蒙特卡洛方法

合集下载

蒙特卡洛类方法

蒙特卡洛类方法

蒙特卡洛类方法
蒙特卡洛方法是一类随机化的计算方法,主要应用于求出高维度空间中的定积分或概率分布的特性。

该方法以随机样本为基础,通过大量生成且符合某种分布律的随机数,从中抽取样本,利用样本的统计性质来计算近似解。

常见的蒙特卡洛方法包括:
1.随机模拟法
在数学建模、广告投放、经济预测等领域,随机模拟(也称蒙特卡罗方法)已经成为了一个重要的工具。

其基本思想是,系统表现出的某些规律和性质可以用随机过程进行模拟和预测。

2.随机游走算法
随机游走是一种基于随机过程的数值计算算法,通过简单的偏随机移动来解决复杂问题,被广泛应用于物理、化学、生物学、金融等领域。

随机游走算法的核心思想是通过随机漫步遍历所有可能的状态,找到最终解。

3.马尔可夫链蒙特卡罗方法
马尔可夫链蒙特卡罗方法(MCMC)是一种近似随机模拟算法,用于计算高维空间中的积分和概率分布。

这种方法通过构造一个马尔可夫链来模拟复杂的概率
分布,并通过观察链的过程来获得所求的统计量。

4.重要性采样
重要性采样是一种通过迭代抽样来估算积分值或概率分布的方法。

它的基本思想是利用不同的概率分布来采样目标分布中的样本,从而增加目标分布中采样到重要样本的概率,从而提高采样的效率。

总之,蒙特卡洛方法在物理学、统计学、金融学、计算机科学、生物科学等众多领域都有广泛的应用,是一种很实用的工具。

蒙特卡洛算法

蒙特卡洛算法


取8个随机数
R1 0.0078, R2 0.9325,R3 0.1080,R4 0.0063
用蒙 特卡 洛计 算定 积分
R5 0.5490, R6 0.8556,R7 0.9771,R8 0.2783 Iˆ 0.9187
1.9

大大改善了结果!
理论依据 贝努里(Bernoulli) 大数定律
设 nA 是 n 次独立重复试验中事件 A 发生的 次数, p 是每次试验中 A 发生的概率,则
0 有
nA lim P p 0 n n

nA lim P p 1 n n
1 1 1 0 0.25 2 2 2
P(A1) = P(j=0)P(A1∣j=0) + P(j=1)P(A1∣j=1) =
1 1 1 1 0 2 2 3 6
P(A2) = P(j=0)P(A2∣j=0) + P(j=1)P(A2∣j=1)
1 1 1 1 = 0 2 2 6 12 1 1 1 2 0.33 E1 = 6 12
生成一个满足均匀分布的 m n 随机矩阵,矩
阵的每个元素都在 (0,1) 之间。 注:rand(n)=rand(n,n)
randn(m,n)
生成一个满足正态 m n 的随机矩阵
randperm(m)
生成一个由 1:m 组成的随机排列
perms(1:n)
生成由 1:n 组成的全排列,共 n! 个,称为 “群“
分析:这是一个概率问题,可以通过理论计算
得到相应的概率和期望值.但这样只能给出作战 行动的最终静态结果,而显示不出作战行动的动 态过程.

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。

一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。

Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。

Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。

蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。

与它对应的是确定性算法。

二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。

早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。

蒙特·卡罗方法(MonteCarlomethod)

蒙特·卡罗方法(MonteCarlomethod)

蒙特·卡罗⽅法(MonteCarlomethod)蒙特·卡罗⽅法(Monte Carlo method),也称统计模拟⽅法,是⼆⼗世纪四⼗年代中期由于科学技术的发展和电⼦计算机的发明,⽽被提出的⼀种以概率统计理论为指导的⼀类⾮常重要的数值计算⽅法。

是指使⽤随机数(或更常见的伪随机数)来解决很多计算问题的⽅法。

与它对应的是确定性算法。

这个⽅法的发展始于20世纪40年代,和原⼦弹制造的曼哈顿计划密切相关,当时的⼏个⼤⽜,包括乌拉姆、冯.诺依曼、费⽶、费曼、Nicholas Metropolis,在美国洛斯阿拉莫斯国家实验室研究裂变物质的中⼦连锁反应的时候,开始使⽤统计模拟的⽅法,并在最早的计算机上进⾏编程实现。

现代的统计模拟⽅法最早由数学家乌拉姆提出,被Metropolis命名为蒙特卡罗⽅法,蒙特卡罗是著名的赌场,赌博总是和统计密切关联的,所以这个命名风趣⽽贴切,很快被⼤家⼴泛接受。

被不过据说费⽶之前就已经在实验中使⽤了,但是没有发表。

说起蒙特卡罗⽅法的源头,可以追溯到18世纪,布丰当年⽤于计算π的著名的投针实验就是蒙特卡罗模拟实验。

统计采样的⽅法其实数学家们很早就知道,但是在计算机出现以前,随机数⽣成的成本很⾼,所以该⽅法也没有实⽤价值。

随着计算机技术在⼆⼗世纪后半叶的迅猛发展,随机模拟技术很快进⼊实⽤阶段。

(类⽐深度学习,感叹~)对那些⽤确定算法不可⾏或不可能解决的问题,蒙特卡罗⽅法常常为⼈们带来希望。

蒙特卡罗基本思想:利⽤⼤量采样的⽅法来求解⼀些难以直接计算得到的积分。

例如,假想你有⼀袋⾖⼦,把⾖⼦均匀地朝这个图形上撒,然后数这个图形之中有多少颗⾖⼦,这个⾖⼦的数⽬就是图形的⾯积。

当你的⾖⼦越⼩,撒的越多的时候,结果就越精确。

借助计算机程序可以⽣成⼤量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的⽐例和坐标点⽣成范围的⾯积就可以求出图形⾯积。

清华数学实验实验五蒙特卡罗方法

清华数学实验实验五蒙特卡罗方法

03 蒙特卡罗方法在清华数学 实验实验五中的应用
模拟随机过程
随机过程模拟
蒙特卡罗方法可以模拟各种随机 过程,如股票价格波动、气象变 化等,通过模拟这些过程,可以 更好地理解和预测实际现象。
概率分布模拟
蒙特卡罗方法可以生成符合特定 概率分布的随机数,用于模拟和 研究各种概率分布的性质和行为 。
求解数学问题
蒙特卡罗方法的优缺点
误差和不确定性
蒙特卡罗方法的精度取决于抽样次数,抽样次数越多,精 度越高,但计算成本也越高。同时,由于是随机模拟,结 果存在一定的不确定性。
对离散问题处理不佳
对于一些离散或非连续的问题,蒙特卡罗方法的精度可能 会受到影响。
对参数敏感
蒙特卡罗方法的参数选择对结果影响较大,需要谨慎选择。
02 清华数学实验实验五内容
实验目的
掌握蒙特卡罗方法的原理和应用。 学会使用蒙特卡罗方法解决实际问题。 培养数学建模和计算能力。
实验原理
蒙特卡罗方法是一种基于概率统 计的数值计算方法,通过随机抽
样和统计模拟来求解问题。
该方法适用于具有随机性和不确 定性的问题,通过大量模拟实验
来获得近似解。
蒙特卡罗方法的精度取决于模拟 实验的次数和随机抽样的质量。
金融工程
蒙特卡罗方法在金融工程中广泛应用于 风险评估、资产定价和衍生品定价等问
题。
工程设计
蒙特卡罗方法在工程设计中用于优化 设计参数、模拟系统性能和可靠性分
析等。
物理科学
在物理科学中,蒙特卡罗方法被用于 模拟分子运动、材料性质和量子力学 等领域。
社会科学
在社会科学中,蒙特卡罗方法被用于 模拟社会现象、预测人口变化和评估 政策效果等。
蒙特卡罗方法的优缺点

蒙特卡罗方法

蒙特卡罗方法

蒙特卡罗方法一、蒙特卡罗方法概述蒙特·卡罗方法(Monte Carlo method ),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。

是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

与它对应的是确定性算法这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。

蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。

它是以概率统计理论为基础的一种方法。

由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。

蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

1.历史起源蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。

数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo —来命名这种方法,为它蒙上了一层神秘色彩。

在这之前,蒙特卡罗方法就已经存在。

1777年,法国Buffon 提出用投针实验的方法求圆周率∏。

这被认为是蒙特卡罗方法的起源。

2. 蒙特卡罗方法的基本思想二十世纪四十年代中期,由于科学技术的发展和电子计算机的发明,蒙特卡罗方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。

但其基本思想并非新颖,人们在生产实践和科学试验中就已发现,并加以利用。

当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。

这就是蒙特卡罗方法的基本思想。

当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。

蒙特卡洛方法

蒙特卡洛方法

蒙特卡洛方法蒙特卡洛方法是一种基于随机抽样的计算方法,可以用于解决众多复杂的数学问题,涉及到概率统计、数值计算、优化问题等多个领域。

蒙特卡洛方法的核心思想是通过随机抽样来近似计算问题的解,其优点在于适用范围广,对于复杂的问题能够给出较为准确的结果。

本文将介绍蒙特卡洛方法的基本原理、应用领域以及优缺点。

蒙特卡洛方法的基本原理是利用随机抽样来估计问题的解。

通过生成服从特定分布的随机数,然后根据这些随机数来近似计算问题的解。

蒙特卡洛方法的核心思想是“用随机数来代替确定性数”,通过大量的随机抽样来逼近问题的解,从而得到较为准确的结果。

蒙特卡洛方法的随机性使得其能够处理复杂的问题,尤其在概率统计领域和数值计算领域有着广泛的应用。

蒙特卡洛方法的应用领域非常广泛,其中包括但不限于,概率统计、金融工程、物理学、生物学、计算机图形学等。

在概率统计领域,蒙特卡洛方法可以用来估计各种概率分布的参数,进行模拟抽样,计算统计量等。

在金融工程领域,蒙特卡洛方法可以用来进行期权定价、风险管理、投资组合优化等。

在物理学领域,蒙特卡洛方法可以用来模拟粒子的行为、计算物理系统的性质等。

在生物学领域,蒙特卡洛方法可以用来模拟生物分子的构象、预测蛋白质的结构等。

在计算机图形学领域,蒙特卡洛方法可以用来进行光线追踪、图像渲染等。

蒙特卡洛方法的优点在于适用范围广,能够处理各种复杂的问题,且能够给出较为准确的结果。

蒙特卡洛方法的缺点在于计算量大,需要进行大量的随机抽样才能得到较为准确的结果,且随机抽样的过程可能会引入误差。

因此,在实际应用中需要权衡计算成本和精度要求,选择合适的抽样方法和样本量。

总之,蒙特卡洛方法是一种重要的计算方法,具有广泛的应用价值。

通过随机抽样来近似计算问题的解,能够处理各种复杂的问题,且能够给出较为准确的结果。

在实际应用中,需要根据具体问题的特点和要求来选择合适的抽样方法和样本量,以平衡计算成本和精度要求。

希望本文能够帮助读者更好地理解蒙特卡洛方法的基本原理、应用领域以及优缺点,为实际问题的解决提供一些参考和启发。

蒙特卡罗方法PPT课件

蒙特卡罗方法PPT课件

第1页/共83页
蒙特卡 罗方法
直接方法
可以分解为各个独立 过程的随机性事件
统计方法 数值求解多维定积分
第2页/共83页
5.1 基本思想和一般过程
• Buffon投针实验
• 1768年,法国数学家Comte de Buffon利用投针实验估计 值
L
d
p 2L
d
第3页/共83页
• 长度为 l的针随机地落在相距为d>l 的一组水平线之间, 求针与线相交的概率?
分布的随机数的抽样,进行大量的计算随机模拟实验,从中获得随机变量 的大量试验值。各种概率模型具有不同的概率分布,因此产生已知概率分 布的随机变量,是实现Monte Carlo方法的关键步骤。最简单、最基本、 最重要的一个概率分布是(0,1)上的均匀分布 (或称矩形分布)。随机数就 是具有这种均匀分布的随机变量。对于其他复杂概率模型的概率分布可以 用数学方法在此基础上产生。因此,随机数是Monte Carlo模拟的基本工 具。
方法就叫做简单抽样法或非权重随机抽样法。
• 随机抽样法的真正优势表现在对较高维积分的近似求解,诸如在多体动力
学和统计力学中所遇到的问题。蒙待卡罗方法对较高维体系的积分误差仍

,而这时梯形定则给出的误差变为1/m2/D,这里D为维数。
1m
第21页/共83页
5.3.1 简单抽样 • 将其推广到多维的情况
模拟这个概率过程。对于本来不是随机性质的确定性问题,比如计算定积 分、解线性方程组及偏微分方程边值问题等,要用蒙特卡罗方法求解,就 必须事先构造一个人为的概率过程,它的某些参量正好是所要求的问题的 解。
第10页/共83页
5.1 基本思想和一般过程 • (2) 实现从已知概率分布的抽样 • 有了明确的概率过程后,为了实现过程的数字模拟,必须实现从已知概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒙特卡洛方法
• 平均分布
– 实现产生一个在一个区间之内的平均分布的随机 数,精度是4位小数。
double AverageRandom(double min,double max) { int minInteger = (int)(min*10000); int maxInteger = (int)(max*10000); int randInteger = rand()*rand(); int diffInteger = maxInteger - minInteger; int resultInteger = randInteger % diffInteger + minInteger; return resultInteger/10000.0; }
蒙特卡洛方法
double Normal(double x,double miu,double sigma) //概率密度函数 { return 1.0/sqrt(2*PI*sigma) * exp(-1*(x-miu)*(x-miu)/(2*sigma*sigma)); } double NormalRandom(double miu,double sigma,double min,double max)//产生正态分布随 机数 { double x; double dScope; double y; do { x = AverageRandom(min,max); y = Normal(dResult, miu, sigma); dScope = AverageRandom(0, Normal(miu,miu,sigma)); }while( dScope > y); return x; }
计算机辅助材料设计
蒙特卡洛方法
• Fortran 77
CALL RANDOM(ranval) REAL *4 返回[0, 1)随机数 CALL SEED(seedval) INTEGER *2 改变伪随机数发生器 的起始点 GETTIM 选择时间为“种子”值
计算机辅助材料设计
蒙特卡洛方法
• 平均分布
• 通过线性组合实现任意范围内的随机数的产生 • 实现-1000~1000内的平均分布的随机数:
– double dValue = (rand()%10000)/10000.0*1000(rand()%10000)/10000.0*1000
计算机辅助材料设计
蒙特卡洛方法
• 平均分布
– 上面的式子化简后就变为:
计算机辅助材料设计
蒙特卡洛方法
• 平均分布
double a = (rand()%10000) * (rand()%1000)/10000.0; double b = (rand()%10000) * (rand()%1000)/10000.0; double dValue = a-b;
计算机辅助材料设计
计算机辅助材料设计
蒙特卡洛方法
• 平均分布
– 下面的代码产生了400个在-1~1之间的平均分布的 随机数。 double dValue[400]; srand(GetTickCount()); for(int i= 0;i < 400; i++) { double dValue[i] = AverageRandom(-1,1); }
计算机辅助材料设计
蒙特卡洛方法
• 概率密度对应法——线性分布
– – – 0-1之间线性分布,概率密度函数y=2x [0,1]区间分为5份,0,0.2,0.4,0.6,0.8,1 区间内平均概率密度:0.2,0.6,1.0,1.4,1.8
2.0 1.8 1.6 1.4 1.2
Y
1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6
– C库函数rand()来产生一个随机的整数。 – 该随机数是平均在0~RAND_MAX之间平均分布的 – RAND_MAX是一个常量,是这样定义的: #define RAND_MAX 0x7fff – 它是一个short型数据的最大值 – 如果要产生一个浮点型的随机数,可以将 rand()/1000.0这样就得到一个0~32.767之间平均 分布的随机浮点数。
计算机辅助材料设计
蒙特卡洛方法
• 平均分布
– 产生-1000~1000之间的精度为四位小数的平均分 布的随机数可以这样来实现。先产生一个0到 10000之间的随机整数。方法如下:
– int a = rand()%10000;
• 保留四位小数产生0~1之间的随机小数:
– double b = (double)a/10000.0;
计算机辅助材料设计
蒙特卡洛方法
• 产生随机数
1、C 2、Fortran 77
计算机辅助材料设计
蒙特卡洛方法
• C语言
#include <stdlib.h> #define RAND_MAX 0x7FFF 32767 #define random(num) (rand() % (num)) #define randomize() srand((unsigned)time(NULL)) int rand(void) 0-RAND_MAX int random(int num) 0-(num-1) void srand(unsigned seed) 初始化随机数发生器 void randomize(void) 用随机数初始化随机数发生器
计算机辅助材料设计
0.8
1.0
蒙特卡洛方法
• 几何直观面积法——正态分布
– 概率密度函数
1 f ( x) e 2 ( x )2 2 2
– 其中μ,σ(>0)为常数,它们分别为数学期望和 均方差
计算机辅助材料设计
蒙特卡洛方法
• 几何直观面积法——正态分布
– μ=0,σ=0.2
计算机辅助材料设计
取μ=0,σ=0.05,范围是-1~1产生400个正态随机数分布图
计算机辅助材料设计
蒙特卡洛方法
• 先产生4000个在0到4之间的正态分布的随机数,取μ=0,σ=0.2,再把产 生的数据的数量做个统计,画成曲线
计算机辅助材料设计
计算机辅助材料设计
蒙特卡洛方法
• 基本思想
– 统计实验计算法 – 人为地造出一种概率模型,使它的某些参 数恰好重合于所需计算的量;又可以通过 实验,用统计方法求出这些参数的估值; 把这些估值作为要求的量的近似值。
计算机辅助材料设计
蒙特卡洛方法
• 应用
– 实验次数越多,所得到的结果才越精确。 – 借助计算机 – 优点:一是简单,省却了繁复的数学报导和演算过 程,使得一般人也能够理解和掌握;二是快速。简 单和快速,是蒙特卡罗方法获得应用的技术基础。
先进复合材料设计与制备技术基础 ____计算机辅助材料设计
蒙特卡洛方法
蒙特卡洛方法
• 问题:
1、粒子随机移动 2、粒子随机沉积 3、粒子随机堆积
计算机辅助材料设计
蒙特卡洛方法
• 介绍
– – – – 一种随机模拟方法 欧洲著名赌城,摩纳哥的蒙特卡罗 赌博游戏与概率的内在联系 美国曼哈顿计划。第二次世界大战期间,美国 Los Alamos 实验室论证出了制造原子弹的可能性,但 要制出实际可用的核武器,逐项解决大量复杂的理 论和技术问题,如中子轨道和辐射轨道等等问题。 描述这些过程需要相当复杂的微分、积分的耦合方 程组。科学家们采用建立基础的物理模型,用随机 抽样法在计算机上进行模拟的方法。这种方法与数 学模拟法不同,不从物理模型建立数学模型(太复 杂),而是在计算机上进行试验,用随机抽样法解 决问题。
计算机辅助材料设计
蒙特卡洛方法
• 平均分布
– 随机的种子 – 计算机产生的随机数是通过递推的方法 – 每次程序运行时对随机种子进行初始化 – 如果给一个常量,则得到的随机序列就完全 相同了,因此可以使用系统的时间来作为随 机种子,因为系统时间可以保证它的随机性 – srand(GetTickCount())
• • •
double miu:μ,正态函数的数学期望 double sigma:σ,正态函数的均方差 double min,double max,表明产生的随机数的范围
计算机辅助材料பைடு நூலகம்计
蒙特卡洛方法
取 μ=0,σ=0.2,范围是-1~1产生400个正态随机数分布图
计算机辅助材料设计
蒙特卡洛方法
• double dValue = (rand()%10000)/10.0(rand()%10000)/10.0; • 精度不正确 • rand()产生的随机数分辨率为32767,两个就是65534, 而经过求余后分辨度还要减小为10000,两个就是 20000,而要求的分辨率为1000*10000*2=20000000
相关文档
最新文档