数学九年级人教版上231图形的旋转.ppt

合集下载

人教版初中数学九年级上册 图形的旋转(第1课时)课件PPT

人教版初中数学九年级上册  图形的旋转(第1课时)课件PPT
第二十三章
旋 转
第二十三章
23、1
旋 转
图形的旋转
第1课时 旋转的概念与性质
学习目标
1 了解旋转的概念,理解图形旋转的三要素“旋转中心、旋转
方向和旋转角”、(重点)
2 理解旋转的性质,并会运用其解决简单的旋转问题、(重点)
游乐园里的摩天轮、旋转木马、海
盗船的运动有什么共同点?
知识讲解
旋转的性质:
旋转前后的图形全等;
(旋转不改变图形的大小和形状)
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角、
知识讲解
例3、 △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的、
已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′
1
1
∴ AO=CO= AB= ×6=3,∴ OD1=DC﹣CO=7﹣3=4,
2
2
在Rt△AD1O中,由勾股定理得,AD1= 2 + 12 = 32 + 42 = 5 、
(2)点B在△D2CE2的内部、
理由如下:设直线CB与D2E2相交于点P,
∵ △D1CE1绕着点C顺时针再旋转30°,∴ ∠PCE2=15°+30°=45°,
3 ,OA ′ = 5 ,旋转角= 44 ° 、
=
13
知识讲解
例4、把一副三角板按如图①放置,其中∠ACB=∠DEC=90°,∠A=45°,
∠D=30°,斜边AB=6 cm,DC=7 cm、把三角板DCE绕点C顺时针旋转
15°得到△D1CE1(如图②)、这时AB与CD1相交于点O、与D1E1相交
于点F、
(1)求线段AD1的长;

23.1.2图形的旋转 课件人教版数学九年级上册

23.1.2图形的旋转 课件人教版数学九年级上册
=360°-110°-150°-60°=40°
∵∠ADC=α=150°,∠ODC=60°, ∴∠ADO=90°. ∴△AOD 是直角三角形.
等的判定方法
则△ABE 为旋转后的图形.
(基本作图:作线段)
旋转作图的基本步骤
1.定 :确定旋转中心、旋转方向和旋转角,并找出原图形中每一个关键点; 2.连 :连接图形中每一个关键点与旋转中心; 3. 转 :把连线绕旋转中心按旋转方向旋转相同的角度(作旋转角); 4.截:在角的另一边上截取与关键点到旋转中心的距离相等的线段,得到各点的 对应点 ; 5.连 :连接所得到的各对应点; 6.写:写出结论,说明作出的图形.
A .①②
B .①③
C.②③
D.①②③



【知识技能类作业】选做题:
3.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB 绕 点 O 逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B 吗 ?
【综合拓展类作业】
4.如图,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α, 将△BOC 绕点C按顺时针方向旋转60°得到△ADC, 连接OD.
1.强化图形旋转的概念及性质; 2.根据旋转的基本性质解决实际问题和进行简单作图.
图形旋转的基本性质 (1)各组对应点与旋转中心的连线所成的角相等,都等于旋转角;
(2)对应点到旋转中心的距离相等; (3)旋转前、后的图形全等;
这节课我们就应用上节课所学的知识展现你的艺术风采.
1.点的旋转作法:
如图,点A₁ 走过的路径长

旋转的作 图
作旋转图形
作图基本步骤(五步)
确定旋转中心
找两条对应点连线段的 垂直平分线的交点

人教版数学九年级上册23.1.2 旋转作图课件(共19张PPT)

人教版数学九年级上册23.1.2  旋转作图课件(共19张PPT)
分析:
①将正方形ABCD绕点C顺时针旋转90°后能与正方形CDFE重合; ②将正方形ABCD绕点D逆时针旋转90°后能与正方形CDFE重合; ③将正方形ABCD绕CD的中点旋转180°后能与正方形CDFE重合,
4.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以 格点(网格线的交点)为端点的线段AB.将线段AB向右平移2个单位长度, 再向下平移1个单位长度,得到线段A1B1;
温馨提示
为了避免作图混乱,应先对一个关键点连、转、截,找到其对应 点后再进行下一个关键点的旋转.
问题2:旋转三要素对游戏有什么影响? 下面有两种情况:
第一组:
B′ A′
A
D
C
B
O C′ D′
A
D
C
B
O
B′
C′
D′
A′
_旋_转__中__心___不变,旋__转__角__改变,产生不同的旋转效果.
第二组:
A2 A1
A3 B1
B2
课堂小结
旋转图形步骤
旋 转 作 图
旋转中心的确定
1.连:连接图形中每一个关键点与旋转中心; 2.转:把连线绕旋转中心按旋转方向旋转相 同的角度(作旋转角); 3.截:把角的另一边上截取与关键点到旋转 中心的距离相等的线段,得到各点的对应点; 4.连:连接所得到的各对应点; 5.写:写出结论,说明作出的图形.
A1 B1
(1)将线段AB绕点B1逆时针旋转90°得到线段A2B2,画出旋转后的线段
A2B2,并说明线段A1B1通过怎样的变化可以得到线段A2B2.
解:如图,线段A2B2即为所
求.线段A1B1绕点B1逆时针旋转
A1
90°,再向下平移2个单位长度,

九年级数学上册-231-图形的旋转-新人教版精品PPT课件

九年级数学上册-231-图形的旋转-新人教版精品PPT课件

运动方向
运动量
的衡量
平移
直线
移动一定距离
旋转
顺时针或 逆时针
转动一定的角度
应用
下列现象中属于旋转的有(C )个
①地下水位逐年下降;②传送带的移
动;③方向盘的转动;④水龙头开关
的转动;⑤钟摆的运动;⑥荡秋千运
动.
A.2
B.3
C.4 D.5
练习1:本图案可以看做是一个菱形通过几次
旋转得到的?每次旋转了多少度?
(1)CA=CA′,CB=CB′,
(2)∠ACA′=∠BCB′ , (3)△ABC≌△A′B′C 。
旋转的基本性质
◆对应点到旋转中心的距离相等. ◆对应点与旋转中心所连线段的夹角等于旋转角.
◆旋转前、后的图形全等. ◆图形的旋转是由旋转中心.旋转方向和旋转的角 度决定.
练习1.举出一些生活中的实例,并
因此,在CB的延长线上取点E′ ,使BE′ =DE, 则△ABE′为旋转后的图形.
变式一二 如图,E是正方形ABCD 中CD边上任意一点,以点A为 中心,把△ADE顺时针旋转90°, 连若结ABE=E'3,△,ADEE='是1什,么则三△ A角E形E'? 的面积是多少?
解:△AEE'是等腰直角三角形, ∵∠EAE'=90°且AE=AE'.
指出旋转中心和旋转角.
旋转的决定因素:
旋转中心.旋转角度.旋转方向.
练习2.如图,杠杆绕支点转动撬起重 物,杠杆的旋转中心在哪里?旋转 角是哪个角?
练习3:时钟的时针在不停旋转,从上午6时到 上午9时,(1)时针旋转的旋转角是多少度?
(2)从上午9时到上午10时呢?
(1)
(2)

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
= 3 ,OA ′ =5 ,旋转角等于44 ° .
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.

人教版初中数学23.1 图形的旋转 (第1课时) 课件

人教版初中数学23.1 图形的旋转 (第1课时) 课件

∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCE中, ∠ACD=∠BCE
CD=CE ∴△ACD≌△BCE(SAS).
连接中考
23.1 图形的旋转/
(2)当AD=BF时,求∠BEF的度数.
解:(2)∵∠ACB=90°,AC=BC,
如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点
(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针
方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
解:(1)由题意可知:CD=CE,∠DCE=90°,
人教版 数学 九年级 上册
23.1 图形的旋转/
23.1 图形的旋转 (第1课时)
导入新知
23.1 图形的旋转/
新 疆 的 风 车 田
导入新知
23.1 图形的旋转/
荷 兰 的 大 风 车
导入新知
23.1 图形的旋转/
游 乐 场 的 摩 天 轮
导入新知
23.1 图形的旋转/
卫星 拍摄 到的 台风 “桑 美” 的中 心旋 涡
旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中 “旋转中心,旋转方向,旋转角度”称之为旋转 的三要素;②旋转变换同样属于全等变换.
探究新知
23.1 图形的旋转/
素养考点 2 旋转角度的计算
例2 如图,点A、B、C、D都在方格纸的格点上,若 △AOB绕点O按逆时针方向旋转到△COD的位置,则 旋转的角度为( C )

人教版九年级上册_第二十三章 旋转作图 (共19张PPT)

人教版九年级上册_第二十三章 旋转作图 (共19张PPT)

对应点到旋转中心的距离相等
A' B’
旋转中心
O
旋转方向 旋转角
旋转角度
A
对应点 B 需要上面三个信息来刻画旋转
将点A绕点O逆时针旋转60°
旋转中心 点O 旋转方向 逆时针 旋转角度 60°
A
先定角度,再定长度
O 60°A'9、要学生 做的事 ,教职 员躬亲 共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21 .8.102 1.8.10 Tuesda y, Aug ust 10 , 2021
10、阅读 一切好 书如同 和过去 最杰出 的人谈 话。17: 26:141 7:26:1 417:26 8/10/2 021 5: 26:14 PM
11、一个 好的教 师,是 一个懂 得心理 学和教 育学的 人。21. 8.1017 :26:14 17:26A ug-211 0-Aug- 21
12、要记 住,你 不仅是 教课的 教师, 也是学 生的教 育者, 生活的 导师和 道德的 引路人 。17:26 :1417: 26:141 7:26Tu esday, Augus t 10, 2021
4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021

人教版九年级数学上册:图形的旋转优秀ppt

人教版九年级数学上册:图形的旋转优秀ppt

A′ D A B′
D′
C′ C
D′
A′
O2
D C′
A
C
B′
B O1
绕 O1 顺时针旋转 30°
人教版九年级数学上册2:3.图1:形的图旋形转的优旋秀转pp2t 课件(共20张PPT)
B
绕 O2 顺时针旋转 30°
人教版九年级数学上册2:3.图1:形的图旋形转的优旋秀转pp2t 课件(共20张PPT)
顺时针旋转 30°
顺时针旋转 60°
人教版九年级数学上册2:3.图1:形的图旋形转的优旋秀转pp2t 课件(共20张PPT)
2.探究新知
问题2 画出下图所示的四边形 ABCD 以 O 点为中 心,旋转角分别为 30°,60°的旋转图形.
D
D
A
C
A
C
B
B D′
C′
O
O
C′
A′ B′
D′
A′
B′
逆时针旋转 30°
重点、难点知识 ★▲
探究三:拓展应用
重点、难点知识 ★▲
活动2 旋转作图
①画出将△ABC向上平移1个单位长度,再向右平移5个单位
长度后得到的△A1B1C1; ②画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O。
y 5
4 B2
A
A1
3
2
1 B1
B –5 –4 –3 –2 –1 CC2 1 2
1.复习引入
(3)美丽的图案是这样形成的.
人教版九年级数学上册2:3.图1:形的图旋形转的优旋秀转pp2t 课件(共20张PPT)
人教版九年级数学上册2:3.图1:形的图旋形转的优旋秀转pp2t 课件(共20张PPT)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:
(1)它的旋转中心是钟表的轴心;
(2)分针匀速旋转一周需要60 分,因此旋转20分,分针 旋转的角度为 360 20 120
60
思考题:香港区徽可以看作是什么“基本图案” 通过怎样的旋转而得到的?
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度? 3 个 1 1 次 180 6000 3 个 次
练习2.举出一些生活中的实例,并
指出旋转中心和旋转角.
旋转的决定因素:
旋转中心和旋转角度(旋转方向).
练习3.时钟的时针在不停地转动, 从上午6时到上午9时,时针旋转的 旋转角是多少度?从上午9时到上 午10时呢?
旋转
顺时针或 逆时针
转动一定的角度
议一议 如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得 到四边形DOEF. 在这个旋转过程中: (1)旋转中心是什么?
旋转中心是O
(2)经过旋转,点A、B分别移动到什么位置? 点D和点E的位置 (3)旋转角是什么? ∠AOD和∠BOE都是旋转角
(4)AO与DO的长有什么关系?BO与EO呢? AO=DO,BO=EO
P
总 结
O
120
P′
动态演示
应用
下列现象中属于旋转的有(C )个 ①地下水位逐年下降;②传送带的移 动;③方向盘的转动;④水龙头开关
的转动;⑤钟摆的运动;⑥荡秋千运
动.
A.2
B.3
C.4
D.5
平移和旋转的异同: 都是一种运动;运动前后 不改变图形 1、相同: 的形状和大小 2、不同 运动方向 运动量 的衡量 平移 直线 移动一定距离
练习4.如图,杠杆绕支点转动撬起重 物,杠杆的旋转中心在哪里?旋转 角是哪个角?
练习5.如图,如果正方形CDEF旋转后
能与正方形ABCD重合,那么图形所在 的平面上可以作为旋转中心的点共有 ______个.
A
D
E
B
C
F
练习6.如图,小明坐在秋千上,秋千旋
转了80°.请在图中小明身上任意选一 点P,利用旋转性质,标出点P的对应 点.
A D E E' B C
设点E的对应点为点E′,因为旋转后的图 形与旋转前的图形全等,所以 ∠ABE′=∠ADE=90°, BE′=DE . 因此,在CB的延长线上取点E′ ,使BE′ =DE, 则△ABE′为旋转后的图形.
练习1:本图案可以看做是一个菱形通过几次 旋转得到的?每次旋转了多少度?
5次 600, 1200, 1800, 2400, 3000 也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度? 2次 1200 , 2400
ABD经过 旋转后到达ACE的位置。
例2 :如图,ABC是等边三角形,D是BC上一点,
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果M是AB的中点,那么经过上述旋
转后,点M转到了什么位置? 解:(1)旋转中心是A; (2)旋转了60度; B D (3)点M转到了AC的中点位置上.
. M
旋转的性质:
1、旋转不改变图形的大小和形状. 2、任意一对对应点与旋转中心的连线所成的 角度都是旋转角,旋转角相等.
3、对应点到旋转中心的距离相等
•作业:课本 •P 1、 4
59 ⑵⑶

E C
例题讲解
例3 如图,E是正方形ABCD中CD边上任 意一点,以点A为中心,把△ADE顺时针 旋转90°,画出旋转后的图形.
分析:关键是确定△ADE三个 顶点的对应点,即它们旋转后 的位置.
A
D E C
B
例题解答
解:因为点A是旋转中心, 所以它的对应点是它本身. 在正方形ABCD中, AD=AB,∠DAB=90°,所以 旋转后点D与点B重合.
O C' C A' A
B' B
旋转的基本性质
(1)旋转不改变图形的大小和形状. (2)图形上的每一点都绕旋转中心沿 相同方向转动了相同的角度 (3)任意一对对应点与旋转中心的连 线所成的角度都是旋转角. (4)对应点到旋转中心的距离相等.
例1:钟表的分针匀速旋转一周需要60 分. (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?
(5)∠AOD与∠BOE有什么大小关系?
∠AOD=∠BOE


将等边△ABC绕着点C按某个方向 旋转900后得到△A/B/C B/ A A/ B
C
请大家在硬纸板上,挖一个三角形洞,再挖 一个小洞O作为旋转中心,硬纸板下面放一张白 纸.先在纸上描出这个挖掉的三角形洞 (△ABC),然后围绕O转动硬纸板,再描出这 个挖掉的三角形洞(△A′B′C′),移开硬纸 板.请大家运用刻度尺和量角器度量线段和有 关角,并探索旋转的性质.
练习7.如图,用左面的三角形经过怎样
旋转,可以得到右面的图形.
练习8.找出图中扳手拧螺母时 Nhomakorabea旋转中心和旋转角.
动手操作
请设计一个绕一点旋转60°后能
与自身重合的图形.
思考:图形的旋转是由什么 决定的 ?
图形的旋转是由旋转中 心和旋转的角度决定.
课堂回顾:这节课,主要学习了什么?
旋转的概念:
在平面内,将一个图形绕着一个定点沿某个方 向转动一个角度,这样的图形运动称为旋转
自转与公转
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
把一个图形绕着某一定点O 转动一个角度的图形变换 旋转中心 定点O
旋转 旋转角 转动的角 旋转的对应点. 如果图形上的点P经过旋转变为点P′,那么这
两个点P和P′叫做这个旋转的对应点
相关文档
最新文档