计算时间非常长。
此外,正确计算蒙特卡罗方法的统计误差也是一个挑战。
四、总结马尔可夫链蒙特卡罗模拟方法作为一种优秀的计算机模拟方法,在许多领域都有广泛的应用。
蒙特卡罗方法教学课件第七章蒙特卡罗方法在积分计算中的应用两份文件

2. 重要抽样
1) 偏倚抽样和权重因子 取Vs上任一联合概率密度函数 f1(P),令
则有 现从 f1(P) 中抽样 N 个点:Pi,i=1,2,…,N, 则
就是θ的又一个无偏估计。
2) 重要抽样和零方差技巧
要使 最小,就是使泛函I[f1] 极小。 利用变分原理,可以得到最优的 f1(P) 为
舍弃圆外的点,余下的就是所要求的点。 抽样方法为:
>
抽样效率 E=π/4≈0.785
为实现散射方位角余弦分布抽样,最重要的是在 上半个单位圆内产生均匀分布点。下面这种方法,首 先在单位圆的半个外切正六边形内产生均匀分布点, 如图所示。
于是便有了抽样效率更高的抽样方法:
≤
>
抽样效率
例12. 正态分布的抽样
标准正态分布密度函数为:
引入一个与标准正态随机变量X独立同分布的随机变 量Y,则(X,Y)的联合分布密度为:
作变换
则(ρ,φ)的联合分布密度函数为: 由此可知,ρ与φ相互独立,其分布密度函数分别为 分别抽取ρ,φ :
从而得到一对服从标准正态分布的随机变量X和Y:
对于一般的正态分布密度函数 N(μ,σ2) 的抽样,其 抽样结果为:
特别地,当 g(P)≥0 时,有
这时 即 g1的方差为零。实际上,这时有 不管那种情况,我们称从最优分布 fl(P)的抽样为重要 抽样,称函数 | g(P) | 为重要函数。
3. 俄国轮盘赌和分裂
1) 分裂 设整数 n≥1,令
则 于是计算θ的问题,可化为计算 n 个θi 的和来得到,而 每个 gi(P) 为原来θ的估计 g(P) 的 1/ n ,这就是分裂技 巧。
其中,ξ1,ξ2,…,ξN为随机数序列。为方便起见, 将上式简化为:
蒙特卡罗模拟方法在金融衍生品定价中的应用

蒙特卡罗模拟方法在金融衍生品定价中的应用金融衍生品定价是金融领域中一个重要的课题,为了准确地计算衍生品的价格,需要运用适当的定价模型和方法。
蒙特卡罗模拟方法作为一种常用的计算方法,经常被应用于金融衍生品的定价中。
本文将介绍蒙特卡罗模拟方法的原理,以及在金融衍生品定价中的应用。
一、蒙特卡罗模拟方法原理蒙特卡罗模拟方法是一种基于随机数的数值计算方法,主要用于计算无法直接得到解析解的问题。
其基本思想是通过生成符合一定概率分布的随机数,通过重复实验进行求解。
蒙特卡罗模拟方法主要包括以下几个步骤:1. 确定模型和参数:首先,需要确定适用于定价的模型和相应的参数。
根据不同类型的金融衍生品,选择不同的模型来描述其价格变动的随机过程。
2. 设定初始条件:根据实际情况,设定衍生品定价的初始条件,例如初始价格、到期时间等。
3. 生成随机数:通过随机数生成器生成符合预设概率分布的随机数,用于模拟金融资产价格的随机波动。
4. 计算衍生品价格:利用生成的随机数和模型参数,进行多次模拟实验,得到多个可能的价格路径。
通过对这些价格路径进行处理,得到衍生品的合理价格估计。
5. 统计分析:对多次模拟实验的结果进行统计分析,计算平均值、方差以及其他感兴趣的统计指标。
6. 评估风险:利用蒙特卡罗模拟方法可以对衍生品价格的不确定性进行评估,帮助投资者、企业和金融机构更好地管理金融风险。
二、 1. 期权定价:蒙特卡罗模拟方法在期权定价中广泛应用。
通过模拟资产价格的随机波动,可以计算出期权的价值。
特别是对于欧式期权,可以通过模拟实验得到价格路径,再通过回归方法计算出期权的理论价格。
2. 固定收益衍生品定价:蒙特卡罗模拟方法也可以应用于固定收益衍生品的定价。
例如,通过模拟随机利率的变动,可以计算出利率互换的价格。
同时,也可以通过模拟随机到期收益率来估算信用违约掉期的价格。
3. 商品期货定价:对于商品期货的定价,蒙特卡罗模拟方法同样具有一定的优势。
monte carlo 模拟方法

monte carlo 模拟方法
《Monte Carlo模拟方法》
一、什么是蒙特卡洛模拟方法
蒙特卡洛模拟方法(Monte Carlo Simulation)是一种基于数学方法的数值模拟方法,它可以用来建立模型对现实世界的行为或过程的模拟实验,用以预测现实世界的行为或过程的结果。
蒙特卡洛模拟方法可以说是一种模拟和估计技术,它可以使我们更加真实地体验复杂的实际系统。
二、蒙特卡洛模拟方法的应用
1、量化投资
蒙特卡洛模拟方法可以帮助量化投资者以及金融机构估算未来
的风险和收益水平,从而制定有效的策略,掌握投资风险,实现稳定的收益。
2、风险管理
风险管理是一项重要的工作,而蒙特卡洛模拟方法可以通过计算客观事件发生的可能性,以及客观事件发生后的收益水平,以及收益水平变化的可能性等,来帮助企业进行合理的风险管理和投资决策。
3、决策分析
蒙特卡洛模拟方法可以帮助企业分析不同的可能性,从而达成有效的决策。
蒙特卡洛模拟方法比其他常规方法更加有效,可以在短时间内产生准确的结果。
三、蒙特卡洛模拟方法的基本原理
蒙特卡洛模拟方法通过模拟复杂系统的大量随机变量来模拟出系统的总体行为,这种方法的核心就是“大数定律”,即随机变量的数量越多,结果越趋向于它应该达到的值。
因此,将所有的随机变量放入模拟模型,利用计算机模拟出与真实系统相似的结果。
四、结论
蒙特卡洛模拟是一种统计技术,现在已经得到广泛的应用,它可以帮助企业模拟复杂系统,分析不同的风险,制定有效的策略,实现稳定收益。
蒙特卡洛方法的应用

蒙特卡洛方法的应用蒙特卡洛方法(Monte Carlo Method)是一种基于随机抽样的数值计算方法,主要用于解决数学、物理、金融和工程等领域中复杂问题的数值求解。
它通过随机抽样和统计分析的方法,利用大量的随机样本来近似计算问题的解或数值。
蒙特卡洛方法的核心思想是通过随机抽样来代替问题的解析求解过程,通过统计分析大量的随机样本来近似计算问题的解。
其主要应用包括以下几个方面:1. 数值积分:蒙特卡洛方法可以求解高维空间中的复杂积分。
传统的数值积分方法如梯形法则或辛普森法则通常在高维空间中效果较差,而蒙特卡洛方法则能够通过大量的随机抽样来近似计算积分值,具有较好的数值稳定性和收敛性。
2. 数值优化:蒙特卡洛方法可以用于求解复杂多模态的优化问题。
对于无法使用解析方法求解的优化问题,可以通过随机生成参数样本,并通过统计分析来寻找较好的优化解。
蒙特卡洛方法的随机性质能够在多个可能的解中进行搜索,增加准确性。
3. 随机模拟:蒙特卡洛方法在物理、化学和工程领域中被广泛应用于随机系统的建模和模拟。
通过随机抽样来建立系统的状态和参数的概率分布,从而进行模拟和预测。
例如,在核反应堆的安全分析中,可以使用蒙特卡洛方法对中子输运进行随机模拟,以评估核反应堆的安全性。
4. 风险评估:蒙特卡洛方法可以用于对金融和保险行业中的风险进行评估。
例如,在投资组合管理中,可以使用蒙特卡洛方法来模拟不同资产和市场情况下的投资组合收益率,并对风险进行评估和管理。
蒙特卡洛方法还可以用于保险精算中的风险评估,通过随机模拟来评估保险产品的风险损失。
5. 物理模拟:蒙特卡洛方法在物理模拟中也有广泛应用。
例如,在核物理中,可以通过蒙特卡洛方法来模拟高能粒子与物质相互作用的过程,从而研究核反应、粒子加速器和辐射防护等问题。
此外,在计算复杂物质结构的研究中,如蛋白质折叠和材料物理等,也可以使用蒙特卡洛方法来模拟和计算。
总而言之,蒙特卡洛方法具有广泛的应用领域和灵活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( xi ) 2 1 e ˆ n i 1 g ( xi ) n i 1 1 xi
n
n
xi
g(x)的随机数对应分布函数为
0, 1 1 2 Fg ( x) ( x x ) 1 / 4, 2 2 1, x0 1 x 1 x 1
估计步骤:
重要抽样法 关键因素在于g(x)的选取,使得估计的方差较 小。 重要抽样法的基本思想,就是通过选取与f(x) 形状接近的密度函数g(x)来降低估计的方差。
例 利用Monte Carlo方法计算一个简单的积分
1 x e dx 0
(e 1)
(1) 先考虑样本平均值法:
xi n f (x ) n 1 3 e i ( 3) ˆ n i 1 g ( xi ) 2n i 1 1 xi
function result=zycy2( mm) %积分函数 %mm 是随机实验次数 sum=0; u = unifrnd(0,1,1,mm); xrandnum = -1+sqrt(1+3.* u); for ii=1:mm sum=sum+exp (xrandnum(1,ii))/(1+ xrandnum(1,ii)); end result=1.5*sum/mm; result=zycy2(0,1, 1000)=1.7222 result=zycy1(0,1, 10000)=1.7174 result=zycy1(0,1, 100000)=1.7185 True value is 1.7183
例 利用Monte Carlo方法计算一个简单的积分
1 x e dx 0
(e 1)
(2) 重要抽样法:
由重要抽样法思想,要选择一个与ex相似的 密度函数. 我们知道,ex的Taylor展开为
2 k x x x e 1 x ... ... 2! k!
利用线性近似,取(0,1)上密度函数
练习:用重要抽样法计算
I e dx
x 1
1
x x e 1 x ... ... 2! k!
x
2
k
1 g ( x) (1 x) 2
b
a
f X f x g x dx E g x g X
设x1,…,xn是来自g(x)的随机数,则 的估计为
几种降低估计方差的MC方法
重要抽样法
特点:相对样本均值法而言,样本均值法是由
于假设g(x)是均匀分布的概率密度,故采用的 是均匀抽样,各随机数xi是均匀分布的随机数, 各xi 对 ˆ 的贡献是不同,f(xi) 大则贡献大,但 在抽样时,这种差别未能体现出来。 而重要抽样法,则希望贡献率大的随机数出现 的概率大,贡献小的随机数出现概率小,从而 提高抽样的效率。
function Rguji=litiR4(t,thetaa1,thetaa2,thetab1,thetab2,mm)
%t 是要求系统生存的寿命%thetaa1 是元件A1的数学期望%thetaa2 是元件A2的数学期望 %thetab1 是元件B1的数学期望 %thetab2 是元件B2的数学期望%mm 是随机实验次数
例 设系统 L 由相互独立的 n 个元件组成,连 接方式为 (1) 串联; (2) 并联; (3) 冷贮备(起初由一个元件工作,其它 n – 1 个元件做冷贮备,当工作元件失效时, 贮备的元件件 中有 k 个或 k 个以上的元件正常工作时, 系统 L 才正常工作)
(1)
X min{ X 1 , X 2 ,, X n }
FX ( x) 1 (1 FX ( x))
i 1
i
n
e , x 0, 1 FX ( x) x0 1,
i
x
ne , x 0 f X ( x) x0 0,
nx
(2) X max{ X 1 , X 2 ,, X n }
sum=0;
u = unifrnd(0,1,1,mm); xrandnum = 2*sqrt(u )-1; for ii=1:mm sum=sum+exp (xrandnum(1,ii))/(1+ xrandnum(1,ii)); end I=2*sum/mm;
function I=exp_3_2( mm) %重要抽样法 %mm 是随机实验次数 u = unifrnd(0,1,1,mm); xrandnum = 2*sqrt(u )-1; s=sum(exp (xrandnum)./(1+ xrandnum)); I=2*s/mm;
所以, 估计方差的大小与I1,I2 的估计的相关 度有关,若两者的正相关程度越高,则 的估计 方差越小。这便是关联抽样法的基本出发点。
2、系统的可靠性计算问题
一个元件(或系统)能正常工作的概率称为 元件(或系统)的可靠性 系统由元件组成,常见的元件连接方式: 串联
1 1 2
并联
2
例R3设两系统都是由 4 个元件组成,每个元件的 寿命服从参数为θ的指数分布,每个元件是否正 常工作相互独立.两系统的连接方式如下图所示, 求两系统寿命大于T=100的概率. A2 A1 S1: B1 B2
xi n f (x ) n 1 3 e i ˆ n i 1 g ( xi ) 2n i 1 1 xi
g(x)的随机数对应分布函数为
0, 1 Fg ( x) (2 x x 2 ), 3 1, x0 0 x 1 x 1
估计步骤:
(1)产生n个U(0,1)随机数u1,…,un, 则 (2)xi= 1 1 3ui
1 x e 0
f ( x)dx
f(x)=1, 0<x<1,为U(0,1)对应的概率密度. 由此 产生n个U(0,1)随机数x1,…,xn, 则
n 1 ˆ e xi n i 1
function result=zycy1(a,b, mm) %a是积分的下限 %b是积分的上限 %积分函数 %mm 是随机实验次数 sum=0; xrandnum = unifrnd(a,b,1,mm); for ii=1:mm sum=sum+exp (xrandnum(1,ii)); end result=sum/mm result=zycy1(0,1, 1000)=1.7267 result=zycy1(0,1, 10000)=1.7199 result=zycy1(0,1, 100000)=1.7171 True value is 1.7183
关联抽样法 将需要估计的积分分解成两个积分之差,
f x dx f1 x dx f 2 x dx I1 I 2
b b b a a a
对的估计转化为对I1,I2 的估计的差。即
ˆI ˆ I ˆ 1 2
由于
ˆ) D( I ˆ ) D( I ˆ ) 2 ˆ ˆ D( 1 2 I1I 2 DI1 DI 2
frq=0;randnuma1 = exprnd(thetaa1,1,mm); randnuma2 = exprnd(thetaa2,1,mm); randnumb1 = exprnd(thetab1,1,mm); randnumb2 = exprnd(thetab2,1,mm); for ii=1:mm if (randnuma1(1,ii)>t)|(randnumb1(1,ii)>t) pass1=1; else pass1=0; end if (randnuma2(1,ii)>t)|(randnumb2(1,ii)>t) pass2=1; else pass2=0; end if (pass1*pass2)==1 frq=frq+1; end end,Rguji=frq/mm
1 2 1 2
x
x t ( x t ) e e dt , x 0 0 0, x0
2 xe x , x 0 x0 0,
t
(1)产生n个U(0,1)随机数u1,…,un, 则 (2)xi= 2 u 1 i
xi n n f ( x ) 1 2 e i ˆ ( 3) n i 1 g ( xi ) n i 1 1 xi
function I=exp_3 ( mm) %重要抽样法 %mm 是随机实验次数
如果 n 个元件的寿命分别为 X 1 , X 2 ,, X n 且 X i ~ E ( ), i 1,2,, n 求在以上 4 种组成方式下,系统 L 的寿命 X 的密度函数. 解
e x , x 0 f Xi (x ) 其它 0,
1 e x , x 0 FX i ( x ) 其它 0,
2 g ( x) (1 x) 3
2 (1 x), g ( x) 3 0,
b
0 x 1 else
a
f X f x g x dx E g x gX
设x1,…,xn是来自g(x)的随机数,则 的估计为
FX ( x) FX ( x)
i 1
i
n
(1 e ) , x 0, 0, x0
ne f X ( x)
x
x n
(1 e 0,
x n 1
) , x0 x0
(3)
X X1 X 2 X n
n = 2 时,
f X X ( x) f X (t ) f X ( x t )dt
P( S1 ) P(( A1 A2 ) ( B1B2 )) P( A1 A2 ) P( B1B2 ) P( A1 A2 B1 B2 )
例R4 S2:
A1 B1
2