梁结构应力分布ANSYS分析
ANSYS应力应变分析

ANSYS应力应变分析ANSYS是一种强大的有限元分析软件,广泛应用于工程领域中的结构力学、流体力学和电磁学等领域。
在应力应变分析中,ANSYS可以帮助工程师通过建立准确的模型和应用适当的加载条件,预测和评估结构的应力和应变响应。
在应力应变分析中,ANSYS的工作流程通常包括以下几个步骤:几何建模、材料定义、网格生成、约束和加载条件的设置、求解和结果后处理。
下面将详细介绍这些步骤。
首先,以准确、完整的几何模型为基础进行分析。
在ANSYS中,可以通过多种方式创建几何模型,例如直接建模、导入CAD文件或使用预定义的几何实体。
关键是确保几何模型的准确性,以便能够准确地预测应力和应变分布。
其次,定义材料属性。
在ANSYS中,可以指定各种不同的材料模型和属性,例如弹性模量、泊松比、屈服应力等。
这些材料属性将直接影响应力和应变分析的结果。
因此,需要根据实际材料的性质和材料行为选择适当的材料模型和属性。
接下来,进行网格生成。
网格将模型划分为小的离散单元,这是进行有限元分析的基础。
网格的质量和密度对最终的分析结果有很大影响,因此需要选择适当的网格生成方法和参数。
ANSYS提供了多种网格生成工具和技术,如自适应网格生成、Tetra网格、Hexa网格等。
然后,需要设置约束和加载条件。
在应力应变分析中,需要指定边界条件,即固定点或面,以约束结构的自由度。
同时,还需要定义加载条件,如施加力、压力、温度等。
这些约束和加载条件将直接影响结构的响应,因此需根据实际情况进行设置。
完成上述步骤后,可以进行求解。
ANSYS使用基于有限元法的计算方法进行数值求解。
根据所定义的模型、材料属性、网格和加载条件,ANSYS将计算模型的应力和应变分布。
求解的结果包括应力和应变的大小、方向和分布情况。
最后,进行结果后处理。
在ANSYS中,可以对求解结果进行可视化、图形绘制和数据导出等操作。
通过对结果的分析和比较,可以评估结构的可靠性和安全性,并作出相应的设计决策。
ANSYS应力应变分析

ANSYS应力应变分析ANSYS是一种广泛使用的有限元分析软件,可用于进行多种结构力学仿真,如应力应变分析。
应力应变分析是一种工程分析方法,用于评估结构在不同载荷下的应力和应变分布,从而确定结构的强度和稳定性。
在ANSYS中进行应力应变分析可以帮助工程师优化设计,预测结构的性能并提高产品的可靠性。
在进行应力应变分析时,需要进行以下步骤:1.建立模型:首先,在ANSYS中建立模型以描述所研究结构的几何形状和材料属性。
可以使用ANSYS的建模工具创建几何体、应用边界条件和载荷,设定材料性质等。
2.离散化模型:将结构分割成许多小的有限元素,以便进行数值计算。
ANSYS根据有限元方法进行计算,将结构分割成数百或数千个小元素,并将每个元素的应力和应变计算出来。
3.应用载荷:在模型中应用所需的载荷,如力、压力或温度。
载荷的选取取决于所需的分析类型,如静力分析、动力分析或热力分析。
4.设置边界条件:为了模拟真实情况,需要在模型的特定边界上设置边界条件。
这些边界条件可以是约束,如固定支撑,也可以是加载,如外部力或约束。
5.进行求解:一旦模型建立完成,边界条件和载荷应用完毕,就可以对模型进行求解。
ANSYS将根据指定的条件进行求解,并计算结构的应力和应变分布。
6.分析结果:一旦求解完成,就可以分析结果。
ANSYS提供了各种可视化工具,如应力图、应变图、变形图等,可以帮助工程师更好地理解结构的反应。
利用ANSYS进行应力应变分析有许多优点,包括:1.准确性:ANSYS使用有限元方法进行分析,可以更准确地模拟结构在复杂载荷下的行为,预测结构的性能。
2.效率:在ANSYS中可以对结构进行快速、高效的分析,提高工程师的工作效率。
3.可视化:ANSYS提供了丰富的可视化工具,可以直观地展示分析结果,帮助工程师更好地理解结构的行为。
4.优化设计:通过不断进行应力应变分析,工程师可以优化设计,改进产品的性能、质量和可靠性。
在实际工程中,应力应变分析可以用于许多应用,如汽车零部件仿真、建筑结构分析、航空航天工程等。
用ANSYS分析钢筋混凝土梁的应力

!E.92 /=& O! E.92 /=& BEF^]DR /=& OB EF^]DR /=& OB E^F9R CC
%&
广东科技
GUANGDONGKEJI
广东科技
工程管理
科技 ・ 企业 ・ 管理
/(3 梁的 # 方向应力
/;3 梁的 $% 平面剪力
/03 梁的 $ 方向应力
/,3 梁的 % 方向应力
沿梁高度 四条边进行划分, 沿梁宽度方向分为 I 等份, 方向分为 F! 等份。在 ;$%=$5>%<<5$3/%<@S556 定为映射网格, 单元为四边形单元, 划分后的截面如图
. 所示。
在 ;$%=$5>%<<5$ 23/5-%601P 23T=%$&+% 2 3)*+$,-%
#G4W4 软
件计算值
算例 "、
图 ! 是一个简支混凝土梁模型。梁截面 ?! 梁长 8ADBBBCC 。 设混凝土的弹 @A!BBCC !9BBCC , 性模量为 .EB !FB 9GHCC !, 梁的跨中有一向下的集中荷 载 FBBBBG 。比较经典材料力 学 方 法 与 有 限 元 方 法 计 算的结构跨中挠度与简支梁的最大、 最小应力。 图 " 梁截面的网格划分
图 ! 梁的应力分布
从表 ! 可以看到,用 "#$%$ 与材料 力 学 公 式 计 算的简支梁 & 方向最大拉应力比较接近,但 & 向最大 压应力、 最大与最小剪应力的结果却相差较大。 以最大 压应力为例 , 考 察 图 ’( 可 以 发 现 , 最大压应力发生在 集中荷载作用的附近区域,该区域由于应力集中导致 了最大压应力的产生。而采用材料力学计算公式计算 的应力值则不能反映出这种应力集中的存在。 同样, 最 大与最小剪应力也是发生在集中荷载的附近。从表 ! 还可以看到, 两种方法计算的最大挠度非常接近, 证明 了 "#$%$ 中 采 用 $)*+,-’ 模 拟 混 凝 土 单 元 计 算 是 适 当的。 另外, 采 用 "#$%$ 还 可 以 得 到 简 支 梁 . 方 向 /图 或者是第一主应力与 ’0 1与 2 方向 /图 ’, 3的应力分布,
ANSYS悬臂梁等效应力分析教程

mikeliu65
工程软件教程系列
第 9 步,施加约束。
单击打开图示对话框。
- 11 -
mikeliu65
工程软件教程系列
在弹出的对话框内输入需要的面的编号或者选择对应的面。 按照下图路径打开编号显示目录。
在弹出的对话框内勾选 AREA number。单击 ok 退出。
- 12 -
mikeliu65
单击 line 下的 set,
。弹出 element size on picked line 对话框,
单击 pick all。在弹出的对话框里,设置线段网格大小。设置每一段网格长度为 0.05m。单击 ok,完成线段长度设置。
-9-
mikeliu65
工程软件教程系列
单击 mesh tool,弹出 mesh tool 对话框。选择 HEX 单击 mesh,开始划分网格。在弹出的 mesh volumes 对话框里单击 pick all。完成网格划分。
设置完成后如下图:
-6-
mikeliu65
工程软件教程系列
第 7 步,建立体悬臂梁三维实体。
点开下图所示的路径,在弹出的窗口里输入如下参数。
-7-
mikeliu65
工程软件教程系列
点击 ok,完成三维实体创建。
-8-
mikeliu65
工程软件教程系列
第 8 步,划分网格。
单击 mesh tool,弹出 mesh tool 对话框。
-1-
mikeliu65
工程软件教程系列
第 1 步打开软件,设置文件保存路径。
打开 ansys12.0
,设置文件保存路径,在 working 内输
入保存路径。例如我的保存路径设为 F:\mikeliu65\chapter-1
ansys梁单元残余应力

ansys梁单元残余应力
在ANSYS中,可以使用梁单元(BEAM)来分析梁结构的应力情况,包括残余应力。
梁单元是一种特殊类型的有限元单元,适用于分析细
长结构,如梁、柱等。
要分析梁单元的残余应力,可以按照以下步骤进行操作:
1. 创建梁单元:在ANSYS中,可以使用梁单元命令或者通过界
面选择梁单元类型来创建梁单元。
例如,使用梁单元命令BEAM188可
以创建混凝土梁单元。
2. 定义梁单元的几何和材料属性:在命令行或者界面中输入相
关指令,定义梁单元的几何尺寸、材料属性、截面特性等。
3. 添加约束条件:根据实际情况,在梁单元的节点上添加适当
的约束条件,如固定边界条件、荷载等。
4. 进行静态分析:在ANSYS中,选择适当的静态分析命令或者
界面选项,进行梁单元的应力分析。
5. 查看结果:完成分析后,可以使用ANSYS的后处理工具查看
梁单元的残余应力分布。
可以选择显示应力云图、应力剖面图或者某
个位置的残余应力数值等。
需要注意的是,在进行梁单元的应力分析时,应根据具体情况选
择合适的材料力学模型和加载条件,并对边界约束条件进行正确设置,以获得准确的残余应力结果。
混凝土箱梁日照温度场温度应力ansys分析结果

SimWe仿真论坛»C06:ANSYS--实例赏评»混凝土箱梁日照温度场、温度应力ANSYS分析结果混凝土箱梁日照温度场、温度应力ANSYS分析结果混凝土箱梁在日照和气温变化等气象因素作用下,会在截面内产生非线性温度分布,引起较大的纵向、横向温度应力,在超静定结构中还会引起温度次应力。
应力大小往往会超过列车或汽车荷载效应,特别是横向温度应力对混凝土箱梁纵向裂纹的出现有很大的贡献。
下面首先发几张混凝土箱梁日照温度场ANSYS分析结果的图片,希望对这方面感兴趣的网友在此讨论。
Ⅰ:夏季日照温度场。
由于,桥轴线走向和纬度的关系,腹板在夏季腹板几乎不受日照,因此截面温度梯度主要在竖向。
peregrine2007-7-14 15:07夏季,t=10:00的温度场peregrine2007-7-14 15:09夏季,t=14:00的温度场[[i] 本帖最后由 peregrine 于 2007-7-14 15:15 编辑 [/i]]peregrine2007-7-14 15:15回复 #3 peregrine 的帖子夏季,t=03:00,夜间负温差peregrine2007-7-14 15:19Ⅱ:冬季温度场。
本箱梁冬季腹板也会受到一定的日照。
冬季,t=16:00bridge-7-18 21:481、底板温度基本是处于均匀温度状态原来做过实桥试验,上下底板也是相差很大的,是不是所处环境不同了2、“夏季,t=03:00,夜间负温差”跟实测也是差的很远,基本上是处于均匀温度状态。
3、希望提供你的计算思路,偶们好学习一下。
peregrine2007-7-19 20:15回复 #6 bridge5209 的帖子回楼上我这是根据多年气象资料计算的最不利状况下的温度分布,与楼上在某一座桥的实测数据有出入,是正常的。
1、底板温差主要受气温变化和地面或水面对太阳辐射的反射率影响,地面太阳辐射发射率随环境变化很大,难以准确确定,计算时一般偏于不利考虑,取较小值,因此计算的底板上下温差比较小,在本算例中为℃(14:00)2、夜间负温差看起来很大,但要注意的是,最高温度出现在箱梁梗胁加厚处的内部,而最低温度出现在悬臂端部板厚最薄处,特别是在悬臂端部,在很小的范围内温度降低很多,因为这个部位不仅尺寸小,而且夜间呈三面放热的状态,温度下降自然比结构主体要大得多。
ansys最大主应力 中间主应力 最小主应力 应力三轴度

ansys最大主应力中间主应力最小主应力应力三轴度在工程领域中,了解材料的受力情况对于设计和分析至关重要。
其中,应力是一个关键的概念。
应力的理解有助于我们对材料行为和结构表现进行更深入的研究。
而一个常见的应力分析工具就是ANSYS软件。
本文将针对ANSYS中的最大主应力、中间主应力和最小主应力以及应力的三轴度进行详细探讨,并分享一些我个人对这些概念的理解和观点。
1. 最大主应力:最大主应力是在材料中发生的最大应力值。
在使用ANSYS时,最大主应力可以通过应力云图或应力分布图来获得。
最大主应力是应力张力和压缩的最大值,对于材料的破坏和变形具有关键影响。
在进行结构设计或工程分析时,最大主应力的理解至关重要。
通过确定最大主应力的位置和值,我们可以判断出结构中的高应力区域,从而进行相应的优化和改进。
在工程实践中,最大主应力往往用于确定结构的安全边界和疲劳寿命。
2. 中间主应力:中间主应力是指在材料中发生的第二大的应力值。
它是最大主应力和最小主应力之间的中间值。
在ANSYS中,中间主应力可以通过应力云图或应力分布图来观察和分析。
中间主应力在材料的破坏和变形中起着重要的作用。
通过了解中间主应力的分布情况,我们可以判断结构中的应力状态,并进一步推导出其对材料性能和结构行为的影响。
当中间主应力接近零时,材料更容易发生塑性变形;而当中间主应力值较大时,材料更容易发生开裂和破坏。
3. 最小主应力:最小主应力是在材料中发生的最小应力值。
它是应力张力和压缩的最小值。
最小主应力的了解对于材料的变形和疲劳行为具有重要意义。
最小主应力通常用于判断材料的变形和疲劳寿命。
当最小主应力值较小时,材料具有较低的应力集中和变形能力,因此更容易达到寿命极限。
通过对最小主应力的分析,我们可以预测结构中可能出现的疲劳破坏点,并进行适当的设计改进。
4. 应力三轴度:应力三轴度是指材料中应力状态的三个独立参数。
在ANSYS中,应力三轴度可以通过应力场或应力分布图来观察和分析。
ansys梁单元残余应力

ansys梁单元残余应力近年来,随着工程领域的不断发展,对于材料的研究和性能分析越来越受到重视。
在工程实践中,材料的残余应力是一个重要的参数,它直接影响着材料的力学性能及结构的稳定性。
在这种背景下,有限元分析软件ANSYS的梁单元残余应力研究逐渐引起了人们的关注。
梁单元是有限元分析中常用的一个元素类型,主要适用于梁、杆等结构的分析。
在工程应用中,梁单元残余应力的研究对于预测材料的变形和损伤具有重要意义。
通过ANSYS软件进行梁单元残余应力的模拟分析,可以帮助工程师更好地了解材料的行为特性,为工程设计提供科学依据。
梁单元残余应力的产生通常是由于材料在生产、加工和使用过程中受到外部力或温度的作用而导致的。
这些应力会以一定的方式嵌入到材料内部,并对其性能产生影响。
通过ANSYS软件模拟梁单元残余应力的分布和大小,可以帮助工程师优化材料的使用和设计方案,提高结构的安全性和可靠性。
在进行梁单元残余应力的模拟分析时,需要考虑多个因素的影响。
首先是材料的特性,包括弹性模量、泊松比、屈服强度等参数对梁单元残余应力的影响。
其次是加载条件,外部力、温度变化等因素都会对梁单元残余应力产生影响。
最后是梁单元的几何形状和边界条件,这些都会对残余应力的分布和大小产生影响。
通过对ANSYS软件进行梁单元残余应力的模拟分析,可以得到材料内部应力场的分布和特性。
这些数据可以帮助工程师更好地了解材料的性能,为设计和优化结构提供参考。
此外,梁单元残余应力的分析还可以帮助工程师预测结构在使用过程中可能出现的问题,为维护和修复提供指导。
梳理一下本文的重点,我们可以发现,通过对ANSYS软件进行梁单元残余应力的研究,可以更好地理解材料的行为特性,为工程设计和材料选择提供科学依据。
梁单元残余应力的模拟分析在工程实践中具有重要意义,可以帮助工程师优化结构设计,提高结构的安全性和可靠性。
希望未来能够有更多的研究关注于这一领域,为工程领域的发展和进步做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验梁结构应力分布ANSYS分析学院名称:机械工程学院专业班级:研1402学生姓名:XX学生学号:S14030622015年5 月梁结构应力分布ANSYS分析(XX,S1403062,江苏大学)摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。
我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。
首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。
通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。
关键词:梁结构;应力状态;有限元分析;梁结构模型。
Beam structure stress distribution of ANSYSanalysis(Dingrui, S1403062, Jiangsu university)Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding.Key words: beam structure; Stress state; The finite element analysis; Beam structure model.1引言在现代机械工程设计中,梁是运用得比较多的一种结构。
梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。
手动计算虽然方法简单,但计算量大,不容易保证准确性。
相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。
另外,有限元法分析梁结构时,建模简单,施加应力和约束也相对容易,能分析梁结构应力状况的具体分布、最大变形量以及中性面位置,优势明显。
以下介绍一种常见梁的受力状况,并采用有限元法进行静力分析,得出了与手动计算基本吻合的结论。
以下为此次分析对象。
梁的截面形状为梯形截面,各个截面尺寸相同。
两端受弯矩沿中性面发生弯曲,如图2-1所示。
试利用ANSYS 软件对此梯形截面梁进行静力学分析,以获得沿梁AA 截面的应力分布情况。
2有限元模型的建立2.1建立模型 首先进入ANSYS 中,采用自下而上的建模方式,创建梁结构有限元分析模型,同时定义模型的材料单元为Brick 8-node 45,弹性模量为200e9,泊松比为0.3。
由于分析不需要定义实常数,因此可忽略提示,关闭Real Constants 菜单。
建立的切片模型如下: rθ AAM MA -A 截面D,B C,A1#面 2#面 B D2.2网格划分显示边线,关闭背景。
通过Meshtool工具对建立好的模型进行网格划分。
首先设定网格划分参数,分别设置不同线条的网格划分参数后,采用六面体单元划分模型网格。
在MeshTool菜单的Shape栏选择Hex选项。
在MeshTool下拉列表框中确保选中Volumes,保证实体通过体单元划分。
单击Mesh按钮后,单击拾取对话框中Pick All按钮。
划分网格后的图形1所示:图1 划分网格2.3施加约束对照实际受力情况,对1#面和2#面定义载荷和约束。
首先定义1#面上关键点A的约束,其次定义1#面的面约束,接着定义1#面上AB线的约束。
对于2#面,采取的定义约束的方法则有所不同。
由于v方向边界条件为空间函数,因此需要通过定义函数来定义约束。
首先编辑函数,然后加载函数,最后在2#面上定义函数边界。
最后定义CD线上的约束。
2.4 施加载荷并求解进入求解器,检查输入无误后,进行以下操作求解。
GUI: Main Menu >Solution >Solve >Current LS2.5 查看分析结果(1)查看等效应力首先显示等效应力等值线图,如图2所示,从右视图上得知,最大等效应力为147MPa,出现在对称线的底部。
图2 等效应力等值线图(2)查看环向应力在ANSYS中,σθ表示柱坐标中的SY应力,所以要显示σθ,需要将当前坐标系转换到柱坐标。
首先设置结果文件输出参数,以整体柱坐标系输出分析结果,然后在左侧列表中选择Stress,在右侧列表中选择Y-direction SY,单击OK按钮,得到环向应力等值线图,如图3所示。
图3 环向应力等值线图(3)查看中性轴中性轴的位置就是σθ值为零的位置,通过查看梁的中性轴可以简单判断分析结果是否合理。
为了单独显示中性轴,首先调整一下显示色彩,操作如下:GUI: Utility Menu>PlotCtrls>Style>Contours>Uniform Contours 上述设置使应力为负和应力为正的区域以不同的色彩显示,即在0<σθ<200MPa 区域显示红色,在-200MPa<σθ<0区域显示蓝色,这两种颜色的相交处为中性轴,如图4所示。
有限元分析结果显示中性轴是弯曲的,这与《材料力学》中关于中性轴的假定相矛盾,考虑到经典理论与工程实际的差别,结果可以接受。
图4梁的中性轴(5)查看径向应力柱坐标系中径向应力就是SX应力。
首先显示径向应力分析结果,操作如下:GUI: Main Menu>General Postproc>Plot results>Nodal Solu在左侧列表中选择Stress,在右侧列表中选择X-direction SX,然后单击OK按钮。
为了显示方便,将颜色设置恢复原样,操作如下:GUI: Utility Menu>PlotCtrls>Style>Contours>Uniform Contours在Number of contours文本框中输入9,在Contour Intervals选项组中选择Auto calculated,单击OK按钮,即可得到径向应力等值线图,如图6所示,从中可发现整个截面上的径向应力均为拉应力。
图6 径向应力等值线图(6)查看变形后图形显示变形后图形的操作如下:GUI: Main Menu>General Postproc >Plot Results>Deformed Shape>Def+undeformed此时在图形窗口中显示出变形前后图形,如图7所示,从图中可知,最大位移DMX=0.2240e-4m。
图7 变形前后图形2.6验证分析结果首先验证约束是否合理,是否满足约束。
这部分已经在后处理部分得到验证。
下面验证反作用力是否合理。
首先列出反作用力,操作如下:GUI: Main Menu>General Postproc>List Results>Reaction Solu在Item to be listed(被显示项目)列表中选择All struc forc F(所有结构反作用力),然后单击OK按钮。
由于模型没有直接承受外力,所以平衡方程中合力应该为零。
径向力(FX)大小为4.6N,接近零。
通过更加精确地选择rc可以将径向力变得更小。
周向合力FY 和轴向合力FZ也非常小,但不为零,具体原因是FX不为零,因此结构平衡方程是一个近似值。
3结论(1) 建模:熟悉了基本的建模操作,掌握了布尔减操作;掌握了如何通过Space Ratio控制网格细化参数;掌握了工作坐标系的转换方法,能够根据需要转动或者平移工作平面,了解节点坐标系的含义及其与整体坐标系的关系。
(2) 施加载荷和求解:掌握了通过函数定义模型边界条件的方法,能够根据不规则边界定义相应的函数。
(3) 查看分析结果:掌握了显示变形图形和应力等值线图的操作,了解不同坐标系下同一个参量的不同表达方式,如在柱坐标中FY对应的是环向应力σθ,而在笛卡儿坐标系中则是σy;能够通过动画显示参数的变化过程;掌握静力分析问题基本的验证技巧,知道如何通过已知的数据及常识进行简单的判断。
(4) 结论梁结构受静力时的应力有限元分析,不仅基本符合人工计算得到的数据,而且在精度方面有一定优势。
计算速度快,数据全面,可以有效的缩短设计周期。
不失为一种现代的设计分析方法。
4参考文献:[1]王新荣,陈永波.《有限元法基础及ANSYS应用》. 科学出版社.[2]康红梅.《ANSYS实验2:梁结构静力有限元分析》.[3]黄世伟.《基于ANSYS的垂直垃圾压缩机有限元分析》.[4]吕建国,胡仁喜.《ANSYS 14.0有限元分析入门与提高》.化学工业出版社[5]曾攀.《有限元分析基础教程》.清华大学出版社[6]曾攀.《有限元分析及应用》.清华大学出版社。