数值分析复习题
数值分析期末考试题

数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。
2. 多项式插值中,牛顿插值多项式可以通过________法来构建。
3. 数值积分中,高斯求积法是一种________方法。
4. 误差传递的估计通常通过________公式来进行。
5. 非线性方程的求解中,二分法是一种________方法。
三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。
2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。
3. 解释插值和拟合的区别,并举例说明各自的应用场景。
4. 阐述数值积分中梯形法则的原理及其误差估计方法。
5. 讨论非线性方程求解中不动点理论和收敛性的关系。
四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。
数值分析复习试题及参考答案

1、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x 的绝对误差限。
解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε()07057.00005.0115.80005.01025.621=⨯+⨯≈x x ε2、设430.56,1021.12≈≈x x均具有5位有效数字,试估计由这些数据计算21x x +的绝对误差限。
解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε0055.0)()()(2121=+=+x x x x εεε3、简答题 (1)已知12622)(256+-+-=x xxxx f ,求]1,0[f 及]6,5,4,3,2,1,0[f 。
解:由f(0)=1,f(1)=5得 []()()41011,0=-=f f f因为最高阶差商只出现在最高次,所以[]26,5,4,3,2,1,0=f(2)求积公式[])1()0(121)]1()0([21)(1f f f f dx x f '-'++≈⎰的代数精度为多少? 解:令()xx f =,则()21211021==⎰xdx x f ,右边=21,左边=右边同理令()2xx f =,()3xx f =均准确成立,()4xx f =时,左边≠右边所以,上式具有3阶精度4、求满足下表条件的Hermit 插值多项式。
x0 1)(x f -1 0 )(x f '-210解:使用重节点差商表法x y 一阶二阶 三阶 0 -1 0 -1 -2 1 0 1 3 1 010 9 6()()1236163212322---=-++--=x x x x xx x x H5、已知函数)(x f y =的数据如下:x1 2 4 -5 )(x f3 4 1 0(1)求3次Lagrange 插值多项式; (2)求3次Newton 插值多项式; (3)写出插值余项。
数值分析考试卷及详细答案解答汇总

姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。
2. 十进制123.3转换成二进制为1111011.0而1。
3. 二进制110010.1001转换成十进制为 50.5625 。
4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。
6.1112=0.69314718...,精确到 10一’的近似值是 0.693。
* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。
数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。
例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。
2. 说明数值微分与数值积分的区别。
答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。
三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。
答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。
具体计算过程略。
2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。
答案:首先确定区间划分,然后应用辛普森积分公式进行计算。
具体计算过程略。
四、论述题1. 论述数值分析中误差的来源及其控制方法。
答案:误差主要来源于舍入误差和截断误差。
舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。
控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。
五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。
数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知(1)用拉格朗日插法求)(x f 的三次插值多项式; (2)求x ,使0)(=x f 。
2、试求1x ,2x 使求积公式11211()[(1)2()3()]3f x f f x f x -≈-++⎰的代数精度尽量高,并求其代数精度。
3、用牛顿法求3的近似值。
取7.10=x ,计算三次,保留五位小数。
4、已知一元方程02.133=--x x 。
1)求方程的一个含正根的区间;2)给出在有根区间收敛的简单迭代法公式(判断收敛性);3)给出在有根区间的Newton 迭代法公式。
5、确定求积公式)5.0()()5.0()(111Cf x Bf Af dx x f ++-≈⎰-的待定参数,使其代数精度尽量高,并确定其代数精度.6、已知数据如下:求形如bxa y +=1拟合函数。
7、用二次拉格朗日插值多项式2()L x 计算sin 0.34。
插值节点和相应的函数值如下表。
8、已知012113,,,424x x x === (1)推导以这三点为求积节点在[0,1]上的插值型求积公式;10120113()()()()424f x dx A f A f A f ≈++⎰(2)指明求积公式所具有的代数精度;(3)用所求公式计算⎰102dx x 。
9、讨论用Jacobi 和Gauss-Seidel 迭代法求解方程组A x =b 的收敛性,如果收敛,比较哪种方法收敛快。
其中:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=212120203A10、写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.11、已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.12、对方程组⎪⎩⎪⎨⎧=-+=--=++841025410151023321321321xxxxxxxxx试建立一种收敛的Seidel迭代公式,说明理由13、用高斯-塞德尔方法解方程组⎪⎩⎪⎨⎧=++=++=++225218241124321321321xxxxxxxxx,取T)0,0,0()0(=x,迭代三次(要求按五位有效数字计算)。
14、利用矩阵的LU分解法解方程组1231231232314252183520x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩15、设3201219(), , 1, 44f x x x x x ====(1)试求 ()f x 在19,44⎡⎤⎢⎥⎣⎦上的三次Hermite 插值多项式()xH 使满足:''11()(), 0,1,2,... ()()j j H x f x j H x f x ===()x H 以升幂形式给出。
(2)写出余项 ()()()R x f x H x =-的表达式16、用列主元消去法解线性方程组17、用二分法求方程3()1f x x x =--在区间[1,1.5]内的根时,若要求精确到小数点后二位,(1) 需要二分几次;(2)给出满足要求的近似根。
18、已知一组试验数据如下 :求它的拟合曲线(直线)。
19、已知函数()y f x =的相关数据由牛顿插值公式求三次插值多项式)(3x N ,并计算)21(3N =的近似值。
20、建立[0,2]上节点为00=x ,5.01=x ,22=x 的数值积分公式。
21、已知函数)(x f 的函数表如下:列出差商表,求四次Newton 插值多项式,并由此求)596.0(f 的近似值。
22、方程20102)(23-++=x x x x f 在区间(1,2)中有一个单根p ,取初始值10=x ,应用Newton 法迭代求p (要求8105.0)(-⨯≤n x f )。
23、已知10100=,11121=,12144=,试分别用线性插值和抛物线插值公式求125的近似值。
24、设线性代数方程组b Ax =的系数矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122111221-----A 分析Jacobi 和G-S 迭代法的收敛情况。
25、用多利特尔分解法求解方程组。
⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛32563024353432321x x x26、用三点高斯-勒让德求积公式计算下式的近似值。
⎰=1sin dx xxI 27、求下列方程的解。
01)2(4=---x ex28、为求方程01)(23=--=x x x f 在x 0=1.5附近的一个根,试将方程改写为三种等价形式,建立相应的迭代公式,并分析公式的收敛性。
29、用二分法求方程0104)(23=-+=x x x f 在区间[1,2]内根的近似值时,为使误差不超过不超过10-2,需要得分多少次? 30、导出3a 的迭代公式,并讨论其收敛性。
⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛565375343132321x x x 33、对下列矩阵进行LU 和LDU 0分解。
(L (U 0)分别为单位下(上)三角形矩阵,D 为对角阵)。
34、用多利特尔分解:⎪⎩⎪⎨⎧=+--=-+=-+41432532210224321321321x x x x x x x x x 35、试构造迭代收敛的公式求解下列方程:(1)4sin cos xx x +=; (2)x x 24-=。
36、用牛顿法求方程0742)(23=---=x x x x f 在[3,4]中的根的近似值(精确到小数点后两位)。
37、应用牛顿法于方程03=-a x , 导出求立方根3a 的迭代公式,并讨论其收敛性。
38、设有方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225321321321x x x x x x x x x (1)考察用Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; (2)用Jacobi 法及Gauss-Seidal 法解方程组,要求当4)()1(10-∞+<-k k x x 时迭代终止。
39、用SOR 方法解下列方程组(取松驰因子2.1=ω),要求4)()1(10-∞+<-k k x x .⎩⎨⎧=-=+54122121x x x x . 40、用选列主元高斯消去法求解方程组⎪⎩⎪⎨⎧=---=-+-=+-0232122743321321321x x x x x x x x x 41、用三角分解法求解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----765202616184842321x x x 42、给出概率积分dx e x f xx ⎰-=22)(π的数据表:试用二次插值计算)472.0(f .并估计其误差.44、构造适合下列数据表的三次样条插值函数S (x )45、用最小二乘法求一个形如2bx a y +=的经验公式,使与下列数据相拟合46、试确定下面求积公式⎰-++≈11210)]()()([)(x f x f x f C dx x f使其具三次代数精度。
47、在区间],[b a 上导出含五个节点的Newton-Cotes 公式,并指出其余项及代数精度。
48、分别用复合梯形公式及复合Simpson 公式计算⎰+21)1ln(dx x x, (取步长h =1/6)。
49、试构造两点Gauss 公式⎰-+≈111100)()()(x f A x f A dx x f ,并由此计算积分(精确到410-)⎰+121dxx 。
50、利用下面数据表,1. 用复化梯形公式计算积分dx x f I )(6.28.1⎰=的近似值;2. 用复化Simpson 公式计算积分dx x f I )(6.28.1⎰=的近似值。
(要求计算结果保留到小数点后六位).51、已知矩阵⎪⎪⎪⎭⎫⎝⎛=1256144412A ,求矩阵A 的Doolittle 分解。
52、用Newton 迭代法求解方程0133=--x x 在2.0附近的实根(计算结果保留10.466758.030146.042414.42569 3.12014 f (x ) 2.6 2.4 2.2 2.01.8 x到小数点后第四位)。
53、对下面线性方程组⎪⎩⎪⎨⎧=++=++=++38.04.028.04.014.04.0321321321x x x x x x x x x1.判别用雅可比迭代法是否收敛,若收敛则写出其迭代格式;2.判别用高斯-塞德尔迭代法是否收敛,若收敛则写出其迭代格式。
54、已知初值问题:⎩⎨⎧=≤<-= 1)0(4.00,'y x y x y ,取步长h =0.1,1. 用(显式的)Euler 方法求解上述初值问题的数值解;2. 用改进的Euler 方法求上述初值问题的数值解。
55、用高斯-塞德尔方法解方程组⎪⎩⎪⎨⎧=++=++=++225218241124321321321x x x x x x x x x ,取T )0,0,0()0(=x,迭代四次(要求按五位有效数字计算)。
56、求A 、B 使求积公式⎰-+-++-≈11)]21()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求⎰=211dxx I (保留四位小数)。
57、已知分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。
58、已知求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。
59、取节点1,5.0,0210===x x x ,求函数xx f -=e )(在区间[0,1]上的二次插值多项式)(2x P ,并估计误差。
60、构造求解方程0210=-+x e x的根的迭代格式 ,2,1,0),(1==+n x x n n ϕ,讨论其收敛性,并将根求出来,4110||-+<-n n x x 。