数值分析复习题

合集下载

数值分析期末考试题

数值分析期末考试题

数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。

2. 多项式插值中,牛顿插值多项式可以通过________法来构建。

3. 数值积分中,高斯求积法是一种________方法。

4. 误差传递的估计通常通过________公式来进行。

5. 非线性方程的求解中,二分法是一种________方法。

三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。

2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。

3. 解释插值和拟合的区别,并举例说明各自的应用场景。

4. 阐述数值积分中梯形法则的原理及其误差估计方法。

5. 讨论非线性方程求解中不动点理论和收敛性的关系。

四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。

数值分析复习试题及参考答案

数值分析复习试题及参考答案

1、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x 的绝对误差限。

解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε()07057.00005.0115.80005.01025.621=⨯+⨯≈x x ε2、设430.56,1021.12≈≈x x均具有5位有效数字,试估计由这些数据计算21x x +的绝对误差限。

解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε0055.0)()()(2121=+=+x x x x εεε3、简答题 (1)已知12622)(256+-+-=x xxxx f ,求]1,0[f 及]6,5,4,3,2,1,0[f 。

解:由f(0)=1,f(1)=5得 []()()41011,0=-=f f f因为最高阶差商只出现在最高次,所以[]26,5,4,3,2,1,0=f(2)求积公式[])1()0(121)]1()0([21)(1f f f f dx x f '-'++≈⎰的代数精度为多少? 解:令()xx f =,则()21211021==⎰xdx x f ,右边=21,左边=右边同理令()2xx f =,()3xx f =均准确成立,()4xx f =时,左边≠右边所以,上式具有3阶精度4、求满足下表条件的Hermit 插值多项式。

x0 1)(x f -1 0 )(x f '-210解:使用重节点差商表法x y 一阶二阶 三阶 0 -1 0 -1 -2 1 0 1 3 1 010 9 6()()1236163212322---=-++--=x x x x xx x x H5、已知函数)(x f y =的数据如下:x1 2 4 -5 )(x f3 4 1 0(1)求3次Lagrange 插值多项式; (2)求3次Newton 插值多项式; (3)写出插值余项。

数值分析考试卷及详细答案解答汇总

数值分析考试卷及详细答案解答汇总

姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。

2. 十进制123.3转换成二进制为1111011.0而1。

3. 二进制110010.1001转换成十进制为 50.5625 。

4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。

6.1112=0.69314718...,精确到 10一’的近似值是 0.693。

* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

(完整版)数值分析整理版试题及答案,推荐文档

(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x

xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4

a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5

数值分析期末复习题答案

数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。

例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。

2. 说明数值微分与数值积分的区别。

答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。

数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。

三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。

答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。

具体计算过程略。

2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。

答案:首先确定区间划分,然后应用辛普森积分公式进行计算。

具体计算过程略。

四、论述题1. 论述数值分析中误差的来源及其控制方法。

答案:误差主要来源于舍入误差和截断误差。

舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。

控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。

五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。

数值分析期末考试题及答案

数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。

答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。

它包括三个基本操作:行交换、行乘以非零常数、行相加。

2. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。

例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。

三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。

答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。

2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、已知(1)用拉格朗日插法求)(x f 的三次插值多项式; (2)求x ,使0)(=x f 。

2、试求1x ,2x 使求积公式11211()[(1)2()3()]3f x f f x f x -≈-++⎰的代数精度尽量高,并求其代数精度。

3、用牛顿法求3的近似值。

取7.10=x ,计算三次,保留五位小数。

4、已知一元方程02.133=--x x 。

1)求方程的一个含正根的区间;2)给出在有根区间收敛的简单迭代法公式(判断收敛性);3)给出在有根区间的Newton 迭代法公式。

5、确定求积公式)5.0()()5.0()(111Cf x Bf Af dx x f ++-≈⎰-的待定参数,使其代数精度尽量高,并确定其代数精度.6、已知数据如下:求形如bxa y +=1拟合函数。

7、用二次拉格朗日插值多项式2()L x 计算sin 0.34。

插值节点和相应的函数值如下表。

8、已知012113,,,424x x x === (1)推导以这三点为求积节点在[0,1]上的插值型求积公式;10120113()()()()424f x dx A f A f A f ≈++⎰(2)指明求积公式所具有的代数精度;(3)用所求公式计算⎰102dx x 。

9、讨论用Jacobi 和Gauss-Seidel 迭代法求解方程组A x =b 的收敛性,如果收敛,比较哪种方法收敛快。

其中:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=212120203A10、写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.11、已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.12、对方程组⎪⎩⎪⎨⎧=-+=--=++841025410151023321321321xxxxxxxxx试建立一种收敛的Seidel迭代公式,说明理由13、用高斯-塞德尔方法解方程组⎪⎩⎪⎨⎧=++=++=++225218241124321321321xxxxxxxxx,取T)0,0,0()0(=x,迭代三次(要求按五位有效数字计算)。

14、利用矩阵的LU分解法解方程组1231231232314252183520x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩15、设3201219(), , 1, 44f x x x x x ====(1)试求 ()f x 在19,44⎡⎤⎢⎥⎣⎦上的三次Hermite 插值多项式()xH 使满足:''11()(), 0,1,2,... ()()j j H x f x j H x f x ===()x H 以升幂形式给出。

(2)写出余项 ()()()R x f x H x =-的表达式16、用列主元消去法解线性方程组17、用二分法求方程3()1f x x x =--在区间[1,1.5]内的根时,若要求精确到小数点后二位,(1) 需要二分几次;(2)给出满足要求的近似根。

18、已知一组试验数据如下 :求它的拟合曲线(直线)。

19、已知函数()y f x =的相关数据由牛顿插值公式求三次插值多项式)(3x N ,并计算)21(3N =的近似值。

20、建立[0,2]上节点为00=x ,5.01=x ,22=x 的数值积分公式。

21、已知函数)(x f 的函数表如下:列出差商表,求四次Newton 插值多项式,并由此求)596.0(f 的近似值。

22、方程20102)(23-++=x x x x f 在区间(1,2)中有一个单根p ,取初始值10=x ,应用Newton 法迭代求p (要求8105.0)(-⨯≤n x f )。

23、已知10100=,11121=,12144=,试分别用线性插值和抛物线插值公式求125的近似值。

24、设线性代数方程组b Ax =的系数矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122111221-----A 分析Jacobi 和G-S 迭代法的收敛情况。

25、用多利特尔分解法求解方程组。

⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛32563024353432321x x x26、用三点高斯-勒让德求积公式计算下式的近似值。

⎰=1sin dx xxI 27、求下列方程的解。

01)2(4=---x ex28、为求方程01)(23=--=x x x f 在x 0=1.5附近的一个根,试将方程改写为三种等价形式,建立相应的迭代公式,并分析公式的收敛性。

29、用二分法求方程0104)(23=-+=x x x f 在区间[1,2]内根的近似值时,为使误差不超过不超过10-2,需要得分多少次? 30、导出3a 的迭代公式,并讨论其收敛性。

⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛565375343132321x x x 33、对下列矩阵进行LU 和LDU 0分解。

(L (U 0)分别为单位下(上)三角形矩阵,D 为对角阵)。

34、用多利特尔分解:⎪⎩⎪⎨⎧=+--=-+=-+41432532210224321321321x x x x x x x x x 35、试构造迭代收敛的公式求解下列方程:(1)4sin cos xx x +=; (2)x x 24-=。

36、用牛顿法求方程0742)(23=---=x x x x f 在[3,4]中的根的近似值(精确到小数点后两位)。

37、应用牛顿法于方程03=-a x , 导出求立方根3a 的迭代公式,并讨论其收敛性。

38、设有方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225321321321x x x x x x x x x (1)考察用Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; (2)用Jacobi 法及Gauss-Seidal 法解方程组,要求当4)()1(10-∞+<-k k x x 时迭代终止。

39、用SOR 方法解下列方程组(取松驰因子2.1=ω),要求4)()1(10-∞+<-k k x x .⎩⎨⎧=-=+54122121x x x x . 40、用选列主元高斯消去法求解方程组⎪⎩⎪⎨⎧=---=-+-=+-0232122743321321321x x x x x x x x x 41、用三角分解法求解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----765202616184842321x x x 42、给出概率积分dx e x f xx ⎰-=22)(π的数据表:试用二次插值计算)472.0(f .并估计其误差.44、构造适合下列数据表的三次样条插值函数S (x )45、用最小二乘法求一个形如2bx a y +=的经验公式,使与下列数据相拟合46、试确定下面求积公式⎰-++≈11210)]()()([)(x f x f x f C dx x f使其具三次代数精度。

47、在区间],[b a 上导出含五个节点的Newton-Cotes 公式,并指出其余项及代数精度。

48、分别用复合梯形公式及复合Simpson 公式计算⎰+21)1ln(dx x x, (取步长h =1/6)。

49、试构造两点Gauss 公式⎰-+≈111100)()()(x f A x f A dx x f ,并由此计算积分(精确到410-)⎰+121dxx 。

50、利用下面数据表,1. 用复化梯形公式计算积分dx x f I )(6.28.1⎰=的近似值;2. 用复化Simpson 公式计算积分dx x f I )(6.28.1⎰=的近似值。

(要求计算结果保留到小数点后六位).51、已知矩阵⎪⎪⎪⎭⎫⎝⎛=1256144412A ,求矩阵A 的Doolittle 分解。

52、用Newton 迭代法求解方程0133=--x x 在2.0附近的实根(计算结果保留10.466758.030146.042414.42569 3.12014 f (x ) 2.6 2.4 2.2 2.01.8 x到小数点后第四位)。

53、对下面线性方程组⎪⎩⎪⎨⎧=++=++=++38.04.028.04.014.04.0321321321x x x x x x x x x1.判别用雅可比迭代法是否收敛,若收敛则写出其迭代格式;2.判别用高斯-塞德尔迭代法是否收敛,若收敛则写出其迭代格式。

54、已知初值问题:⎩⎨⎧=≤<-= 1)0(4.00,'y x y x y ,取步长h =0.1,1. 用(显式的)Euler 方法求解上述初值问题的数值解;2. 用改进的Euler 方法求上述初值问题的数值解。

55、用高斯-塞德尔方法解方程组⎪⎩⎪⎨⎧=++=++=++225218241124321321321x x x x x x x x x ,取T )0,0,0()0(=x,迭代四次(要求按五位有效数字计算)。

56、求A 、B 使求积公式⎰-+-++-≈11)]21()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求⎰=211dxx I (保留四位小数)。

57、已知分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。

58、已知求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。

59、取节点1,5.0,0210===x x x ,求函数xx f -=e )(在区间[0,1]上的二次插值多项式)(2x P ,并估计误差。

60、构造求解方程0210=-+x e x的根的迭代格式 ,2,1,0),(1==+n x x n n ϕ,讨论其收敛性,并将根求出来,4110||-+<-n n x x 。

相关文档
最新文档