混频器仿真实验报告

合集下载

模拟乘法混频实验报告

模拟乘法混频实验报告

模拟乘法混频实验报告一、引言在电子通信领域,乘法混频是一种常见的信号处理技术,用于将不同频率的信号进行混频、放大和解调。

乘法混频器是乘法混频技术的核心组件,它可以将输入信号与局部振荡器的频率相乘,产生混频输出。

本实验旨在模拟乘法混频的原理和过程,通过实际操作验证乘法混频器的性能和效果。

二、实验设备与方法1. 实验设备:本实验使用的设备包括信号源、乘法混频器、示波器、频谱分析仪等。

2. 实验方法:(1)连接实验设备:将信号源的输出端与乘法混频器的输入端相连,将乘法混频器的输出端与示波器的输入端相连。

(2)设置实验参数:根据实验需要,设置信号源的频率和幅度,调整乘法混频器的局部振荡器频率。

(3)观察实验结果:通过示波器显示的波形和频谱,观察乘法混频的效果和输出信号的特点。

三、实验步骤与结果1. 设置实验参数:将信号源的频率设置为100 kHz,幅度为1 V;乘法混频器的局部振荡器频率设置为10 MHz。

2. 观察示波器波形:在示波器上观察到了输入信号和混频输出信号的波形。

输入信号为100 kHz的正弦波,混频输出信号为频率为10 MHz和100 kHz 的乘积信号。

3. 分析频谱:通过频谱分析仪对混频输出信号进行频谱分析。

观察到频谱图上出现了频率为10 MHz和100 kHz的峰值,验证了乘法混频的效果。

四、实验结果分析通过观察示波器的波形和频谱分析仪的频谱图,可以得出以下结论:1. 输入信号与局部振荡器的频率相乘,产生混频输出信号。

2. 混频输出信号的频率为输入信号频率与局部振荡器频率的乘积。

3. 混频输出信号的频谱中出现了频率为输入信号和局部振荡器频率的峰值。

五、实验总结通过本实验,我们模拟了乘法混频的原理和过程,并验证了乘法混频器的性能和效果。

乘法混频技术在电子通信中具有广泛的应用,可以实现频率变换、信号放大和解调等功能。

掌握乘法混频技术对于理解和应用现代通信系统至关重要。

通过实验,我们深入理解了乘法混频的原理,对乘法混频器的性能和输出信号特点有了更清晰的认识。

【免费下载】模拟乘法混频实验报告

【免费下载】模拟乘法混频实验报告

模拟乘法混频实验报告姓名:学号:班级:日期:模拟乘法混频一、实验目的1.进一步了解集成混频器的工作原理2.了解混频器中的寄生干扰二、实验原理及实验电路说明混频器的功能是将载波为vs(高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。

例如在调幅广播接收机中,混频器将中心频率为535~1605KHz的已调波信号变换为中心频率为465KHz的中频已调波信号。

此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。

混频器的电路模型如图1所示。

VsV图1 混频器电路模型混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。

本振用于产生一个等幅的高频信号VL,并与输入信号VS经混频器后所产生的差频信号经带通滤波器滤出。

目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。

本实验采用集成模拟相乘器作混频电路实验。

图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。

五、实验注意事项1、测量时应用双踪同时观察本振-载波,载波-中频,以便比较。

2、本实验用到晶振输出信号。

因此,在进行本实验前必须调整好晶振的输出,使之满足本实验的要求。

六、思考题1、除乘法器外,还有哪些器件可组成混频器?试举例说明。

混频器常用的非线性器件还有二极管、三极管、场效应管等。

2、分析寄生干涉的原因,并讨论预防措施。

原因:干扰频率通过寄生通道形成。

混频器件工作在非线性状态,不可避免地存在干扰和噪声作用在混频器上。

它们和输入信号电压VS、本振电压VL之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。

预防措施:减少非线性失真的各种组合频率干扰,选择器件特性接近平方律或近似理想相乘器。

混频器实验

混频器实验

实验二混频器仿真实验一.无源混频器仿真实验二极管环形混频电路载频是f L=1kHz,调制频率为f R=100Hz,因此混频后会出现f L f Rf L- f R==900Hz ,f L+ f R=1100Hz,如图所示前两个峰值。

由于二级管的开关作用,还会产生组合频率,不过幅度会随次数的增加而减小,如图所示后两个峰值。

二.有源混频器仿真实验1.三极管单平衡混频电路直流分析傅里叶分析差模输出将直流分量抵消,组合频率分量也被抵消了,本振不会馈通。

但是由于射频信号是非平衡的,所以射频信号带入的直流分量与本振信号相乘后产生了较大幅值的本振频率分量,并且在频谱中还是会出现少量本振信号的奇次谐波与射频相混频的频率分量,单平衡混频电路有效地抑制了高频率分量,单节点输出存在低频分量过大的问题,但使用差分放大器的双点输出能够很好地解决这个缺陷。

但与无源混频器相比,出现了大量的杂波。

2.加入有源滤波器后混频后得到上下变频分量,通过一个带通滤波器,滤除上变频以及本振频率分量,只剩下下变频。

3.吉尔伯特单元混频电路由于射频信号差分输入,因此在输出的时候射频直流分量被抵消,本振不会馈通。

由于是双差分输入,频谱较为纯净。

但是由于吉尔伯特电路也是通过本振大信号作为开断信号对输出信号采样,因此也产生了本振信号的奇次谐波的分量与射频信号相混频产生的组合频率分量。

加入有源滤波器后本电路将作为接收机电路的前端。

与单平衡电路的频谱比较起来更加纯净,无用的频率分量更少,幅值更小。

思考题:1. 吉尔伯特电路是双平衡电路,而三极管是单平衡电路,它们的区别体现在射频信号是否是平衡的,吉尔伯特电路射频信号是平衡的,射频信号中蕴含的直流分量在输出时被抵消,因此不会产生本振信号馈通。

而三极管单平衡电路产生馈通和许多组合频率分量。

当频率增加后会更加明显,因为各个频点上的幅值都会降低,区别显得更加突出。

2.如图,该二阶带通有源滤波器的截止频率在1k 与1.4k 附近正好可以滤去不需要的分量。

实验七混频器的仿真设计

实验七混频器的仿真设计
➢ 信号功率和本振功率应同步加到混频二极管上; ➢ 二极管要有直流通路和中频输出通路; ➢ 二极管和信号回路应尽量匹配,以便取得较大旳信号功率; ➢ 本振与混频器之间旳耦合量应能调整,以便选择合适旳工作状态; ➢ 中频输出端应能滤掉高频分量(信号和本振)
混频器电路旳主要技术指标 • 变频损耗 • 噪声系数 • 端口隔离度 • 驻波比 • 动态范围 • 三阶交调系数 • 镜频克制度 • 交调失真
电流在工作点用泰勒级数展开:
i f (E0 UL cosLt US cosSt)
f (E0 UL cosLt) f '(E0 UL cosLt)US cosSt
Байду номын сангаас
1 2!
f
''(E0
UL
cos Lt )(U S
cos St )2

定义二极管旳时变电导g(t)为
g
t
= di dv
= v=E0 +ULcosLt
i2 gnVs cos(nL s )t
i1 gnVs cos(nL s )t n
输出: i i2 i1 2gnVs cos 2i 1L s t
n为偶数旳高次谐波电流被完全抵消,只剩余奇次谐波电 流(n=2i+1),所以电路本身抵消了二分之一高次谐波电流 分量。
3、镜像回收混频器 (a)给出了分支线电桥旳信号和本振输入端都放置了平行耦合 镜像带阻滤波器,在该处它们镜像开路。因为该处距二极管 约为λSg/4, 因而在两个二极管输入接点处镜像信号被短路到 地。(b) 在接近连接二极管端口处有一耦合微带线作带阻滤波 器,该滤波器由两段1/4镜频波长旳短线构成,一段终端开路, 另一段与主传播线平行,形成平行耦合微带线。位置要调整 到刚好使镜频和本振二次混频后旳中频和一次混频旳中频同 相叠加,可回收镜频能量,提升混频器性能。

射频实验报告: 混频器(单平衡)

射频实验报告: 混频器(单平衡)

课程实验报告
《集成电路设计实验》
2010- 2011学年第 1 学期
班级:
混频器(单平衡)实验名称:
指导教师:
姓名学号:
实验时间:2011年5月23日
一、实验目的:
1、了解基本射频电路的原理。

2、理解基本混频器的工作原理并设计参数。

3、掌握Cadence的运用,仿真。

二、实验内容:
1、画出混频器的原理图。

2、仿真电路:仿真出混频器的的输入、输出频谱,输出增益,1dB压缩点。

Gain=8dB,NF<8dB,IIp3=0dBm,IP1dB=-10dBm。

三、实验结果
1、混频器原理图为:
2、仿真平台的建立
3、混频管参数
设置差分管参数如下,漏端电阻R=600,隔直电容1pF,晶体管W=32u,L=400n,nr=4,m=2
4、仿真参数
设置端口初始化仿真参数frf=800MHz,prf=-40dBm,flo=850MHz,plo=20dBm,Vbias=1.5V,采用PSS和Pac仿真:
3、仿真结果
(1)增益
运行spacture,得到电压转换增益为8.8dB,在输入功率-8dBm以下保持不变,如下:
(2)线性度
1、查看PSS结果,得到输入1dB压缩点IP-1=-6.5dBm,
2、得到IIP3=3.8dBm
3、噪声
仿真Pnoise,得到输出变频DSB噪声在50MHz约为12.5dB,
4、心得体会
这次实验让我可以开始熟练的使用PSS、pnoise等仿真,同时也更为深刻的了解到了Cadence的运用。

在以后的实验中我会更努力的做好实验的。

PSpice仿真实验报告

PSpice仿真实验报告

实验七:使用PSpice软件对混频电路仿真一.实验目的1. 掌握PSpice软件的基本操作(包括设计绘制电路、仿真调测、时域频域分析)。

2.掌握如何使用PSpice仿真软件研究分析三极管混频器和乘法器混频器工作原理。

3.通过实验中波形和频谱,研究三极管混频与乘法器混频的区别。

二.实验仪器1.计算机2.PSpice8.0软件三.实验内容1.在PSpice原理图编辑环境下分别完成三极管混频和乘法器混频的电路绘制;2.对以上两种电路分别进行仿真,显示时域波形图(参与混频的两个频率为1kHz和10kHz);3.对以上两种电路的输出波形分别进行FFT(频域分析),指出二者的频谱差别。

四.实验步骤1.实验准备在计算机上安装PSpice8.0软件包(安装过程中如有提示,选默认即可)。

2.原理图的绘制方法安装成功后,选择Windows程序->DesignLab Eval 8->Schematics即可打开原理图编辑界面。

然后按如下操作:(1)选择与布放元器件:菜单 -> Draw -> Get New Part…选择所需电路元器件 -> Place&Close(2)连接元器件:把所需元器件布放完毕后,可点击菜单栏下方的快捷图标按钮“”将各元器件按照下图提示连接起来。

图1 三极管混频原理图图1提示:图中Vcc与VBB选择元件库中的“VDC”元件,分别双击它们,按照图中标记设定好直流电压(DC)参数。

V1与V2选择元件库中的“VSIN”元件。

双击这些元件可以改变这些电压的参数,将V1和V2的振幅(VAMPL)参数都设置为0.01V,频率(FREQ)参数按上图标记设定好。

“地”选择库中的“AGND”元件。

图2 乘法器混频原理图图2提示:图中的乘法器直接使用库中的“MULT”元件。

V1与V2选择元件库中的“VSIN”元件。

振幅都设为0.01V,频率分别为1kHz和10kHz。

3.时域仿真及频域分析⑴实验步骤①在电脑D:\盘上创建pspice目录。

混频器仿真实验报告

混频器仿真实验报告

混频器仿真实验报告一.实验目的(1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力;(2)掌握multisim实现混频器混频的方法和步骤;(3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。

二.实验原理以及实验电路原理图(一).晶体管混频器电路仿真本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。

电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。

(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。

(3)本振信号与基极偏压Eb共同构成时变工作点。

由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。

工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。

在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。

(二).模拟乘法器混频电路模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。

三.实验内容及记录(一).晶体管混频器电路仿真1、直流工作点分析使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。

注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。

因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。

晶体管混频器实验报告

晶体管混频器实验报告

晶体管混频器实验报告
通过晶体管混频器的实验,掌握混频器的原理和使用方法,了解混频器在通信领域的应用。

实验原理:
混频器是一种非线性器件,利用其非线性特性将两路信号进行混合,产生出频率的和与差信号。

晶体管混频器是一种常用的混频器类型,其结构简单、易于制作和使用。

晶体管混频器主要由一个局部振荡器、一个射频输入端和一个中频输出端组成。

当局部振荡器输出的频率与射频信号的频率相等时,混频器产生出一个中频信号。

该中频信号的频率为局部振荡器频率与射频信号频率的差值。

如果局部振荡器频率高于射频信号频率,则中频信号为正频率;反之,则中频信号为负频率。

实验步骤:
1. 搭建晶体管混频器电路,将局部振荡器和射频输入端连接到同一个天线上。

2. 调整局部振荡器频率,使其与射频信号频率相等。

3. 连接中频输出端到示波器上,观察输出波形。

4. 改变局部振荡器频率,观察中频信号的变化。

5. 将输入信号改为正弦波或方波信号,观察输出信号的差异。

实验结果:
实验中,我们成功搭建了晶体管混频器电路,并通过调整局部振荡器频率,产生了中频信号。

在观察中频信号时,我们发现其频率为
局部振荡器频率与射频信号频率的差值。

我们还发现,当局部振荡器频率高于射频信号频率时,中频信号为正频率;反之,则中频信号为负频率。

在改变输入信号为正弦波或方波信号时,我们观察到输出信号的波形有所不同,但仍能产生中频信号。

实验结论:
晶体管混频器是一种常用的混频器类型,其结构简单、易于制作和使用。

通过实验,我们了解到了晶体管混频器的原理和使用方法,并掌握了其在通信领域中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.实验目的
(1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力;
(2)掌握multisim实现混频器混频的方法和步骤;
(3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。

二.实验原理以及实验电路原理图
(一).晶体管混频器电路仿真
本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。

电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。

(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。

(3)本振信号与基极偏压Eb共同构成时变工作点。

由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。

工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。

在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=~1mA,而且,此时对应混频器噪声系数最小。

(二).模拟乘法器混频电路
模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。

三.实验内容及记录
(一).晶体管混频器电路仿真
1、直流工作点分析
使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。

注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。

因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。

若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。

2、混频器输出信号“傅里叶分析”
选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为:
基频5KHz,谐波数为120,采用终止时间为,线性纵坐标请对测试结果进行分析。

在图中指出465KHz中频信号频谱点及其它谐波成分。

注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。

由图表可以看出,频率为465KHz的信号电压值最大,越靠近465KHz的谐波分量,电压越大。

(二).模拟乘法器混频电路
1、混频输入输出波形测试
在仿真软件中构建如图二所示模拟乘法器混频电路,启动仿真,观察示波器显示波形,分析实验结果。

在示波器上看,A通道为第一个乘法器的输出信号,B通道为第二个乘法器的输出信号,A通道的频率明显大于B通道,但其包络的变化规律不会发生变化。

2、混频器输出信号“傅里叶分析”
选取电路节点6作为输出端,“傅里叶分析”参数设置为:
基频10KHz,谐波数为60,采用终止时间为,线性纵坐标
从输出频谱中找出最高频谱点500KHz中频信号成分,同时观察电路中较弱的其它谐波成分。

由图表可以看出,频率为500KHz的信号电压值最大,越靠近500KHz的谐波分量,电压越大。

四.实验分析总结
(一).晶体管混频器电路
KHz MHz f f L S 465465.06.1065.2==-=-,与LC 选频回路的固有谐振频率相同,所以经过选频电路后,输出频率在465KHz 处的信号,由于谐振回路有一定的同频带,所以465KHz 附近的一些谐波分量也会输出,但是越远离465KHz,增益越低,有傅里叶分析的表格可以看出,它的电压值也越小。

(二).模拟乘法器混频电路
经过第一个乘法器,KHz f f L S 5.10995.01100=-=-;
经过第二个乘法器,KHz f f L S 5005.10991600≈-=-
所以明显的A 通道频率大于B 通道频率,而且通过选频电路后,在500KHz 时,电压值最大,500KHz 附近的一些谐波分量,越远离500KHz,增益越低,电压值也越小。

通过混频电路,输出信号只改变了频率大小,却不改变其变化规律,实现了频谱的搬移,有利于放大信号以及选频。

相关文档
最新文档