清华大学流体力学课件气体动力学基础
合集下载
《气体动力学基础》课件

气体状态方程
理想气体状态方程 真实气体状态方程 压缩因子
pV = nRT pV = ZnRT Z = pV/nRT
通过状态方程计算气体的压力、体积和温度之间的关系,深入理解气体的行为和性质。
绝热过程
绝热过程定义
在没有热量交换的情 况下,气体的温度和 压力发生变化。
绝热气体定律
pV^γ = 常数,其中γ 为气体比热容比。
2
绝热气体的等容过程
忽略热量交换的影响,讨论绝热气体的等容过程。
3
等容过程的性质
研究等容过程中气体的性质变化和热力学参数的关系。
气体动力学中的速度、密度、压力
速度概念
学习气体分子的平均速度、最 概然速度和均方速率。
密度计算
探索气体的密度定义和计算方 法,并分析密度对气体性质的 影响。
压力测量
介绍不同压力单位和测量方法, 了解压力与气体动力学的关系。
3 解析气体流动
通过研究气体的速度、压力和密度等参数,揭示气体在空气中的传播和扩散规律。
分子运动模型
1 碰撞理论
分析气体分子之间的碰撞,解释气体压力和 温度的关系。
2 动能理论
揭示分子的运动能量如何影响气体的性质和 状态变化。
3 分子均方速率
4 布朗运动
推导和计算气体分子的平均速度和速率分布。
探索分子在气体中的随机运动,为扩散和浓 度分布的研究提供基础。
绝热线和绝热 曲线
绝热过程在叠加状态 空间中形成特定形状 的线和曲线。
绝热耦合
将气体动力学与热力 学相结合,研究绝热 过程中的能量转换。
等温过程
1
等温过程定义
保持气体温度恒定,改变气体的压力和
理想气体的等温过程
清华工程流体力学课件第一章导论

20世纪中叶以后,流体力学的研究内容,有了明显的 转变,除了一些较难较复杂的问题,如紊流、流动稳定性
2024/7/30
11
与过渡、涡流动力学和非定常流等继续研究外,更主要的 是转向研究石油、化工、能源、环保等领域的流体力学问 题,并与相关的邻近学科相互渗透,形成许多新分支或交 叉学科,如计算流体力学、实验流体力学、可压缩气体力 学、磁流体力学、非牛顿流体力学、生物流体力学、多相目 录20247/30第一章 导 论
第二章 流体静力学
第三章 流体动力学基础
第四章 不可压缩流体的有旋流动和二维无旋流动
第五章 不可压缩流体二维边界层概述
第六章 黏性流体的一维定常流动
第七章 气体一维高速流动
英汉词汇表
返回
1
第一章 导论
§1–1 流体力学的任务及发展状况
§1–2 流体的特征和连续介质假设
2024/7/30
12
用这种方法,获得了较好的效果,大大推动了实验技术的 发展。
13世纪以前,我国在流体力学原理的应用方面做出了 巨大贡献,曾领先于世界。新中国建立以后,随着工农业 的建设,在这方面的工作得到迅猛发展,建造了众多的各 级重点实验室,不仅解决了无数的生产实际问题,而且还 培养了一支具有较高水平的理论和实验队伍。完全可以相
2024/7/30
6
间,何梦瑶在《算迪》一书中提出了流量为过水断面上平 均流速乘以过水断面面积的计算方法。我国在防止水患、 兴修水利方面也有着悠久的历史。相传4000多年前的大禹 治水,就表明我国古代进行过大规模的防洪工作。在公元 前256年至前210年间修建的都江堰、郑国渠和灵渠三大 水利工程,两千多年来效益卓著。以上都说明了我国劳动 人民的聪明智慧,当时对流体流动规律的认识已达到相当 高的水平。14世纪以前,我国的科学技术在世界上是处于 领先地位的。但是,近几百年来由于闭关锁国使我国的科 学得不到应有的发展,以致在流体力学方面由古代的领先
2024/7/30
11
与过渡、涡流动力学和非定常流等继续研究外,更主要的 是转向研究石油、化工、能源、环保等领域的流体力学问 题,并与相关的邻近学科相互渗透,形成许多新分支或交 叉学科,如计算流体力学、实验流体力学、可压缩气体力 学、磁流体力学、非牛顿流体力学、生物流体力学、多相目 录20247/30第一章 导 论
第二章 流体静力学
第三章 流体动力学基础
第四章 不可压缩流体的有旋流动和二维无旋流动
第五章 不可压缩流体二维边界层概述
第六章 黏性流体的一维定常流动
第七章 气体一维高速流动
英汉词汇表
返回
1
第一章 导论
§1–1 流体力学的任务及发展状况
§1–2 流体的特征和连续介质假设
2024/7/30
12
用这种方法,获得了较好的效果,大大推动了实验技术的 发展。
13世纪以前,我国在流体力学原理的应用方面做出了 巨大贡献,曾领先于世界。新中国建立以后,随着工农业 的建设,在这方面的工作得到迅猛发展,建造了众多的各 级重点实验室,不仅解决了无数的生产实际问题,而且还 培养了一支具有较高水平的理论和实验队伍。完全可以相
2024/7/30
6
间,何梦瑶在《算迪》一书中提出了流量为过水断面上平 均流速乘以过水断面面积的计算方法。我国在防止水患、 兴修水利方面也有着悠久的历史。相传4000多年前的大禹 治水,就表明我国古代进行过大规模的防洪工作。在公元 前256年至前210年间修建的都江堰、郑国渠和灵渠三大 水利工程,两千多年来效益卓著。以上都说明了我国劳动 人民的聪明智慧,当时对流体流动规律的认识已达到相当 高的水平。14世纪以前,我国的科学技术在世界上是处于 领先地位的。但是,近几百年来由于闭关锁国使我国的科 学得不到应有的发展,以致在流体力学方面由古代的领先
流体力学_09一元气体动力学基础

第九章 一元气体动力学
§9-2音速、滞止参数、马赫数 §9-3气体一元恒定流动的连续性方程
§9-2音速、滞止参数、马赫数
1.音速 流体中某处受外力作用,使其压力发生变化,称为压力 扰动,压力扰动就会产生压力波,向四周传播。微小扰动在 流体中的传播速度,就是声音在在流体中的传播速度,以符 号C表示。C是气体动力学的重要参数。 2.滞止参数 气流某断面的流速,设想以无摩擦绝热过程降低至零时, 断面各参数所达到的值,称为气流在该断面的滞止参数。滞 止参数以下标“0”表示。
§9-3气体一元恒定流动的连续性方程
一、连续性微分方程
第三章已给出了连续性方程 对管流任意两断面
A 常量
1v1 A1 2v2 A2
为了反映流速变化和断回变化的相互关系,对上式微分
d ( A) dA Ad Ad 0 d d dA 0 A
由欧拉运动微分方程:
2 消去密度 ,并将 c
dp
d 0
dp ,M 代入,则断面A与气流速度 d c
之间的关系式为:
dA d 2 ( M 1) A
二、气流反映气体可压缩大小。当气流速 度越大,则音速越小,压缩现象越显著。马赫数首先将有关影 响压缩效果的的v和c两个参数联系起来,指指定点的当地速度 v与该点当地音速c的比值为马赫数M。
v M c
M>1,v>c,即气流本身速度大于音速,则气流中参数 的变化不能向上游传播。这就是超音速流动。 M<1,v<c,即气流本身速度小于音速,则气流中参数 的变化能够向上游传播。这就是亚音速流动。 M数是气体动力学中一个重要无因次数,它反映惯性力 与弹性力的相对比值。如同雷诺数一样,是确定气体流动状 态的准则数。
§9-2音速、滞止参数、马赫数 §9-3气体一元恒定流动的连续性方程
§9-2音速、滞止参数、马赫数
1.音速 流体中某处受外力作用,使其压力发生变化,称为压力 扰动,压力扰动就会产生压力波,向四周传播。微小扰动在 流体中的传播速度,就是声音在在流体中的传播速度,以符 号C表示。C是气体动力学的重要参数。 2.滞止参数 气流某断面的流速,设想以无摩擦绝热过程降低至零时, 断面各参数所达到的值,称为气流在该断面的滞止参数。滞 止参数以下标“0”表示。
§9-3气体一元恒定流动的连续性方程
一、连续性微分方程
第三章已给出了连续性方程 对管流任意两断面
A 常量
1v1 A1 2v2 A2
为了反映流速变化和断回变化的相互关系,对上式微分
d ( A) dA Ad Ad 0 d d dA 0 A
由欧拉运动微分方程:
2 消去密度 ,并将 c
dp
d 0
dp ,M 代入,则断面A与气流速度 d c
之间的关系式为:
dA d 2 ( M 1) A
二、气流反映气体可压缩大小。当气流速 度越大,则音速越小,压缩现象越显著。马赫数首先将有关影 响压缩效果的的v和c两个参数联系起来,指指定点的当地速度 v与该点当地音速c的比值为马赫数M。
v M c
M>1,v>c,即气流本身速度大于音速,则气流中参数 的变化不能向上游传播。这就是超音速流动。 M<1,v<c,即气流本身速度小于音速,则气流中参数 的变化能够向上游传播。这就是亚音速流动。 M数是气体动力学中一个重要无因次数,它反映惯性力 与弹性力的相对比值。如同雷诺数一样,是确定气体流动状 态的准则数。
气体动力学基础-PPT课件

2. 运动方程
dp
vdv 0
2
dp v 2 const
§6.1 .4 一元等熵气流的基本方程
3. 能量方程
v h const 2
c p p p h c T p R 1
2
p v const 1 2
2
§6.1 .4 一元等熵气流的基本方程
c 1 sin v Ma
1 sin (
1 ) Ma
§6.2 微弱扰动在空间的传播
马赫锥
• 倘若产生微弱扰动的是一根无限长的 直的扰动线,则微弱扰动将以圆柱面 波的形式以当地声速向外传播。 • 当来流的速度变化时,同样会出现类 似于微弱扰动波的四种传播情况。这 时,原来的马赫锥成为马赫线(也称 马赫波)
1 1
cA [( c d ) c v ] [ p ( p d )] A p
1
cdv dp 1
c dp d
微弱扰动的传播速度等于压强对密度的导数开方。
§6.1 微弱扰动的一维传播 声速 马赫数
二、声速
声速即声音传播的速度,声音是由微弱压缩波和 微弱膨胀波交替组戍的,所以声速可作为微弱扰动波 传播速度的统称。
§6.2 微弱扰动在空间的传播
马赫锥
• 倘若气流是非直匀的超声速流,即流线是 弯曲的,流动参数也是不均匀的,则当一 个微弱扰动波发生之后,它不仅随气流沿 着弯曲的路线向下游移动,而且它相对于 气流的传播速度也随当地的声速而异。
§6.2 微弱扰动在空间的传播
马赫锥
• 如果微弱扰动源以亚声速、声速或超声速 在静止的气体中运动,则微弱扰动波相对 于扰动源的传播,同样会出现图9-1所示 的情况。
dp
vdv 0
2
dp v 2 const
§6.1 .4 一元等熵气流的基本方程
3. 能量方程
v h const 2
c p p p h c T p R 1
2
p v const 1 2
2
§6.1 .4 一元等熵气流的基本方程
c 1 sin v Ma
1 sin (
1 ) Ma
§6.2 微弱扰动在空间的传播
马赫锥
• 倘若产生微弱扰动的是一根无限长的 直的扰动线,则微弱扰动将以圆柱面 波的形式以当地声速向外传播。 • 当来流的速度变化时,同样会出现类 似于微弱扰动波的四种传播情况。这 时,原来的马赫锥成为马赫线(也称 马赫波)
1 1
cA [( c d ) c v ] [ p ( p d )] A p
1
cdv dp 1
c dp d
微弱扰动的传播速度等于压强对密度的导数开方。
§6.1 微弱扰动的一维传播 声速 马赫数
二、声速
声速即声音传播的速度,声音是由微弱压缩波和 微弱膨胀波交替组戍的,所以声速可作为微弱扰动波 传播速度的统称。
§6.2 微弱扰动在空间的传播
马赫锥
• 倘若气流是非直匀的超声速流,即流线是 弯曲的,流动参数也是不均匀的,则当一 个微弱扰动波发生之后,它不仅随气流沿 着弯曲的路线向下游移动,而且它相对于 气流的传播速度也随当地的声速而异。
§6.2 微弱扰动在空间的传播
马赫锥
• 如果微弱扰动源以亚声速、声速或超声速 在静止的气体中运动,则微弱扰动波相对 于扰动源的传播,同样会出现图9-1所示 的情况。
清华工程流体力学第七章气体一维高速流动精品PPT课件

dqdhVdV
在绝热流动的条件下,dq 0 ,上式可写成dhVdV0,积
分可得能量方程的另一表达式
h V 2 常数 2
(7-11)
这个方程可用于可逆的绝热流动,也可用于不可逆的绝热
流动,即式(7-11)在熵有增加(有摩擦或其他不可逆因
素)的绝热流动中也是正确的。因为在与外界无热交换的
绝热过程中,消耗于抵抗摩擦所作的功完全转换为热能,
工程流体力学
由于微弱扰动波的传播过程进行得很迅速,与外界来
不及进行热交换,而且其中的压强、密度和温度变化极为
微小,所以这个传播过程可以近似地认为是一个可逆的绝
热过程,即等熵过程。假定气体是热力学中的完全气体, 则根据等熵过程关系式 p =常数和完全气体状态方
程 pRT,可得
dp p RT d
代入式(7-3),得
c p RT
为热力学绝对温度,K
(7-4)
为绝热指数
为气体常数,J/(kg·K)
对于空气,
11.10.2020
1.4
,
工程R流=体力2学 87 J/(kg·K)。
由式(7-4)可知,气体中的声速随气体的状态参数 的变化而变化。于是在同一流场中,各点的状态参数若 不同,则各点的声速也不同。所以声速指的是流场中某 一点在某一瞬时的声速,称为当地声速。
VdV 1 dp 0
(7-9)
将式(7-9)沿流管(或流线)进行积分,得
dp
V2 2
常数
对于等熵流动,将等熵过程关系式 p 常数,代入上式,
得完全气体一维定常等p熵流V动2 的能常量数 方程为 1 2
(7-10)
11显.10.2然020 ,这个方程只能用于可工逆程流体的力学绝热流动。
流体力学(热能)第7章 一元气体动力学基础资料

气体动力学中,音速是一个重要参数, 一是判断气体压缩性对流动影响的一个标准; 二是判别流动型态的标准。
二、滞止参数
1、滞止参数:气流某断面的流速,设想以无摩擦绝热过程降 低至零时,该断面的气流状态为滞止状态,相应的气流参数 称滞止参数。(等熵过程)
p0, 0,T0,i0,c0
2、参数的计算公式,根据能量方程及有关断面参数求得。
(2)判断气流压缩性影响程度的指标
气体的压缩性随M 的增大而增大。流速高,气体的压缩性影
响显著提高。实际工程中常用流速判别气流按可压缩气体或 不可压缩气体的界限。 常温下(15º),M=0.2,v≤0.2×340m/s=68m/s,按不可压 缩液体处理。 (ρ,p,T变化不显著) v>68m/s时,压缩性不可忽略。
(1) E 1 dp d
E c2
c E
(2) dp k p kRT
d
c kRT
3、音速的性质与意义 性质:
(1)c反映流体压缩性的大小; (2)c与T有关; (3)c与k、R有关(气体性质),各种气体有自己的音 速值。 空气中音速c=340m/s,氢气中c=1295m/s。
意义:
密度等的变化)都将以波的形式向四面八方传播,其传播速度就是声音在 流体中的传播速度,用符号c表示。下面结合扰动波传播的物理过程,具体 导出音速的计算公式。
2、计算公式
分析:小扰动波传播的物理过程, A dv dv c
等截面直管,管中充满静止的可压 F
缩气体,密度为ρ,压强为p,F作用 dv向右运动,产生微小的平面扰动波, 波速为c 。坐标固在波峰上。如图:
2
1、气体一元定容流动的能量方程
ρ=常数
p v2 常数
2
p1 v12 p2 v22
二、滞止参数
1、滞止参数:气流某断面的流速,设想以无摩擦绝热过程降 低至零时,该断面的气流状态为滞止状态,相应的气流参数 称滞止参数。(等熵过程)
p0, 0,T0,i0,c0
2、参数的计算公式,根据能量方程及有关断面参数求得。
(2)判断气流压缩性影响程度的指标
气体的压缩性随M 的增大而增大。流速高,气体的压缩性影
响显著提高。实际工程中常用流速判别气流按可压缩气体或 不可压缩气体的界限。 常温下(15º),M=0.2,v≤0.2×340m/s=68m/s,按不可压 缩液体处理。 (ρ,p,T变化不显著) v>68m/s时,压缩性不可忽略。
(1) E 1 dp d
E c2
c E
(2) dp k p kRT
d
c kRT
3、音速的性质与意义 性质:
(1)c反映流体压缩性的大小; (2)c与T有关; (3)c与k、R有关(气体性质),各种气体有自己的音 速值。 空气中音速c=340m/s,氢气中c=1295m/s。
意义:
密度等的变化)都将以波的形式向四面八方传播,其传播速度就是声音在 流体中的传播速度,用符号c表示。下面结合扰动波传播的物理过程,具体 导出音速的计算公式。
2、计算公式
分析:小扰动波传播的物理过程, A dv dv c
等截面直管,管中充满静止的可压 F
缩气体,密度为ρ,压强为p,F作用 dv向右运动,产生微小的平面扰动波, 波速为c 。坐标固在波峰上。如图:
2
1、气体一元定容流动的能量方程
ρ=常数
p v2 常数
2
p1 v12 p2 v22
流体力学第九章 一元气体动力学基础

声 速 传 播 物 理 过 程
波峰所到之处,液体压强变为p+dp,密度变为 d ,
波峰未到之处,流体仍处于静止,压强、密度仍为静止时 的 p,
设管道截面积为A,对控制体写出连续性方程: 展开: c A (c-dv)( +d)A (9-20) d dv c 由流体的弹性模量与压缩系数的关系推导出:
第二节
声速、制止参数、马赫数
一、声速 流体中某处受外力作用,使其压力发生变化,称为压力扰动,压力 扰动就会产生压力波,向四周传播。传播速度的快慢,与流体内在 性质---压缩性(或弹性)和密度有关。微小扰动在流体中的传播速 度,就是声音在流体中的传播速度,以符号表示c声速。 取等断面直管,管中充满静止的可压缩气体。活塞在力的作用下,有一 微小速度向右移动,产生一个微小扰动的平面波。
(9-4)
上式为单位质量理想气体的能量方程式.
二.气体一元等温流动
热力学中等温过程系指气体在温度T不变的条件下所进
行的热力过程.等温流动则是指气体温度T保持不变的流 p (9-5) 动. T 常量, RT C
v2 RT ln p 常量 2
(9-6)
三.气体一元绝热流动
从热力学中得知,在无能量损失且与外界又无热量交换 的情况下,为可逆的绝热过程,又称等熵过程.这样理想 气体的绝热流动即为等墒流动,气体参数服从等墒过程方 p 程式: C (9-7) k
2 c c2 v2 k 1 k 1 2
(9-30)
三、马赫数Ma
马赫数Ma取指定点的当地速度v与该点当地声速c的比值;
不能向上游传播,这就是超声速流动. Ma<1,v<c,气流本身速度小于声速,即气流中参数的变化能够 各向传播,这就是压声速流动. Ma数是气体动力学中一个重要无因次数,它反应了惯性力与弹性力的 相对比值.如同雷诺数一样,是确定气体流动状态的准则数.
流体力学第十二章气体动力学基础.ppt

第1页
退出
返回
第十二章 气体动力学基础
第一节 压力波的传播,音速
压力波是机械波。机械波的产生必须具备两个条件:一是要有作机械
振动的物体,称为波源;二是要有传播机械振动的介质,如水,空气等。 在流体中存在压力扰动就会产生压力波。在可压缩流体中,压力扰动
是以一定的速度在流体中传播的,而在不可压缩流体中,压力扰动瞬间就 传播到整个流场。这是可压缩流体与不可压缩流体最本质的差别。如图 12.1所示,长直管中有两个静止的活塞 A 和 B 。当活塞A 受到外力 F作 用时,它右边的流体压力就要升高p。如果活塞 A 、B 之间充满的流体是 不可压缩的液体,则活塞 B 会立即开始跟着运动。但若其中的流体是可压 缩的气体,那么靠近活塞 A 的那层气体将首先受到挤压,产生位移和加速 度,其压力和密度也将分别增加 p、 值。
围绕压力分界面取一控制面,A为控制面面积,由连续方程可得
aA d a dwA
(12.1)
ad dw 0
第4页
退出
返回
第十二章 气体动力学基础 第一节 压力波的传播,音速
动量方程为 pA p dpA aAa dw a
即
dp adw 0
第3页
退出 返回
第十二章
气体动力学基础 第一节 压力波的传播,音速
而扰动未波及处,流体仍是静止的,压力和密度仍为 p、 。如果原来管内 的流体不是静止的,而是以均匀速度 w 向右流动,那么加一微弱扰动后的 情形就如图12.2(b)所示。这时微弱扰动在流速为 w 的流体中以相对速度a 传播,且传播的绝对速度与流体运动的速度 w 有关。在顺流方向,微弱扰 动的绝对传播速度为 a w;在逆流方向,微弱扰动的绝对传播速度为 a w。显然在上述两种情况下,管内流体的运动都是不稳定的。 为了方便分析,设想将坐标系固连在以速度 a 或 w a 前进的压力分界面上, 这样相对该坐标来说,流动就是稳定的,如图12.2(c)所示。站在相对坐 标上的观察者看到流体稳定地从右向左流动,穿过压力分界面时,速度由 a 降至 a dw ,而压力由 p 升高到p dp ,密度 由增加为 d 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、临界参数
流体质点的状态参数 p, , T , i, V 经历定常等熵
过程变化到声速状态(
时的参数,称为临界参数。
p*, *, T *, a*, V *
临界参数与滞止参数的关系
T T0
1
2
1
M
2
1
0
1
1 2
M
2
1 1
T* 2
T0 1
1
* 0
2 1
1
p p0
1
1 2
M
2
1
t
0
u x
u
x
0
c0 p0 / 0
x Lx*
t L t* c0
*
t*
0
L / c0
0
u* x*
c0
L
*u*
x*
0 c0
L
0
* u* 2 *u* 0
t*
x*
x*
* u* 0
t* x*
t
0
u x
0
2017年春-本科生-流体力学
气体动力学基础
7
§6.1 基本方程和基本概念
0 *0 x* L
u* 2u* u* p*
t*
x* 1 * x*
线化
u* p*
t*
x*
有量纲 形式
u 1 p
t 0 x
2017年春-本科生-流体力学
气体动力学基础
8
§6.1 基本方程和基本概念
t
u
x
0
u
t
u
u x
1
p x
p C
线化
t
0
u x
0
u
t
1
0
p x
p* p0
2 1
1
说明:临界参数为空间点上的参数,非均匀流各点临界参数不同; 理想常比热完全气体定常等熵流沿流线临界参数相同; 临界参数与参考坐标系有关。
空气 1.4 :T * / T0 0.833 * / 0 0.634 p* / p0 0.528
2017年春-本科生-流体力学
气体动力学基础
0,
1
1
空气 1.4 : max 6
气体动力学基础
第12周四 22
§6.3 激波理论
1、正激波形成的物理过程
2017年春-本科生-流体力学
气体动力学基础
23
§6.3 激波理论
Brass bullet in supersonic flight through air.
By Ernst Mach in Prague in The winter of 1888.
1
2
3
4
5
6
7
8
9 10
M
2017年春-本科生-流体力学
气体动力学基础
20
§6.2 完全气体等熵流动的主要性质
用速度系数表示的等熵关系式
T 1 12
T* 2
2
1
*
1
2
2
1
2
1
p p*
1
2
12
2
1
2017年春-本科生-流体力学
气体动力学基础
21
§6.2 完全气体等熵流动的主要性质
2at
at
3at
V t
V 0, M 0
V a, M 1
2017年春-本科生-流体力学
气体动力学基础
12
§6.1 基本方程和基本概念
3at V t
V a, M 1
2017年春-本科生-流体力学
V a, M 1
马赫锥 马赫角:马赫锥顶角的一半
sin
1
1 M
气体动力学基础
13
§6.1 基本方程和基本概念
19
§6.2 完全气体等熵流动的主要性质
3、速度系数 流体速度与当地的临界声速(或临界速度)之比
V V
a* V *
速度系数与马赫数的关系
M
2
1
1
1 2
M
2
1/ 2
M
2
1
1
12 1
1/ 2
2
M 0: 0
M 1: 1
M 1: 1
1
M 1: 1
M : 1 1
00
p p0 p x,t 0 x,t
a p0
0
原静止无穷长等截面直管道中气体的波动
是一维非定常可压缩问题 p p x,t , x,t , u u x,t
初始是静止状态 p p0 , 0 , u 0
扰动量是小量
p x,t p0 p x,t ,
p 1 p0
2017年春-本科生-流体力学
气体动力学基础
27
§6.3 激波理论
2、驻正激波前后物理量之间的关系式 – 激波的简化模型 激波是流动物理量的间断面,气流穿过激波的 过程是绝热过程
– 正激波与斜激波 与气流速度垂直的物理量间断面为正激波
– 驻激波与运动激波 相对于选定的坐标系静止的激波为驻激波
2017年春-本科生-流体力学
常比热完全气体:
状态方程 p RT
内能 e CV T
焓 熵 气体常数
i CPT
s
CV
ln
p
R CP CV
绝热指数(比热比) CP / CV
空气:
R 287 Nm kg K
1.4
2017年春-本科生-流体力学
气体动力学基础
4
§6.1 基本方程和基本概念
理想常比热完全气体绝热连续流动,不计质量力
x,t 0 x,t ,
1 0
u x,t u x,t
u 1
p0 / 0
2017年春-本科生-流体力学
气体动力学基础
6
§6.1 基本方程和基本概念
p 1 p0
p p0 p* u 0
t x
线化 有量纲
形式
1 0 0 *
u 1
p0 / 0 u c0u*
理想常比热完全气体定常绝热的连续流动中沿流线熵不变。
理想常比热完全气体定常绝热的连续流动中沿流线总焓不变。
1V 2
2
1
p
1V2 2
a2
1
1V2 2
i
1V 2
2
CpT
i0
Crocco定理:
理想气体定常绝热流动中,若质量力可略,在全流场成立:
Ω V Ts i0
定义:熵值处处相等的流场称为均熵流场;总焓处处相等的流场称为均焓流场。
不可压缩流体 a
常比热完全气体: p C dp p RT d
a p RT
2017年春-本科生-流体力学
气体动力学基础
11
§6.1 基本方程和基本概念
2、马赫数
定义:流体速度与当地声速之比,称为马赫数。
M V a
物理意义:惯性力 / 压强合力,动能 / 内能 流动的分类:亚声速(M<1),跨声速(M~1),超声速(M>1),高超声速(M>>1) 超声速流动和亚声速流动的主要差别:影响域和依赖域不同
1
2
1
M
2
1
0
1
2
1
M
2
1 1
p p0
1
1 2
M
2
1
说明:滞止参数为空间点上的参数,非均匀流各点滞止参数不同; 理想常比热完全气体定常等熵流沿流线滞止参数相同; 滞止参数与参考坐标系有关。
2017年春-本科生-流体力学
气体动力学基础
17
§6.2 完全气体等熵流动的主要性质
例: 1.4的气体从很大容器上的小孔流出,已知容器内压力
气体动力学基础
2017年春-本科生-流体力学
气体动力学基础
1
第六章 气体动力学基础
压缩性的影响:
2%
~
5%
气体动力学:可压缩流体动力学 包括:高速气体动力学, 气体波动力学, 高温气体力学等
热力学过程和动力学过程相耦合
本章:理想完全气体动力学
2017年春-本科生-流体力学
气体动力学基础
2
基本内容
依赖域:影响空间某点流动的区域称为该点的依赖域。
M 1
依赖域
影响域
P
超音速气流中 P 点的影响域和依赖域
亚音速:椭圆型方程,必须给出全部的边界条件 超音速:双曲型方程,只需给出上游边界的条件
2017年春-本科生-流体力学
气体动力学基础
14
§6.2 完全气体等熵流动的主要性质
一、完全气体等熵流动的基本性质和Crocco定理
扰动的传播速度:声速
a0
dp
d
S0
2017年春-本科生-流体力学
气体动力学基础
10
§6.1 基本方程和基本概念
声速定义:
dp
d
S
a2
几点说明:
声速是状态参数,声波的传播是等熵过程(理想、绝热);
在匀速运动的惯性坐标系中,声速仍为 a dp d s
在不均匀气流中,每个点上流动参数不同,声速也不同; 声速与流体的压缩性: 压缩性越强声速越小
2017年春-本科生-流体力学
气体动力学基础
24
§6.3 激波理论
Symmetric shock waves on a wedge. Air flow at M=1.45 over a wedge-plate of 10 degree semi-vertex angle.
2017年春-本科生-流体力学
2017年春-本科生-流体力学