23.1图形的旋转课件

合集下载

23.1《图形的旋转》课件

23.1《图形的旋转》课件

归纳新知: 归纳新知: • 共同特点:如果把时针、风车风轮 共同特点:如果把时针、
• 当成一个图形,那么这些图形都可以绕 当成一个图形, 转动一定的角度. 着 某一固定点 转动一定的角度. • 像这样,把一个图形绕着某一点o转动一个 像这样, 旋转 角度的图形变换叫做______ ______, 角度的图形变换叫做______,点o叫 做旋转中心 ,转动的角叫做 旋转角 . • 如果图形上的点P经过旋转变为点P′,那 如果图形上的点P经过旋转变为点P′ P′, 么这两个点叫做这个旋转的对应点. 图形的旋转不改变图形的形状、 图形的旋转不改变图形的形状、 大小,只改变图形的位置. 大小,只改变图形的位置.
观察思考
问题
(1)钟表的指针在不停地旋转, (1)钟表的指针在不停地旋转,从3点到5点, 钟表的指针在不停地旋转 点到5 时针转动了多少度? 时针转动了多少度? (2)风车车轮的每个叶片在风的吹动下转动到 (2)风车车轮的每个叶片在风的吹动下转动到 新的位置. 新的位置. 这些现象有哪些共同特点?
. M

E C
4.如图,△ABC为等边三角形,D是△ABC 如图, 为等边三角形, 是 如图 为等边三角形 内一点,若将△ 经过旋转后到△ 内一点,若将△ABD经过旋转后到△ACP 经过旋转后到 位置,则旋转中心是__________,旋转角等 位置,则旋转中心是 A , 于_________度,△ADP是___________三 度 是 等边 三 60 角形. 角形 A
对比平移、 对比平移、轴对称两 种图形变换, 种图形变换,旋转变换 与它们有哪些共性和 区别, 3.如图,杠杆绕支点转动撬起重物,杠 如图 杆的旋转中心在哪里? 杆的旋转中心在哪里?旋转角是哪个 角?

23-1 图形的旋转 课件(共20张PPT)

23-1 图形的旋转 课件(共20张PPT)

按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在
同一条直线上,那么旋转角等于(C )。
A.55° B.70°
C.125° D.145°
解析:知道∠B=35°,∠C=90°,所以∠BAB1=55°。 也就是旋转角是180°-55°=125°。
教学新知
知识点2:旋转的性质特征。 (1)对应点对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 (3)旋转前、后的图象全等。
BC=5,BD=4。则下列结论错误的是( B )。
A.AE//BC
B.∠ADE=∠BDC
C.△BDE是等边三角形 D.△ADE的周长是9
小练习
解析:∵△ABC是等边三角形,∴∠ABC=∠C=60°, ∵将△BCD绕点B逆时针旋转60°,得到△BAE, ∴AEB=∠C=60°,∴AE//BC,故选项A正确; ∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE由△BCD逆时针旋转60°得 出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°, BE=BD,∴△BDE是等边三角形,故选择C正确;∴DE=BD=4,∴△AED的周长 =AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴ 结论错误的是B。
小练习
如图所示,已知△ABC是直角三角形,∠ACB=90°, AB=5cm,BC=3cm,△ABC绕点C逆时针方向旋转90°
后得到△DEC,则∠D=∠__A__,∠B=_∠_D__EC___, DE=__5__cm,EC=__3__cm,AE=_1__cm,DE与AB的 位置关系为_垂__直__。

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
= 3 ,OA ′ =5 ,旋转角等于44 ° .
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.

九年级上册23.1图形的旋转(共19张PPT)

九年级上册23.1图形的旋转(共19张PPT)

知识要点
AAA
EEE
FF BB
D
OOO
CCC
旋转的性质
1、对应点到旋转中心的距离相等.
2、对应点与旋转中心所连线段的夹角等于旋转角.
3、旋转前、后的图形全等.
例题讲解
△A′OB′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20°, ∠ A′OB =24°,
AB=3,OA=5,则A′B′ =
一个具有这种关系的角。相等
由例1归纳:旋转不改变图形的形状 和大小 ,
但图形上的每个点同时都按相同的方式转动相 同的角度。旋转前后两个图形对应点到旋转中 心的距离 相等 ;对应点与旋转中心的连线所 成的角都等于旋转角;对应线段__相__等____, 对应角___相_等_______.
检测反馈
1、判断
A1
线 对应线段之间
C
B
两条对应线段的夹角都是旋转角
图中对应的线段:
___A_C_和__A_1_C_、__B__C_和__B_1_C_、__A__B_和__A_1.B1
面 旋转前后的 到什么结论?
A'
A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
一个图形经过旋转
①图形上的每一个点到旋转中心的距离相等. ( × )
②图形上可能存在不动点.
(√ )
③图形上任意两点的连线与其对应点的连线相等.
( √)
检测反馈
2、如图是正六边形,这个图案可以看做是由
__△_A__O__B_____“基本图案”通过旋转得到的.

23.1图形的旋转教学课件(共35张PPT)

23.1图形的旋转教学课件(共35张PPT)

线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。

图形的旋转ppt课件

图形的旋转ppt课件

钟表的指针在不停地转动,从3 时到5时,时针转动了多少度?
风车风轮的每个叶片在风的吹 动下转动到新的位置。
O
O
60°
图23.1-1
图23.1-2
以上这些现象有什么共同特点呢?
以上这些现象有什么不同特点呢?
旋转中心
O
O
60°
旋转 三要素
图23.1-1
图23.1-2
旋转方向
旋转角
像这样,把一个平面图形绕着平面内某一点O转动一个角度,
(2)旋转了60°
(3)AC中点M
2.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转45° 而成的。
(1) 若AB=4,则S正方形A′B′C′D′=

(2) ∠BAB ′= ,
∠B′AD= 。
(3) 若连接BB′,
则∠ABB′=

3. 如图,已知正方形 ABCD 的边长为 3,E、F 分别是 AB、BC 边上
的点,且∠EDF = 45°,将△DAE 绕点 D 按逆时针方向旋转 9;
证明:∵△DAE 绕点 D 逆时针旋转 90° 得到△DCM,
∴DE = DM,∠EDM = 90°.
A
D
∵∠EDF = 45°,∴∠FDM = 45°.
∴∠EDF =∠FDM.
B
实践操作,再探新知
探究二
平面中三角形的旋转
改变旋转中心的位置旋转的性质是否仍然成立?
O
C
O
A
B
三角形边上
C
O
A
B
三角形内部
C
A
B
三角形外部
1组和2组
3组和4组
5组和6组
小组合作探究(时间5分钟)

23.1.1图形的旋转PPT课件

23.1.1图形的旋转PPT课件
第二十三章 旋转
23.
把一个图形绕着某一定点O转动一个角度的 图形变换叫做旋转.这个定点O叫旋转中心,转 动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这 两个点P和P′叫做这个旋转的对应点.
P
O 120
P′
港中数学网
动态演示
随堂练习
1.下列现象中属于旋转的有( )个.
①地下水位逐年下降;②传送带的移动;
③方向盘的转动; ④水龙头的转动;
⑤钟摆的运动;
⑥荡秋千.
A.2
B.3
C.4
D.5
随堂练习 2.举出一些生活中的实例,并指出 旋转中心和旋转角.
旋转的决定因素:
旋转中心和旋转角度(旋转方向).
港中数学网
随堂练习 3.时钟的时针在不停地转动,从上 午6时到上午9时,时针旋转的旋转 角是多少度?从上午9时到上午10 时呢?
O C'
A'
B'
发现
旋转的基本性质 ◆旋转前、后的图形全等. ◆对应点到旋转中心的距离相等. ◆每一对对应点与旋转中心所连线段的夹
角等于旋转角. ◆图形的旋转是由旋转中心和旋转的角
度决定.
随堂练习
1.如图,它可以看作是由一个菱形绕某一 点旋转一个角度后,顺次按这个角度同 向旋转而得的, ①请你在图中用字母O标注出这一点; ②每次旋转了_______度;
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
随堂练习
5.如图,用左面的三角形经过怎样旋转, 可以得到右面的图形.
6.找出图中扳手拧螺母时的 旋转中心和旋转角.

23.1图形的旋转(课件)2024-2025学年九年级数学上册(人教版)

23.1图形的旋转(课件)2024-2025学年九年级数学上册(人教版)

P
对应点
O
120°
P′
合作探究
探究 如图,在硬纸板上,挖一个三角形洞,再挖一个小洞O作为
旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图
案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形
(△A′B′C′),移开硬纸板.
△A′B′C′是由△ABC绕点O按顺时针方向旋转得到的.
小试牛刀
3.如图,△ABC是等边三角形,D是BC边上的中点,
△ABD经过旋转后到达△ACE的位置,那么
A
(1)旋转中心是______;
点A
(2)点B、D的对应点分别是点_________;
点C和点E
(3)线段AB、BD、DA的对应线段
分别是___________;
AC、CE、AE
(4)∠B的对应角是_______;
人教版数学九年级上册
第23.1 图形的旋转
学习目标
1.认识旋转,理解图形旋转的三要素.
2.理解旋转的性质.
3.利用旋转的性质设计图形.
情境引入
情境引入
【问题】观察这些图形,你发现了什么?
它们都是沿某个方向绕定点转动.
互动新授
思考 如图(1),钟表的指针在不停地转动,从3时到5时,
时针转动了多少度?
问:线段OA与OA′有什么关系?_______;
OA=OA′
∠AOA′与∠BOB′有什么关系?______________;
∠AOA′=∠BOB′
△ABC与△A′B′C′形状和大小有什么关系?
__________________.
△ABC≌△A′B′C′
总结归纳
旋转的性质:
对应点到旋转中心的距离相等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转动一定的角度
B' B
A'
E
C
A
课下作业
1.将下图中大写字母N绕它右下侧的顶点按顺 时针方向旋转90˚,作出旋转后的图案.
2.如图:E是正方形ABCD中CD边上 的一点,以点A为中心,把△ADE顺时 针旋转90°。画出旋转后的位置?
A
C
E
B
C
课堂回顾:这节课,主要学习了什么?
旋转的概念:
在平面内,将一个图形绕着一个定点沿某个方 向转动一个角度,这样的图形运动称为旋转
这个定点称为旋转中心,转动的角称
为旋转角。
A
B
旋转角
o
旋转中心
归纳定义
把一个图形绕着某一定点O转动一个角度 的图形变换叫做旋转.这个定点O叫旋转中心, 转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这 两个点P和P′叫做这个旋转的对应点.
P
O 120
P′
动态演示
议一议
如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得 到四边形DOEF. 在这个旋转过程中:
∠EBF=______ A
D
E
B
C
F
练习、
3、如图∠C=30°,△ABC绕A点逆时 针旋转30°后得到△AB’C’,则图中度 数是30°的角有__________
A
4 1
C'
B
2
B'
3
C
练习、
4、如图将△ABC绕C点逆时针旋转30° 后,点B落在B′,点A落在A’点位置, 若A’C⊥AB,求∠B’A’C的度数。
4. 连接DE,则△DEC即为所求作.
练习、
1、如图正方形CDEF旋转后能与正方
形ABCD重合,若O是CD的中点那么
图形上可以作为旋转中心的点是
_________
A
D
E
O
B
C
F
练习、
2、如图E是正方形ABCD内一点,将
△ABE绕点B顺时针方向旋转到△CBF,其
中EB=3cm,则BF=_____cm ,
A
O
作法:
D
1. 将点A绕点O顺时针旋转60˚,得
点C;
B
2. 将点B绕点O顺时针旋转60 ˚,得 点D ;
3. 连接CD, 则线段CD即为所求作.
简单的旋转作图
图形的旋转作法
分析:
例3 如图,△ABC绕C点旋转后,顶
点A得对应点为点D. 试确定顶点B对
应点的位置以及旋转后的三角形.
E
A
D
作法一:
(1)旋转中心是什么? 旋转中心是O (2)经过旋转,点A、B分别移动到什么位置?点D和点E的位置 (3)旋转角是什么? ∠AOD和∠BOE都是旋转角 (4)AO与DO的长有什么关系?BO与EO呢? AO=DO,BO=EO (5)∠AOD与∠BOE有什么大小关系?
∠AOD=∠BOE
旋转的基本性质
(1)旋转不改变图形的大小和形状.
M
什么位置?
E
BD
C
思考题:香港区徽可以看作是什么“基本图案” 通过怎样的旋转而得到的?
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
本图案可以看做是一个菱形通过几次旋转得
到的?每次旋转了多少度?
5次
600, 1200, 1800, 2400, 3000
请您欣赏
世界如此美丽
自转与公转
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
在平面内,将一个图形绕着一个定点沿 某个方向转动一个角度,这样的图形运 动称为旋转。
特殊角)作出∠AOB,与圆周交
于B点;
3. B点即为所求作.
简单的旋转作图
例2 将线段AB绕O点沿顺时针方向旋转60˚.
分析: 项目 已知 未知
备注
线段的旋转作
线段AB
旋转中心 ●
点O
C
旋转方向 ●
顺时针
旋转角度 ●
60˚
目标图形 ●
线段
目标位置
● 线段CD (求作)
(2)图形上的每一点都绕旋转中心沿 相同方向转动了相同的角度 (3)任意一对对应点与旋转中心的连 线所成的角度都是旋转角. (4)对应点到旋转中心的距离相等.
例1:钟表的分针匀速旋转一周需要60 分. (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?
解:
(1)它的旋转中心是钟表的轴心;
(2)分针匀速旋转一周需要60 分,因此旋转20分,分针 旋转的角度为 360 20 120
60
思考题
如图:△ABC是等边三角形,D是BC边上的一点, △ABD经过旋转后到达△ACE的位置 。
(1)旋转中心是哪一点?
(2)旋转了多少度?
A
(3)如果M是AB上
中点,那么经过上述
的旋转后,点M到了
项目 源图形 源位置 旋转中心 旋转方向
旋转角度 目标图形 目标位置
已知 ● ● ●

未知
● ● ●
备注
△ABC △ABC 点C 根据A与D的对应 关系判断为顺时 针
∠ACD 三角形
△DEC (求作)
B
C 1. 连接CD;
2. 以CB为一边,作∠BCE,使得∠BCE=∠ACD ;
3. 在射线CB上截取CE,使得CE=CB;
也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度?
2次 1200 , 2400
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度?
33个个 11次次 1680000
在图中,正方形ABCD与正方形
EFGH边长相等,这个图案可以看作
是哪个“基本图案”通过旋转得到


简单的旋转作图
例1 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法
分析:
项目 源图形 源位置 旋转中心 旋转方向
已知 ● ● ● ●
旋转角度

B
目标图形

目标位置
作法:
未知 ●
备注 点A 点A 点O 顺时针 60˚ 点 点B (求作)
A
O
1. 以点O为圆心,OA长为半径画圆; 2. 连接OA, 用量角器或三角板(限
旋转的性质:
1、旋转不改变图形的大小和形状. 2、任意一对对应点与旋转中心的连线所成的 角度都是旋转角,旋转角相等. 3、对应点到旋转中心的距离相等
平移和旋转的异同: 1、相同:都是一种运动;运动前后 不改变图形的形状和大小
2、不同 平移
运动方向 直线
运动量 的衡量 移动一定距离
旋转
顺时针 逆时针
相关文档
最新文档