材料界面结构与特性(叶恒强等著)思维导图

合集下载

《工程材料》材料的结构与性能 ppt课件

《工程材料》材料的结构与性能  ppt课件
原子排列情况相同而在空间位向不同 的晶向组成晶向族。
晶向族用尖括号表示, 即<uvw>。
如: <100> = [100] + [010] + [001]
ppt课件
26
在立方晶系中, 一个晶面指数与一 个晶向指数数值和符号相同时, 则该晶 面与该晶向互相垂直。
如:(111)⊥[111]。
晶面与晶向互相垂直
1. 金属晶体具有确定的熔点 纯金属缓慢加热到一定温度, 固态金属熔化 成为液态金属。熔化过程中温度不变。
熔化温度(T0)称为熔点。
非晶体材料在加 热时, 固态转变为 液态时, 温度变化。
晶体和非晶体的熔化曲线
ppt课件
32
2. 金属晶体具有各向异性
在晶体中, 不同晶面和晶向上原子排列的 方式和密度不同,它们之间的结合力的大小 也不相同,因而金属晶体不同方向上的性能 不同。这种性质叫做晶体的各向异性。
晶胞
老师提示 不同元素组成的金属晶体因晶格形
式及晶格常数的不同,表现出不同的物理、
化学和力学性能。金属的晶体结构可用X射线
结构分析技术进行测定。
ppt课件
5
一、三种常见的金属晶体结构
☆ 老师提示:重点内容
1. 体心立方晶格(胞) ( BCC 晶格)
8个原子处于立方体的角上,1个原子处于立 方体的中心, 角上8个原子与中心原子紧靠。
式中:ρ 为位错密度, 单位为m-2, ΣL 为位错线总长度, 单位为m, V为体积, 单位为m3。
ppt课件
41
位错对性能的影响: ●金属为理想晶体或含极少量位错时, 金属
的屈服强度σs 很高。
●当含有一定量的位错时, 强度降低。 ●退火金属中位错密度为 106~8 cm-2 ,强 度最低。

晶体界面的基础知识

晶体界面的基础知识
16
闪锌矿结构
在晶胞顶角和面心处的原子与体内原子分别属于不同的元素。 许多重要的半导体化合物都是闪锌矿结构。典型晶体:ZnS、 CdS、GaAs、-SiC
17
晶向、晶面
晶体具有方向性,沿晶格的不同方向晶体性质不同。 布拉伐格子的格点可以看成分列在一系列相互平行的直线系 , 这些直线系称为晶列 。
第一章 晶体界面的基础知识
江苏大学 材料科学与工程学院
1
参考教材:
1. 固体材料界面基础,颜莹编著,东北大学出版社,2008年; 2.材料界面结构与特性,叶恒强编著,科学出版社,1999年; 3.材料科学基础,张联盟, 黄学辉, 宁晓岚编,武汉理工大学出
版,2008年; 4.固体物理学,黄昆原著,韩汝琦改编,高等教育出版社,
30
一、重位点阵理论
晶体界面一般定义为,两侧晶体同相,在晶体结构和晶格 常数都相等的两个晶体间产生的界面。选择特殊的方位关系 后,因为其晶格常数相等,它成为按一定原子排列周期性重 复的界面。
作为讲述晶体晶界的形式,提出了理论和模型的人在历史 上数不胜数,但重位点阵理论的构成是高水平的。提倡用假 设两侧晶体晶格延长线上相互重合的排他律为人们提供周期 规律晶界的许多信息,这是我们想让大家体会到的事实。
例如,假设两个晶体有旋转关系,在考虑三元小回转角的 时候,可推断从1L的原点近似的三个独立晶格的矢量容易原封 不动地与2L对应,但旋转角变大时,用该假设计算的 O 点阵变 小,不能反映实际发生的对应关系。
从前面的结论显示可知,必须取1L基本矢量对应于2L矢 量,其变换关系要取最接近的矢量。作为例子讨论[110]旋转轴 的两个体心立方晶格的(110)面上的晶格,计算用二元进行。
排列方式: ABABAB (六方密堆积)

第讲 固液界面结构(共40张PPT)

第讲 固液界面结构(共40张PPT)

对于非密排晶面,
值低,如面心立方的(001)面,

微观光滑界面——小晶面长大——宏观有结晶面特征
增大过冷度,按连续长大(粗糙界面),形 长大机制与晶体形貌的关系?
质疑:界面类型的微观实质?
成粒状或球状
第三十七页,共40页。
37
思考与练习
课本:,,,
第三十八页,共40页。
38
第4课时
练习提示
:几何关系 :根据计算结果讨论 3.8 (光滑界面g=1):对结果分析 :体会晶体形貌的可变性。
第二十五页,共40页。
R
........R. 1Tk Tk 晶体长大时动力学过度冷
Tk 连续生长时晶体生长速度与动力学过冷度的关系
第二十六页,共40页。
2、台阶方式长大(侧面长大)
光滑界面在原子尺度界面是光滑的,单个原子与 晶面的结合较弱,容易脱离。只有依靠在界面上 出现台阶,然后从液相扩散来的原子沉积在台阶 边缘,依靠台阶向侧面长大。故又称“侧面长 大”。
面,在长大速度增大到一定时,却转变为非小晶面。
过冷度对不同物质存在不同的临界值, 越大的物质, 变为粗糙 面的临界过冷度也就越大。 合金的浓度有时也影响固-液界面的性质。
第二十一页,共40页。
第2课时
练习
参照图3-26、3-24,试画出两种界面结 构的原子堆积模型
P106第题:Bi和水凝固时体积膨胀,试 推测它们的固液界面是小晶面还是非小 晶面。
固-液界面的微观结构
粗糙界面:界面固相一侧的点阵位置只有约50%被固相原子所 占据,形成坑坑洼洼、凹凸不平的界面结构。 粗糙界面也称“非小晶面”或“非小平面”。
光滑界面:界面固相一侧的点阵位置几乎全部为固相原子所占满, 只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。

材料表界面第六章

材料表界面第六章

溶解度参数是确定高聚物与溶剂的溶解性和聚合物与聚合 物之间相容性的重要参数。
6.5 表面张力与内聚能密度
●对于小分子,Hildebrand和Scoff 提出了如下的表面张力和
内聚能密度间的关系式:
δ 16.8( / V
2
1/ 3 0.86
)
此式适用于非缔合小分子液体,从内聚能密度计算表面张力
拉开 液 结合
固,液
Wc 2 液
内聚能:表征物质分
●内聚能:表征物质分子间相互作用力强弱的一个物理量; 摩尔内聚能:消除1摩尔物质全部分子间作用力时,其内能的 增加,即 Ecoh为摩尔内聚能,∆H为汽化热(液体)或升华热(固体) 。R为气体常数,T为温度。 ●内聚能密度:单位体积的内聚能,记作(CED),即: ●内聚能密度的平方根称为溶解度参数δ,即:
高聚物的性能与分子量的关系:
X b X b Kb / M n
性能:如玻璃化转变温度、 热容、比热、热膨胀系数、 折射率、拉伸强度等。 Xb:聚合物的某种性能; Xb∞:分子量无穷大时的性能; Kb:常数; Mn:高聚物的数均分子量。 表面张力与分子量?
6.3 表面张力与相对分子质量的关系
以σ-M-2/3或σ1/4对M-1作图,并外推到高分子量区域,即可间接得到 固态高聚物的表面张力。-------- 第二种得到表面张力的方法
6.3 表面张力与相对分子质量的关系
Ke / M
1/ 4
2/ 3 n
1/ 4 正烷烃 Ks / M n
6.3 表面张力与相对分子质量的关系
无规共聚
两种或两种以上的单体毫无规律地共聚形成
共聚物。AbbbaaAAbbabbbAAAA
嵌段共聚

材料晶界与界面ppt课件

材料晶界与界面ppt课件
7
四、晶界及界面对材料各种性能的影响规律 (6学时)
对材料力学性能(强度、塑性、疲劳、断裂及蠕变等) 的影响规律
对材料物理性能(电导率、磁性能及超导性能等)的影 响规律
对材料化学性能(抗腐蚀性)的影响规律
8
五、几种典型材料中的晶界及界面及其与 性能的关系(4学时)
超级钢中超细晶粒及晶界与材料强度的关系
材料晶界及界面
材料系 刘 庆, qing.liu@ 电话:62772852(O), 62773302(H);
1
刘庆 简历
1999年03- 现在,清华大学,材料科学与工程系,教授,博士生导师。 1993年8月- 1999年3月, 丹麦 Ris 国家实验室,材料研究部, 高级研究员。 1991年5月-1993年8月, 博士后,北京科技大学,1992年10 ,副教授。 1987年7月-1991年4月, 助教,讲师, 哈尔滨工业大学。 1984年-1991年,哈尔滨工业大学,金属材料,工学硕士,工学博士。 1984年,重庆大学 冶金及材料工程系,工学学士。
A、塑性变形:位错界面、亚晶界及晶界的形成 B、再结晶形核、长大过程中晶界的作用
43
10%压下量
30%压下量
50%压下量
深冲用IF钢轧制变 形组织的TEM图像
70%压下量
44
RD ND
Copper-I Copper-II
SS-II Brass-I Brass-II Random cube 0-10
高温超导材料中的晶界及相界与材料超导性能的关系
大塑性变形材料中位错界面及其与材料加工硬化性的 关系
新型磁性材料中晶界及相界与材料磁性能的关系
9
课程教材及主要参考书:
1、材料界面结构与特性 叶恒强、朱静等 科学出版社 2、金属的晶界与强度 宋余九编 西安交大出版社 3、 固体材料界面研究的物理基础 闻立时著 科学出版社 4、复合材料基体与界面 赵玉庭等著 华东化工学院出版社 5、材料的表面与界面 李恒德等编 清华大学出版社

材料表界面_第十章ppt课件

材料表界面_第十章ppt课件

整理版课件
30
二、聚合物基复合材料
2. 环氧树脂
常用的脂肪胺固化剂
• H2NCH2CH2NHCH2CH2NH2 二乙烯三胺
• H2NCH2CH2NHCH2CH2NHCH2CH2NH2 三乙烯四胺
• H2NCH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NH2 四乙烯五胺
• H2N(CH2CH2NH)nCH2CH2NH2 多乙烯多胺
界面对复合材料的性能起着至关重要的作用。复合材料的性 能不是组成材料性能的简单加和,而产生了 1+1>2 的作用, 称为协同效应。
断裂能大幅提高的原因?
玻璃纤维的断裂能约为10 J/m2, 聚酯的断裂能约为 100 J/m2, 而复合后的玻璃纤维增强塑料的断裂能达105J/m2
整理版课件
6
一、复合材料概述
整理版课件
8
一、复合材料概述
复合材料的界面:
图10-3复合材料界面模型
1 纤维本体区 2 纤维表面区 3 界面吸附层 4 基体表面区 5 基体本体区
界面相内的化学组分,分子排列,热性
能,力学性能呈现连续的梯度性变化。
界面相很薄,是亚微观的,却有极其复杂的结构。在两相复合过程中,会出现 热应力(导热系数,膨胀系数的不同),界面化学效应(官能团之间的作用或 反应)和界面结晶效应(成核诱发结晶,横晶),这些效应引起的界面微观结 构和性能特征,对复合材料的宏观性能产生直接的影响。
整理版课件
17
二、聚合物基复合材料
聚合物基复合材料的一般特性: ⑥界面结合性差,层间剪切强度低
由于复合材料是由性能遽然不同的两种材料构成,因而界面的相容性和结 合力差,使得复合材料的层间剪切强度、横向强度都不够理想。因此,常常要 对复合材料进行界面改性来提高复合材料的性能。

材料科学基础第一章材料结构的基本知识ppt课件

材料科学基础第一章材料结构的基本知识ppt课件

整理版课件
14
3、金属键 • 通过正离子与自由电子之间相互吸引力使原子结
合的结合键。 • 价电子脱离原子成为“电子气”,正离子整齐地
排列在 “电子气”的海洋中. • 金属具有高的密度,良好的塑性,导电,导热,
固态溶解
整理版课件
15
二、二次键 1、范德瓦耳斯键 • 具有稳定电子结构的原子或分子通过电偶极矩相
Cu : …3p63d104s1
K:…3p64s1
整理版课件
7
5、电负性呈周期性变化:同周期自左至右逐渐增强, 同族自上而下逐渐减弱
整理版课件
8
第二节 原子的结合键
• 一次键 • 二次键 • 混合键 • 结合键的本质及原子间距 • 结合键与性能
整理版课件
9
按结合力强弱分:
• 一次键:通过电子的转移或共享使原子结合的结 合键.包括离子键、共价键、金属键,结合力较 强.
晶体: 有确定熔点 单晶体各向异性 多晶体各向同性
非晶体: 无确定熔点 各向同性
整理版课件
30
二、 原子排列的研究方法
• X射线或电子束 • 衍射原理 布拉格定律:
2dsinn
根据衍射分布图,可 分析晶体中原子排列 的特征(排列方式、 原子面间距等)
整理版课件
31
第四节 晶体材料的组织
1、结晶过程及多晶组织
整理版课件
39
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
整理版课件
20
由表可见,A、B原子间的电负性差越大,所 形成的 AB 化合物中离子键结合的比例越高
整理版课件
21
2、一次键与二次键混合 例如: • 石墨: 片层中为共价键,片层间

5第六章 复合材料的性能及表界面PPT课件

5第六章 复合材料的性能及表界面PPT课件

★ 对于韧性基体材料,最好具有较高的热膨胀系数。 这是因为热膨胀系数较高的相,从较高的加工温度 冷却时将受到张应力;
★ 对于脆性材料的增强相,一般都是抗压强度大于 抗拉强度,处于压缩状态比较有利。
★ 而对于像钛这类高屈服强度的基体,一般却要求 避免高的残余热应力,因此热膨胀系数不应相差 太大。
结构设计则最后确定产品结构的形状和尺寸。
上述三个设计层次互为前提、互相影响、互相依赖。
因此,复合材料及其结构的设计打破了材料研 究和结构研究的传统界限。设计人员必须把材料性 能和结构性能统一考虑,换言之,材料设计和结构 设计必须同时进行,并将它们统一在同一个设计方 案中。
复合材料是由多相材料复合而成,它的共同的 特点主要有三个:
二、复合材料组分的相容性
1、物理相容性: (1)基体应具有足够的韧性和强度,能够将外部载荷
均匀地传递到增强剂上,而不会有明显的不连续 现象。 (2)由于裂纹或位错移动,在基体上产生的局部应力 不应在增强剂上形成高的局部应力。
(3)基体与增强相热膨胀系数的差异对复合材料的界
面结合及各类性能产生重要的影响。
复合材料中界面层的厚度通常在亚微米以下,但 界面层的总面积在复合材料中很大,且复合材料的界 面特征对复合材料的性能、破坏行为及应用效能有很 大影响。
所以,人们以极大的注意力开展对复合材料界面 的研究--------表面和界面工程(surface and interface engineering)。
碳纤维复合材料、有机纤维复合材料具有比玻璃 纤维复合材料更低的密度和更高的强度,因此具有更 高的比强度。
(2)可设计性好
复合材料可以根据不同的用途要求,灵活地进 行产品设计,具有很好的可设计性。
对于结构件来说,可以根据受力情况合理布置 增强材料,达到节约材料、减轻质量的目的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档