广东省高考理科数学试卷
广东高考数学试题及答案2024

广东高考数学试题及答案2024一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若函数\( f(x) = x^2 - 4x + 3 \)的最小值是\( m \),则\( m \)的值为:A. 0B. 1C. 2D. 3答案:B2. 已知直线\( l_1 \)的方程为\( y = 2x + 1 \),直线\( l_2 \)的方程为\( y = -x + 3 \),则这两条直线的交点坐标为:A. (1, 3)B. (2, 3)C. (1, 2)D. (2, 1)答案:A3. 若复数\( z = 1 + i \),求\( z^2 \)的实部与虚部的和:A. 0B. 1C. 2D. 3答案:C4. 已知等差数列\( \{a_n\} \)的首项\( a_1 = 2 \),公差\( d = 3 \),求第10项\( a_{10} \)的值:A. 29B. 30C. 31D. 32答案:B5. 若三角形\( ABC \)的内角\( A \),\( B \),\( C \)满足\( A +B = 2C \),且\( \cos C = \frac{1}{2} \),则\( \sin A \)的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{1}{2} \)C. \( \frac{\sqrt{2}}{2} \)D. \( \frac{\sqrt{6}}{3} \)答案:D6. 已知函数\( y = \ln(x+1) \)在点\( (0,0) \)处的切线斜率为:A. 1B. 0C. \( \frac{1}{e} \)D. \( \frac{1}{2} \)答案:A7. 若\( \sin \theta = \frac{3}{5} \),\( \theta \)为锐角,则\( \cos 2\theta \)的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{16}{25} \)D. \( \frac{9}{25} \)答案:B8. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)的离心率为\( \frac{\sqrt{3}}{2} \),且\( a = 4 \),则\( b \)的值为:A. 2B. 4C. 6D. 8答案:C二、填空题:本题共4小题,每小题5分,共20分。
普通高等学校招生国统一考试数学理试题广东卷,含答案 试题

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学理试题〔卷,含答案〕本套试卷一共4页,21小题,总分值是150分。
考试用时120分钟。
本卷须知:〔B 〕填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处〞。
2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目选项之答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。
不按以上要求答题之答案无效。
4.答题选做题时.请先需要用2B 铅笔填涂选做题的题号对应的信息点,再答题。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
在在考试完毕之后以后,将试卷和答题卡一起交回。
参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题一一共10小题,每一小题5分,总分值是50分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.假设集合A={x|-2<x <1},B=A={x|0<x <2},那么集合A ∩B=A.{x|-1<x <1}B.{x|-2<x <1}C.{x|-2<x <2}D.{x|0<x <1}2.假设复数z 1=1+i,z 2=3-i,那么z1`z1=A.4+2iB.2+iC.2+2iD.3+i3.假设函数f(x)=3x +3x -与g(x)=33x x --的定义域均为R ,那么A .f(x)与g(x)均为偶函数B .f(x)为奇函数,g(x)为偶函数C .f(x)与g(x)均为奇函数D .f(x)为偶函数.g(x)为奇函数4.数列{n a }为等比数列,n s5是它的前n 项和,假设2a *3a =2a .,且4a 与27a 的等差中项为54,那么5s = A .35B .33 C .3lD .295.“14m <〞是“一元二次方程20x x m ++=有实数解〞的 6.如图1,ABC 为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA 那么多面体'''ABC A B C -的正视图(也称主视图)是7.随机量X 服从正态分布N 〔3,1〕,且P 〔2≤X ≤4〕=0.6826,那么P(X >4)=A.0.1588B.0.1587 C8.为了迎接2021年亚运会,某大楼安装了5个彩灯,他们闪亮的顺序不固定,每个彩灯只能闪亮红橙黄绿蓝中的一种颜色,且这个5个彩灯所闪亮的颜色各不一样,记住5个彩灯有序地各闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间是间隔均为5秒,假设要实现所有不同的闪烁,那么需要的时间是至少是二、填空题:本大题一一共7小题.考生答题6小题.每一小题5分,总分值是30分(一)必做题(9~13题)9.函数,f (x )=lg (x -2)的定义域是10.假设向量a =(1,1,x),b =(1,2,1),c =(1,1,1)满足条件(c —a )·2b =-2,那么x=11.a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,假设a =1,b =3,A +C =2B ,那么sin C =.12.假设圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x+y=0相切,那么圆O 的方程是.13.某城缺水问题比较突出,为了制定节水管理方法,对全居民某年的月均用水量进展了抽样调查,其中n位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,假设1x ,2x ,分别为1,2,那么输出的结果s 为.选做题〔14、15题,考生只能从中选做一题〕14.〔几何证明选讲选做题〕如图3,AB,CD 是半径为a 的圆O 的两条弦,他们相交于AB 的中点P ,23aPD =,∠OAP=30°那么CP=15.〔坐标系与参数方程选做题〕在极坐标系〔ρ,θ〕〔02θπ≤<〕中,曲线2sin cos 1ρθρθ==-与的极坐标为.三、解答题:本大题一一共6小题,总分值是80分.解答须写出文字说明、证明过程和演算步骤.16.〔本小题总分值是l4分〕17.〔12分〕某食品厂为了检查一条自动包装流水线的消费情况,随机抽取该流水线上的40件产品作为样本称出它们的重量〔单位:克〕,重量的分组区间为〔490,495】,〔495,500】,……,〔510,515】,由此得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量,(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列;(3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。
2021广东高考理科数学试卷及答案解析(word版)

普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D.{0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z= A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A 3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等B.虚半轴长相等C. 实半轴长相等D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0:11,,60,.22B B =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20B. 100,20 C. 200,10D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60 B.90 C.120 D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130, D.x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为.(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xey 在点)3,0(处的切线方程为.'5'0:530:5,5,35,530.xx x y y eyy x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba . 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab acaa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=.51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDFAEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf ,(1)求A 的值; (2)若23)()(=-+θθf f,)2,0(πθ∈,求)43(θπ-f .55233:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin coscos sin )3(sin()cos cos()sin )4444323cos sin 6cos 426cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则0022,CD 2,30,130,==1,213324,,,=,,,3,222333319322EG .,7,,4231933193193622,()()474747EHG D AF E DPC CDF CF CD DE CF CP EF DC DE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴==⋅⋅======⋅⋅∴====-=为二面角的平面角设从而∥即还易求得EF=从而易得故3,476347257cos .47319GH EHG EH ∴∠==⋅=12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431(,0),(ADF CP (3,1,0),2222AEF (x DP DC DA x y z DC A CF CP F DF CFF E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--∴++-><-->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<-<<-<-∴-<-<-<-+<-+∴=-∞------+---+-+∞=>=-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--+>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------++∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<----<<--+-+--+<+->∴><+<<-+++<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii xx x x x kx x k kk g x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<<--+<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<<-+<-++<∴<>+->∴<++-+<---⋃--⋃-+⋃-+-+++<>从而综合题意欲使则即的解集为:上所述。
2020年广东高考(理科)数学试题及答案

2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题).1.若z=1+i,则|z2﹣2z|=()A.0B.1C.D.22.设集合A={x|x2﹣4≤0},B={x|2x+a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x 的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx6.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+17.设函数f(x)=cos(ωx+)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A.B.C.D.8.(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.209.已知α∈(0,π),且3cos2α﹣8cosα=5,则sinα=()A.B.C.D.10.已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB =BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π11.已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线1:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.2x+y+1=0 12.若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2二、填空题:本题共4小题,每小题5分,共20分。
普通高等学校招生全国统一考试数学理试题(广东卷,含答案)

普通高等学校招生全国统一考试数学理试题(广东卷,含答案)参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yxyb xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为正视图侧视图A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2022年广东省高考数学试卷(理科)含解析

2022年广东省高考数学试卷(理科)含解析Colin2912106572022年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每题5分,满分40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.) 1.(5分)(2022?广东)假设集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},那么M∩N=() [0} ? A.{1,4} B. {﹣1,﹣4} C. D. 2.(5分)(2022?广东)假设复数z=i(3﹣2i)(i是虚数单位),那么=()2+3i 3+2i A.2﹣3i B. C. D. 3﹣2i 3.(5分)(2022?广东)以下函数中,既不是奇函数,也不是偶函数的是()xx A.B. C. D. y=x+e y=2+ y= y=x+ 4.(5分)(2022?广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为() 1 A.B. C. D. 5.(5分)(2022?广东)平行于直线2x+y+1=0且与圆x+y=5相切的直线的方程是() A.2x+y+5=0或2x+y﹣5=0 B. 2x+y+=0或2x+y﹣=0 2x﹣y+5=0或2x﹣y﹣5=0 C.D.2 x﹣y+=0或2x﹣y﹣=0 6.(5分)(2022?广东)假设变量x,y满足约束条件 4 A. 7.(5分)(2022?广东)已知双曲线C:那么双曲线C的方程为()A.B.﹣=1 ﹣=1 ﹣ =1的离心率e=,且其右焦点为F2(5,0),B. 6 C.,那么z=3x+2y的最小值为()D. 22C.﹣=1 D.﹣=1 8.(5分)(2022?广东)假设空间中n个不同的点两两距离都相等,那么正整数n的取值() A.至多等于3 B.至多等于4 C.等于5 D.大于5第1页(共18页)Colin291210657二、填空题(本大题共7小题,考生作答6小题,每题5分,满分30分.)(一)必做题(11~13题)49.(5分)(2022?广东)在(﹣1)的展开式中,x的系数为. 10.(5分)(2022?广东)在等差数列{an}中,假设a3+a4+a5+a6+a7=25,那么a2+a8= .11.(5分)(2022?广东)设△ABC的内角A,B,C的对边分别为a,b,c.假设a=C=,那么b= .,sinB=,12.(5分)(2022?广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答) 13.(5分)(2022?广东)已知随机变量X服从二项分布B(n,p),假设E(X)=30,D(X)=20,那么P= .14.(5分)(2022?广东)已知直线l的极坐标方程为2ρsin(θ﹣为A(2,),那么点A到直线l的距离为.)=,点A的极坐标15.(2022?广东)如图,已知AB是圆O的直径,AB=4,EC是圆O 的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,那么OD= .三、解答题16.(12分)(2022?广东)在平面直角坐标系xOy中,已知向量=(cosx),x∈(0,).,﹣),=(sinx,(1)假设⊥,求tanx的值;(2)假设与的夹角为第2页(共18页),求x的值.Colin29121065717.(12分)(2022?广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄 1 40 10 36 19 27 28 34 2 44 11 31 20 43 29 39 3 40 12 38 21 41 30 43 4 41 13 39 22 37 31 38 5 33 14 43 23 34 32 42 6 40 15 45 24 42 33 53 7 45 16 39 25 37 34 37 8 42 17 38 26 44 35 49 9 43 18 36 27 42 36 39 (1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)? 18.(14分)(2022?广东)如图,三角形△PDC 所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E 是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.219.(14分)(2022?广东)设a>1,函数f(x)=(1+x)e﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)假设曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤20.(14分)(2022?广东)已知过原点的动直线l与圆C1:x+y﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?假设存在,求出k的取值范围;假设不存在,说明理由.222x﹣1.第3页(共18页)Colin291210657 +21.(14分)(2022?广东)数列{an}满足:a1+2a2+…nan=4﹣(1)求a3的值;(2)求数列{an}的前 n项和Tn;(3)令b1=a1,bn=Sn<2+2lnn.,n∈N.+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足第4页(共18页)Colin2912106572022年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每题5分,满分40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.) 1.(5分)(2022?广东)假设集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},那么M∩N=() [0} ? A.{1,4} B. {﹣1,﹣4} C. D.考点:交集及其运算.专题:集合.分析:求出两个集合,然后求解交集即可.解答:解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4}, N={x|(x﹣4)(x﹣1)=0}={1,4},那么M∩N=?.应选:D.点评:此题考查集合的基本运算,交集的求法,考查计算能力. 2.(5分)(2022?广东)假设复数z=i(3﹣2i)(i是虚数单位),那么=() 2+3i 3+2i A.2﹣3i B. C. D. 3﹣2i 考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘法运算法那么化简求解即可.解答:解:复数z=i(3﹣2i)=2+3i,那么=2﹣3i,应选:A.点评:此题开采方式的代数形式的混合运算,复数的基本概念,考查计算能力. 3.(5分)(2022?广东)以下函数中,既不是奇函数,也不是偶函数的是() xx A.B. C. D. y=x+e y=2+ y= y=x+ 考点:函数奇偶性的判断.专题:函数的性质及应用.分析:直接利用函数的奇偶性判断选项即可.解答:解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2+x 是奇函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f (﹣x)=﹣f(x),所以函数既不是奇函第5页(共18页)。
2021年广东省高考数学试卷(理科)含解析

2021年广东省高考数学试卷(理科)含解析Colin2912106572021年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(5分)(2021?广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=() [0} ? A.{1,4} B. {﹣1,﹣4} C. D. 2.(5分)(2021?广东)若复数z=i (3﹣2i)(i是虚数单位),则=() 2+3i 3+2i A.2﹣3i B. C. D. 3﹣2i 3.(5分)(2021?广东)下列函数中,既不是奇函数,也不是偶函数的是() xx A.B. C. D. y=x+e y=2+ y= y=x+ 4.(5分)(2021?广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为() 1 A.B. C. D. 5.(5分)(2021?广东)平行于直线2x+y+1=0且与圆x+y=5相切的直线的方程是() A.2x+y+5=0或2x+y﹣5=0 B. 2x+y+=0或2x+y﹣=0 2x﹣y+5=0或2x﹣y﹣5=0 C.D.2 x﹣y+=0或2x﹣y﹣=0 6.(5分)(2021?广东)若变量x,y满足约束条件 4 A. 7.(5分)(2021?广东)已知双曲线C:则双曲线C的方程为() A.B.﹣=1 ﹣=1 ﹣=1的离心率e=,且其右焦点为F2(5,0),B. 6 C.,则z=3x+2y的最小值为()D. 22C.﹣=1 D.﹣=1 8.(5分)(2021?广东)若空间中n个不同的点两两距离都相等,则正整数n的取值() A.至多等于3 B.至多等于4 C.等于5 D.大于5第1页(共18页)Colin291210657二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)49.(5分)(2021?广东)在(﹣1)的展开式中,x的系数为.10.(5分)(2021?广东)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8= .11.(5分)(2021?广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=C=,则b= .,sinB=,12.(5分)(2021?广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)(2021?广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P= .14.(5分)(2021?广东)已知直线l的极坐标方程为2ρsin(θ﹣为A(2 ,),则点A到直线l的距离为.)=,点A的极坐标15.(2021?广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD= .三、解答题16.(12分)(2021?广东)在平面直角坐标系xOy中,已知向量=(cosx),x∈(0,).,﹣),=(sinx,(1)若⊥,求tanx的值;(2)若与的夹角为第2页(共18页),求x的值.Colin29121065717.(12分)(2021?广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄 1 40 10 36 19 27 28 34 2 44 11 31 20 43 29 39 3 40 12 38 21 41 30 43 4 41 13 39 22 37 31 38 5 33 14 43 23 34 32 42 6 40 15 45 24 42 33 53 7 45 16 39 25 37 34 37 8 42 17 38 26 44 35 49 9 43 18 36 27 42 36 39 (1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)? 18.(14分)(2021?广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G 分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.219.(14分)(2021?广东)设a>1,函数f(x)=(1+x)e﹣a.(1)求f (x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤20.(14分)(2021?广东)已知过原点的动直线l与圆C1:x+y﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.222x﹣1.第3页(共18页)Colin291210657+21.(14分)(2021?广东)数列{an}满足:a1+2a2+…nan=4﹣(1)求a3的值;(2)求数列{an}的前 n项和Tn;(3)令b1=a1,bn=Sn<2+2lnn.,n∈N.+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足第4页(共18页)Colin2912106572021年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(5分)(2021?广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=() [0} ? A.{1,4} B. {﹣1,﹣4} C. D.考点:交集及其运算.专题:集合.分析:求出两个集合,然后求解交集即可.解答:解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4}, N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=?.故选:D.点评:本题考查集合的基本运算,交集的求法,考查计算能力. 2.(5分)(2021?广东)若复数z=i(3﹣2i)(i是虚数单位),则=() 2+3i 3+2i A.2﹣3i B. C. D. 3﹣2i 考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘法运算法则化简求解即可.解答:解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.点评:本题开采方式的代数形式的混合运算,复数的基本概念,考查计算能力. 3.(5分)(2021?广东)下列函数中,既不是奇函数,也不是偶函数的是() xxA.B. C. D. y=x+e y=2+ y= y=x+ 考点:函数奇偶性的判断.专题:函数的性质及应用.分析:直接利用函数的奇偶性判断选项即可.解答:解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2+x是奇函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函第5页(共18页)。
2023广东高考卷(理科数学)试题及详解

专业课原理概述部分一、选择题(每题1分,共5分)1. 设集合M={x|x²3x+2=0},则集合M的元素个数为()A. 0B. 1C. 2D. 32. 已知函数f(x)=2x3,则f(f(1))的值为()A. 5B. 3C. 1D. 33. 若向量a=(2,3),b=(1,2),则2a3b的模长为()A. 5B. 10C. 15D. 204. 在等差数列{an}中,若a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 45. 若复数z满足|z1|=|z+1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. 直线y=x上D. 直线y=x上二、判断题(每题1分,共5分)1. 任何两个实数的和仍然是一个实数。
()2. 若函数f(x)在区间[a,b]上单调递增,则f'(x)≥0。
()3. 两个平行线的斜率相等。
()4. 在等差数列中,若m+n=2p,则am+an=2ap。
()5. 两个复数相等的充分必要条件是它们的实部和虚部分别相等。
()三、填空题(每题1分,共5分)1. 已知函数f(x)=x²+2x+1,则f(1)=______。
2. 若向量a=(3,4),则3a的坐标为______。
3. 在等差数列{an}中,若a1=1,公差d=2,则a5=______。
4. 若复数z=3+4i,则|z|=______。
5. 二项式展开式(2x3y)⁴的项数为______。
四、简答题(每题2分,共10分)1. 求函数f(x)=x²2x+1在x=2处的导数。
2. 已知等差数列{an}的通项公式为an=3n2,求前5项的和。
3. 求复数z=1+i的共轭复数。
4. 求解不等式2x3>0。
5. 简述平面直角坐标系中,两点间距离的公式。
五、应用题(每题2分,共10分)1. 已知函数f(x)=x²4x+3,求函数的最小值及对应的x值。
2. 已知向量a=(2,3),b=(1,2),求向量a和向量b的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(广东卷)
数学(理科)
本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:
1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式
V=Sh 其中S 为柱体的底面积,h 为柱体的高
线性回归方程$$y bx
a =+$中系数计算公式 ,其中,x y 表示样本均值。
N 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+)
一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i -
2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,
且}y x =,则A B ⋂的元素个数为
A.0 B.1 C.2 D.3 3.若向量a,b,c满足a∥b且a⊥b,则()2a a b ⋅+= A.4 B.3 C.2 D.0
4.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数
B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数
5.在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y ⎧≤≤⎪
≤⎨⎪
≤⎩给定。
若(,)M x y 为
D 上的动点,点A 的坐标为(2,1),则z OM ON =u u u u r u u u r
g
的最大值为 A .42 B .32 C .4 D .3 6.甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为
A .12
B .35
C .23
D .3
4
7.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为
8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有
;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是
A. ,T V 中至少有一个关于乘法是封闭的
B. ,T V 中至多有一个关于乘法是封闭的
C.,T V
中有且只有一个关于乘法是封闭的
D. ,T V 中每一个关于乘法都是封闭的
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
9.不等式130x x +--≥的解是
10. 7
2x x x ⎛
⎫- ⎪⎝
⎭的展开式中,4x 的系数是 (用数字作答)
11、等差数列{}a
α前9项的和等于前4项的和。
若141,0k a a a =+=,则
k=____________.
12、函数
2
()31f x x x =-+在x=____________处取得极小值。
13、某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm 。
因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_____cm.
(二)选择题(14---15题,考生只能从中选做一题)
14、(坐标系与参数方程选做题)已知两面线参数方程分别
为
(0sin x y θθπθ⎧=⎪≤⎨
=⎪⎩<和25()4x t t R y t ⎧
=⎪∈⎨⎪=⎩,它们的交点坐标为___________.
15.(几何证明选讲选做题)如图4,过圆O 外一点p 分别作圆的切线和割线交圆于A ,B
且PB =7,C 是圆上一点使得BC =5,∠ BAC =∠ APB , 则
AB = 。
三.解答题。
本大题共6小题,满分80分。
解答需写出文字说明、证明过程和演算步骤。
16. (本小题满分12分)
已知函数f(x)=2sin(31x-6π
),x R
(1)求f(45π
)的值;
(2)设α,β [0,2π],f(3α+2π)=1310
,f(3β+2π)=56,求cos(α+β)的值。
四、(本小题满分13分)
17.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y 的含量(单位:毫克)。
下表是乙厂的5件产品的测量数据:
编号 1 2 3 4 5 x 169 178 166 175 180 y
75
80
77
70
81
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品总数。
(2)当产品中的微量元素x,y 满足x ≥175,y ≥75,该产品为优等品。
用上述样本数据估计乙厂生产的优等品的数量。
(3)从乙厂抽出的上述5件产品中,随机抽取2件,球抽取的2件产品中的优等品数 的分布列极其均值(即数学期望)。
18.(本小题满分13分)
在椎体P-ABCD 中,ABCD 是边长为1的棱形,且∠DAB=60︒,
2PA PD ==,PB=2, E,F 分别是BC,PC 的中点
(1)证明:AD ⊥平面DEF (2) 求二面角P-AD-B 的余弦值 19.(本小题满分14分)
设圆C 与两圆2222(5)4,(5)4x y x y ++=-+=中的一个内切,另一个外切。
(1)求圆C 的圆心轨迹L 的方程 (2)已知点M 3545
(
,),(5,0)55
F ,且P 为L 上动点,求MP FP -的最大值及此时P 的坐标. 20.(本小题共14分) 设b>0,数列{}n a 满足a1=b ,1
1(2)22
n n n nba a n a n --=≥+-。
(1)求数列{}n a 的通项公式;
(2)证明:对于一切正整数n ,1
112
n n n b a ++≤≤
21.(本小题共14分)
在平面直角坐标系xoy 上,给定抛物线L:y=2
14
y x =。
实数p ,q 满足240p q -≥,x1,x2是方程
20x px q -+=的两根,记{}12(,)max ,p q x x ϕ=。
(1)过点,2
0001(,
)(0)4
A p p p ≠,(p0≠ 0)作L 的切线教y 轴于点
B 。
证明:对线段AB 上任一点Q(p ,q)有0
(,)2
p p q ϕ=
; (2)设M(a ,b)是定点,其中a ,b 满足a2-4b>0,a ≠ 0。
过设M(a ,b)作L 的两条切线12,l l ,切点分别为22112211
(,),(,)44
E p p E p p ',12,l l 与y 轴分别交与F,。
线段
EF
上异于两端点的点集记为
X 。
证明:M(a,b)
∈X ⇔12P P >⇔(,)a b ϕ1
2
p =
(3)设D={ (x,y)|y ≤x-1,y ≥
14(x+1)2-5
4
}。
当点(p,q)取遍D 时,求(,)p q ϕ的最小值 (记为min ϕ)和最大值(记为max ϕ)。