陕西省西安市高新第一中学2020-2021学年八年级下学期期中数学试题

合集下载

人教版2020-2021学年初二数学下册期中考试试卷 (含答案)

人教版2020-2021学年初二数学下册期中考试试卷 (含答案)

2020-2021学年八年级(下)期中数学试卷一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣34.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.45.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12 8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.49.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣110.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是岁、岁.13.(3分)化简:=.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC 2,使得△ABC2为轴对称图形,且=3S△ABC.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义进行判断.【解答】解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=【分析】利用一元二次方程的定义进行分析即可.【解答】解:A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x﹣1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.故选:B.3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣3【分析】二次根式的被开方数是非负数.【解答】解:依题意得x+3≥0,解得x≥﹣3.故选:A.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【解答】解:∵5,7,6,x,7的平均数是6,∴(5+7+6+x+7)=6,解得:x=5;故选:C.5.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°【分析】根据平行四边形的对角相等、邻角互补,即可得出∠A的度数.【解答】解:∵在▱ABCD中,∠B+∠D=130°,∠B=∠D,∴∠B=∠D=65°,又∵∠A+∠B=180°,∴∠A=180°﹣65°=115°.故选:D.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°【分析】至少有一个角不小于90°的反面是每个角都小于90°,据此即可假设.【解答】解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的除法法则对B进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项错误;D、原式=2×3=12,所以D选项正确.故选:D.8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.4【分析】根据平行四边形的性质得到OB=OD,AD+AB=CD+BC=12,根据三角形的周长公式得到CD﹣BC=4,解方程组求出CD,得到AB的长,根据直角三角形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,四边形ABCD的周长是24,∴AB=CD,AD=BC,OB=OD,AD+AB=CD+BC=12,∵△COD的周长比△BOC的周长多4,∴(CD+OD+OC)﹣(CB+OB+OC)=4,即CD﹣BC=4,,解得,CD=8,BC=4,∴AB=CD=8,∵BD⊥AD,E是AB中点,∴DE=AB=4,故选:C.9.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣1【分析】由根的判别式与方程根的情况,可得△<0,从而求出k的取值范围,再确定k 的最小整数.要保证二次项系数不为0.【解答】解:∵一元二次方程x(kx+1)﹣x2+3=0,即(k﹣1)x2+x+3=0无实数根,∴△=b2﹣4ac=1﹣4×(k﹣1)×3<0且k﹣1≠0,解得k>且k≠1.k最小整数=2.故选:A.10.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.【分析】连接AC、BC,根据勾股定理求出A1B1,根据三角形中位线定理、菱形的判定定理得到四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,总结规律,根据规律解答.【解答】解:连接AC、BC,由题意得,AB1=×6=3,AA1=×8=4,由勾股定理得,A1B1==5,∵四边形ABCD为矩形,∴AC=BD,∵顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,∴A1B1=BD,A1B1∥BD,C1B1=AC,C1B1∥AC,A1D1=AC,A1D1∥AC,∴A1B1=C1D1,A1B1∥C1D1,A1B1∥B1C1,∴四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,同理,四边形A3B3C3D3是菱形,且菱形的周长=20×=10,……四边形A9B9C9D9是菱形,且菱形的周长=20×=,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是6.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是15岁、16岁.【分析】根据中位数和众数的定义求解.【解答】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故填16,15.13.(3分)化简:=π﹣3.【分析】二次根式的性质:=a(a≥0),根据性质可以对上式化简.【解答】解:==π﹣3.故答案是:π﹣3.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=2020.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2020=0得:a+b﹣2020=0,即a+b=2020.故答案是:2020.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=20.【分析】根据54米的篱笆,即总长度是54m,BC=xm,则AB=(54﹣x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设矩形花园BC的长为x米,则其宽为(54﹣x+2)米,依题意列方程得:(54﹣x+2)x=320,x2﹣56x+640=0,解这个方程得:x1=16,x2=40,∵28<40,∴x2=40(不合题意,舍去),∴x=16,∴AB=(54﹣x+2)=20.答:当矩形的长AB为16米时,矩形花园的面积为320平方米;故答案为:20.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为3或.【分析】分两种情况讨论,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,推出∠BFE=∠B'FE,进一步推BF=BE=5,在Rt△ABF中,通过勾股定理求出AF的长;当点B'落在CD边上时,在Rt△ECB'中,利用勾股定理求出CB'的长,进一步求出DB'的长,分别在Rt△F A'B'和Rt△FDB'中,利用勾股定理求出含x的FB'的长度,联立构造方程,求出x的值,即AF的长度.【解答】解:如图1,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,∴∠BFE=∠B'FE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠B'EF,∴∠FEB=∠BFE,∴BF=BE,∵BE=BC﹣EC=9﹣4=5,∴BF=5,在Rt△ABF中,AF===3;如图2,当点B'落在CD边上时,由折叠知,△BEF≌△B'EF,△ABF≌△A'B'F,∴EB'=EB=5,A'B'=AB=CD=4,∵四边形ABCD是矩形,∴∠D=∠C=90°,在Rt△ECB'中,CB'===3,∴DB'=CD﹣CB'=4﹣3=1,设AF=A'F=x,在Rt△F A'B'中,FB'2=F A'2+A'B'2=x2+42,在Rt△FDB'中,FB'2=FD2+DB'2=(9﹣x)2+12,∴x2+42=(9﹣x)2+12,解得,x=,∴AF=;故答案为:3或.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).【分析】(1)利用二次根式的性质计算;(2)利用二次根式的乘除法则运算.【解答】解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.【分析】利用因式分解法求解可得.【解答】解:(1)∵x2=4x,∴x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得x1=0,x2=4;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x1=4,x2=﹣0.5.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.【分析】(1)利用网格特点和中心对称的性质画出A、B、C的对应点即可;(2)利用勾股定理作出AC2=5,则△ABC2为等腰三角形,此三角形满足条件.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△ABC2为所作.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)小张的期末评价成绩为=80(分);(2)①小张的期末评价成绩为=80(分);②设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【分析】(1)由角平分线的性质和等腰三角形的性质可得∠DAF=∠E,可证AD∥BE,可得结论;(2)先证△ABE是等边三角形,可求S△ABF的面积,即可求解.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)【分析】(1)直接利用二月销量×(1+x)2=四月的销量进而求出答案.(2)首先设出未知数,再利用每袋的利润×销量=总利润列出方程,再解即可.【解答】解:(1)设三、四这两个月的月平均增长率为x.由题意得:192(1+x)2=300,解得:x1=,x2=﹣(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m元时,该淘宝网店五月份获利3250元.根据题意可得:(40﹣25﹣m)(300+5m)=3250,解得:m1=5,m2=﹣50(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.【分析】(1)把(4,0)代入y=﹣x+b即可求得b的值;(2)过点D作DE⊥x轴于点E,证明△OAB≌△EDA,即可求得AE和DE的长,则D 的坐标即可求得;(3)分当OM=MB=BN=NO时;当OB=BN=NM=MO=3时两种情况进行讨论.【解答】解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,∴ON的解析式是y=x.根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).1、三人行,必有我师。

2020-2021学年陕西省西安市雁塔区高新一中八年级(下)期末数学试卷(解析版)

2020-2021学年陕西省西安市雁塔区高新一中八年级(下)期末数学试卷(解析版)

2020-2021学年陕西省西安市雁塔区高新一中八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分).1.要使分式有意义,则x的取值范围是()A.x≠2B.x≥﹣2C.x≥2D.x≠﹣22.下列方程中,是一元二次方程的是()A.2x+3y﹣5=0B.x2+=1C.x2﹣1=0D.ax2+bx+c=0 3.若一个正多边形的一个内角为144°,则此多边形是()边形.A.7B.8C.9D.104.下列等式从左到右的变形,属于因式分解的是()A.m(x﹣y)=mx﹣my B.a2﹣b2=(a+b)(a﹣b)C.x2+2x+1=x(x+2)+1D.(x+3)(x+1)=x2+4x+35.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,则BC:CE =()A.3:5B.1:3C.5:3D.2:36.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=207.关于x的一元二次方程ax2﹣bx﹣2020=0满足a+b=2020,则方程必有一根为()A.1B.﹣1C.±1D.无法确定8.如图,D是△ABC边AB上一点,添加一个条件后,仍不能使△ACD∽△ABC的是()A.∠ACD=∠B B.∠ADC=∠ACB C.AC2=AD•AB D.9.若关于x的一元二次方程(m﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.m≤B.m>C.m≤且m≠1D.m<且m≠1 10.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG,分别交BC、DC于点M、N,若正方形的边长为a,则重叠部分四边形的面积为()A.B.C.D.二、填空题(每小题3分,共21分)11.分解因式:x2y﹣2xy2+y3=.12.若x=3是方程x2﹣kx﹣6=0的一个解,则方程的另一个解是.13.某市大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全市学校的设施和设备进行全面改造,2019年投入10亿元,若每年的增长率相同,预计2021年投资14.4亿元,设年平均增长率为x,则由题意可列方程.14.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是黄金分割比.著名的“断臂维纳斯”便是如此.若某人的身体满足上述黄金分割比,且身高为170cm,则此人的肚脐到足底的长度可能是(精确到1cm).15.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF =6,∠AFE=50°,则∠ADC的度数为.16.复印纸型号多样,而各型号复印纸之间存在这样的关系:将其中一型号纸张(如A3纸)沿较长边中点的连线对折,就能得到下一型号(A4纸)的纸张,且对折得到的两个矩形和原来的矩形相似(即A3纸与A4纸相似),则这些型号的复印纸宽与长之比为.17.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值等于.三、解答题(共8小题,计69分)18.解方程:(1)+1=;(2)3(x﹣2)2﹣27=0;(3)2x2﹣4x﹣3=0.19.先化简,再求值:(+)÷,其中x=3,y=.20.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,DF⊥AC于点F.求证:AE=DF.21.如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.22.如图,某同学正向着教学楼(AB)走去,他发现教学楼后面有一座5G信号接收塔(DC),可过了一会抬头一看:“怎么看不到接收塔了?”心里很是纳闷.经过了解,教学楼、接收塔的高分别是21.6m和31.6m,它们之间的距离为30m,该同学的眼睛距地面高度(EF)是1.6m.当他刚发现接收塔的顶部D恰好被教学楼的顶部A挡住时,他与教学楼(AB)之间的距离为多少米?23.为提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出.根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低5元,每天可多售出25个.已知每个电子产品的固定成本为100元.问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?24.如图,在平面直角坐标系中,四边形AOCB的点O在坐标原点上,点A在y轴上,AB ∥OC,点B的坐标为(15,8),点C的坐标为(21,0),动点M从点A沿AB方向以每秒1个长度单位的速度运动,动点N从C点沿CO的方向以每秒2个长度单位的速度运动.点M、N同时出发,一点到达终点时,另一点也停止运动,设运动时间为t秒.(1)当t=2时,点M的坐标为,点N的坐标为;(2)当t为何值时,四边形AONM是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能说明理由.25.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.【提出问题】(1)如图①,四边形ABCD与四边形AEFG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;【类比探究】(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BC,BD的中点,连接EG1,FG,EF.试判定△EFG的形状,并证明;【综合运用】(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=10,则边AB长的最小值为.参考答案一、选择题(每小题3分,共30分)1.要使分式有意义,则x的取值范围是()A.x≠2B.x≥﹣2C.x≥2D.x≠﹣2解:要使分式有意义,必须x﹣2≠0,解得:x≠2,故选:A.2.下列方程中,是一元二次方程的是()A.2x+3y﹣5=0B.x2+=1C.x2﹣1=0D.ax2+bx+c=0解:A、该方程中含有两个未知数,故本选项不符合题意;B、该方程是分式方程,不是整式方程,故本选项不符合题意;C、符合一元二次方程的定义,故本选项符合题意;D、当a=0时,该方程中未知数的最高次数不是2,故本选项不符合题意.故选:C.3.若一个正多边形的一个内角为144°,则此多边形是()边形.A.7B.8C.9D.10解:设这个正多边形的边数为n,∴(n﹣2)×180°=144°×n,∴n=10.故选:D.4.下列等式从左到右的变形,属于因式分解的是()A.m(x﹣y)=mx﹣my B.a2﹣b2=(a+b)(a﹣b)C.x2+2x+1=x(x+2)+1D.(x+3)(x+1)=x2+4x+3解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.等式从左到右的变形属于因式分解,故本选项符合题意;C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D.属于整式乘法,不属于因式分解,故本选项不符合题意;故选:B.5.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,则BC:CE =()A.3:5B.1:3C.5:3D.2:3解:∵AB∥CD∥EF,∴===.故选:A.6.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=20解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.7.关于x的一元二次方程ax2﹣bx﹣2020=0满足a+b=2020,则方程必有一根为()A.1B.﹣1C.±1D.无法确定解:当x=﹣1时,a+b﹣2020=0,则a+b=2020,所以若a+b=2020,则此方程必有一根为﹣1.故选:B.8.如图,D是△ABC边AB上一点,添加一个条件后,仍不能使△ACD∽△ABC的是()A.∠ACD=∠B B.∠ADC=∠ACB C.AC2=AD•AB D.解:A、当∠ACD=∠B时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;B、当∠ADC=∠ACB时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;C、当AC2=AD•AB时,即=,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;D、当=时,无法得出△ACD∽△ABC,故此选项符合题意.故选:D.9.若关于x的一元二次方程(m﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.m≤B.m>C.m≤且m≠1D.m<且m≠1解:根据题意得m﹣1≠0且△=12﹣4(m﹣1)≥0,解得m≤且m≠1.故选:C.10.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG,分别交BC、DC于点M、N,若正方形的边长为a,则重叠部分四边形的面积为()A.B.C.D.解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:C.二、填空题(每小题3分,共21分)11.分解因式:x2y﹣2xy2+y3=y(x﹣y)2.解:∵x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2.故答案为:y(x﹣y)2.12.若x=3是方程x2﹣kx﹣6=0的一个解,则方程的另一个解是x=﹣2.解:设另一根为x1,则3•x1=﹣6,解得,x1=﹣2,故答案为:x=﹣2.13.某市大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全市学校的设施和设备进行全面改造,2019年投入10亿元,若每年的增长率相同,预计2021年投资14.4亿元,设年平均增长率为x,则由题意可列方程10(1+x)2=14.4.解:设每年投资的增长率为x,根据题意,得:10(1+x)2=14.4,故答案为:10(1+x)2=14.4.14.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是黄金分割比.著名的“断臂维纳斯”便是如此.若某人的身体满足上述黄金分割比,且身高为170cm,则此人的肚脐到足底的长度可能是105cm(精确到1cm).解:设此人的肚脐到足底的长度为xcm,∵某人身体大致满足黄金分割比,且身高为175cm,∴≈0.618,解得:x≈105,即此人的肚脐到足底的长度约为105cm,故答案为:105cm.15.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF =6,∠AFE=50°,则∠ADC的度数为140°.解:连接BD,∵E、F分别是边AB、AD的中点,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,BD2+CD2=225,BC2=225,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=140°,故答案为:140°.16.复印纸型号多样,而各型号复印纸之间存在这样的关系:将其中一型号纸张(如A3纸)沿较长边中点的连线对折,就能得到下一型号(A4纸)的纸张,且对折得到的两个矩形和原来的矩形相似(即A3纸与A4纸相似),则这些型号的复印纸宽与长之比为.解:设这些型号的复印纸的长、宽分别为b、a,∵得到的矩形都和原来的矩形相似,∴=,则b2=2a2,∴=,故答案为:.17.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值等于 4.8.解:连接OP,如图所示:∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=BD=8,OC=AC=6,∴BC===10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=OB×OC=BC×OP,∴OP==4.8,∴EF的最小值为4.8,故答案为:4.8.三、解答题(共8小题,计69分)18.解方程:(1)+1=;(2)3(x﹣2)2﹣27=0;(3)2x2﹣4x﹣3=0.解:(1)原方程化为:+1=,方程两边都乘x(x﹣1),得(1﹣x)(x﹣1)+x(x﹣1)=2,解得:x=3,检验:当x=3时,x(x﹣1)≠0,所以x=3是原方程的解,即原方程的解是x=3;(2)3(x﹣2)2﹣27=0,3(x﹣2)2=27,(x﹣2)2=9,开方,得x﹣2=±3,解得:x1=5,x2=﹣1;(3)2x2﹣4x﹣3=0,∵Δ=b2﹣4ac=(﹣4)2﹣4×2×(﹣3)=40>0,∴x==,解得:x1=,x2=.19.先化简,再求值:(+)÷,其中x=3,y=.解:原式=[+]÷=•=•=﹣,当x=3,y=时,原式=﹣=﹣3.20.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,DF⊥AC于点F.求证:AE=DF.【解答】证明:∵四边形ABCD是矩形,对角线AC,BD相交于点O,∴OA=OC=OB=OD,∵AE⊥BD,DF⊥AC,∴∠AEO=∠DFO=90°,在△AOE和△DOF中,,∴△AOE≌△DOF(AAS),∴AE=DF.21.如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.【解答】(1)证明:平行四边形ABCD中,∠A=∠C,∵∠EDB=∠C,∴∠A=∠EDB,又∠E=∠E,∴△ADE∽△DBE;(2)平行四边形ABCD中,DC=AB,由(1)得△ADE∽△DBE,∴,∵DC=7cm,BE=9cm,∴AB=7cm,AE=16cm,∴DE=12cm.22.如图,某同学正向着教学楼(AB)走去,他发现教学楼后面有一座5G信号接收塔(DC),可过了一会抬头一看:“怎么看不到接收塔了?”心里很是纳闷.经过了解,教学楼、接收塔的高分别是21.6m和31.6m,它们之间的距离为30m,该同学的眼睛距地面高度(EF)是1.6m.当他刚发现接收塔的顶部D恰好被教学楼的顶部A挡住时,他与教学楼(AB)之间的距离为多少米?解:如图,过E作EG⊥CD交AB于H,CD于G,根据题意可得:四边形EFCG是矩形,∴EF=HB=CG=1.6m,EH=FB,HG=BC=30m,∴AH=20m,DG=30m,由AH∥DG得:△AEH∽△DEG,∴,即∴.∴EH=60.答:某同学与教学楼(AB)之间的距离为60米.23.为提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出.根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低5元,每天可多售出25个.已知每个电子产品的固定成本为100元.问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?解:设这种电子产品降价后的销售单价为x元,则每天可售出300+×25=(1300﹣5x)个,依题意得:(x﹣100)(1300﹣5x)=32000,整理得:x2﹣360x+32400=0,解得:x1=x2=180.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.24.如图,在平面直角坐标系中,四边形AOCB的点O在坐标原点上,点A在y轴上,AB ∥OC,点B的坐标为(15,8),点C的坐标为(21,0),动点M从点A沿AB方向以每秒1个长度单位的速度运动,动点N从C点沿CO的方向以每秒2个长度单位的速度运动.点M、N同时出发,一点到达终点时,另一点也停止运动,设运动时间为t秒.(1)当t=2时,点M的坐标为(2,8),点N的坐标为(17,0);(2)当t为何值时,四边形AONM是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能说明理由.解:(1)∵点B的坐标为(15,8),点C的坐标为(21,0),动点M从点A沿AB 方向以每秒1个长度单位的速度运动,动点N从C点沿CO的方向以每秒2个长度单位的速度运动,∴AM=2,CN=4,∴ON=21﹣4=17,∴点M的坐标为:(2,8),点N的坐标为:(17,0);(2)当四边形AONM是矩形时,AM=ON,所以t=21﹣2t,解得:t=7.故t=7秒时四边形AONM是矩形;(3)存在t=5秒时,四边形MNCB为菱形,理由:四边形MNCB为平行四边形时,BM=CN,所以15﹣t=2t,解得:t=5.此时,CN=5×2=10.∵过点B作BD⊥OC于点D,则四边形AODB是矩形.∴OD=AB=15,BD=OA=8,CD=OC﹣OD=6在Rt△BCD中,BC=,∴BC=CN,∴平行四边形MNCB是菱形,∴当t=5时,四边形MNCB为菱形.25.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.【提出问题】(1)如图①,四边形ABCD与四边形AEFG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;【类比探究】(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BC,BD的中点,连接EG1,FG,EF.试判定△EFG的形状,并证明;【综合运用】(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=10,则边AB长的最小值为3.解:(1)如图①,延长BE,DG交于点H,∵四边形ABCD与四边形AEFG都为正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四边形BEGD是“等垂四边形”.(2)△EFG是等腰直角三角形.理由如下:如图②,延长BA,CD交于点H,∵四边形ABCD是“等垂四边形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵点E,F,G分别是AD,BC,BD的中点,∴EG=AB,GF=CD,EG∥AB,GF∥DC,∴∠BFG=∠C,∠EGD=∠HBD,EG=GF.∴∠EGF=∠EGD+∠FGD=∠ABD+∠DBC+∠GFB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°.∴△EFG是等腰直角三角形.(3)延长BA,CD交于点H,分别取AD,BC的中点E,F.连接HE,EF,HF,则EF≥HF﹣HE=BC﹣AD=5﹣2=3,由(2)可知AB=EF≥3.∴AB最小值为3,故答案为:3.。

陕西省西安市西安高新第一中学2023-2024学年八年级上学期期中数学试题

陕西省西安市西安高新第一中学2023-2024学年八年级上学期期中数学试题

陕西省西安市西安高新第一中学2023-2024学年八年级上学
期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题..
C ..
.已知一个正比例函数的图象经过(2,1A -)4,n 两点,则n 的值是(2B .2-8若关于x 、y 的二元一次方程22x y a +=的一组解为3x =,y =3B .21.已知直线3y x =-+过点()11,A y -和点)2y ,则1y 和2y 的大小关系是(
12y y >B .12y y <12y y =.如图,已知一次函数ax b =+和y kx =的图像交于点P ,则根据图像可得关于的二元一次方程组y b y =+⎧⎨=⎩的解是()
A .31x y =⎧⎨=-⎩
B .31x y =-⎧⎨=-⎩7.秦兵马俑的发现被誉为“世界第八大奇迹巴的距离之比约为512-,下列估算正确的是(A .512025-<<B .25152-<<8.下列图形中,表示一次函数y kx b =+的图像的是()
A .
B ...
9.
《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知
各点,若1A 的坐标为()3,2,则2023A 的友好点是(
)A .()3,2B .()1,4-C .()
5,2--D .()3,4-二、填空题3三、解答题
(1)根据上述条件建立平面直角坐标系;
(2)建筑物A的坐标为()3,1,请在图中标出
(3)建筑物B在大门北偏东45︒的方向,并且21.定义:若两个二次根式a,b满足a
因子二次根式.。

2020-2021学年八年级下学期期中考试数学试题 含答案

2020-2021学年八年级下学期期中考试数学试题 含答案

1 x 1
2 x2 1
(2)
20.(8
分)先化简,再求值:
1
1 x
x2 1 x2
,其中
x
2

21.(8 分)气温逐渐升高,甲安装队为 A 小区安装 66 台空调,乙安装队 为 B 小区安装 60 台空调,两队同时开工且恰好同时完工,已知甲队比乙 队每天多安装 2 台,求甲队、乙队每天各安装多少台空调?
A、0 B、1 C、
D、
4.下面命题中,其逆命题不成立的是 ( )
A、同旁内角互补,两直线平行
B、全等三角形的对应边相等
C、对顶角相等
D、角平分线上的点到这个角
的两边的距离相等
5.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是
()
A、3,4, 5 B、6,8,10 C、1,1, 3 D、5,12,13 6.反比例函数 y 6 的图象的两个分支分别位于( )
(2) 1 1 2
x 1 x 1 x2 1
x 1 + x 1 = 2 2x =2 ---------3
∴ x =1 经检验: x =1 是增根,
20.(8
分)先化简,再求值:
1
1 x
x2 1 x2
,其中
x
2


:原式=
x 1 x

x
x2
1(x
1)
---------4 分
=x
x 1
当 x 2 时,原式= 2 =2
S ABC

1 2
AC

BC
1 2
4
3
6
---------6

(2)∵
S ABC

人教版2020-2021学年初二数学下学期期中检测试题 ( 含答案)

人教版2020-2021学年初二数学下学期期中检测试题 ( 含答案)

2020-2021学年八年级第二学期期中数学试卷一、选择题(共10小题).1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.2.(3分)下列计算正确的是()A.﹣B.3C.﹣D.=±33.(3分)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠24.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.、2、D.5、12、13 5.(3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直6.(3分)如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°7.(3分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=18.(3分)已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.129.(3分)已知﹣2<m<3,化简+|m+2|的结果是()A.5B.1C.2m﹣1D.2m﹣510.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)要使有意义,则x的取值范围是.12.(4分)已知,如图在四边形ABCD中,AB=CD,则添加一个条件(只需填写一种)可以使得四边形ABCD为平行四边形.13.(4分)已知函数y=x+m﹣2020(m常数)是正比例函数,则m=.14.(4分)已知直角三角形的两边的长分别是3和4,则第三边长为.15.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是.16.(4分)若是整数,则满足条件的最小正整数n为.17.(4分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:÷﹣×+.19.(6分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.20.(6分)小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是米,小红在商店停留了分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?四、解答题(本大题3小题,每小题8分,共24分)21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.22.(8分)已知:如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.(1)求证:∠CAE=∠CEA;(2)若AD=1,∠E=30°,求△ACE的周长.23.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点M,使△AOM是等腰三角形?若存在,求点M的坐标;若不存在,请说明理由.五、解答题(本大题2小题,每小题10分,共20分)24.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简:+++…+.25.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一、选择题(本大题10小题,每小题3分,共30分)每小题给出4个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.(3分)下列计算正确的是()A.﹣B.3C.﹣D.=±3解:A、﹣,无法计算,故此选项错误;B、3=,故此选项错误;C、﹣=,正确;D、=3,故此选项错误;故选:C.3.(3分)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选:D.4.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.、2、D.5、12、13解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选:C.5.(3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.6.(3分)如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选:D.7.(3分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=1解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.8.(3分)已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.12解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故选:B.9.(3分)已知﹣2<m<3,化简+|m+2|的结果是()A.5B.1C.2m﹣1D.2m﹣5解:∵﹣2<m<3,∴m﹣3<0,m+2>0,∴+|m+2|=3﹣m+m+2=5.故选:A.10.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5解:∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC.∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=2.4,∴AM=1.2;故选:C.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)要使有意义,则x的取值范围是x≥4.解:由题意得:x﹣4≥0,解得:x≥4.故答案为:x≥4.12.(4分)已知,如图在四边形ABCD中,AB=CD,则添加一个AD=BC条件(只需填写一种)可以使得四边形ABCD为平行四边形.解:添加AD=BC,∵AD=BC,AB=CD,∴四边形ABCD为平行四边形,故答案为:AD=BC.13.(4分)已知函数y=x+m﹣2020(m常数)是正比例函数,则m=2020.解:∵函数y=x+m﹣2020(m常数)是正比例函数,∴m﹣2020=0,解得m=2020,故答案为:2020.14.(4分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.15.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是24.解:∵AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=3,∴BC=6,∴菱形ABCD的周长是4×6=24.故答案为24.16.(4分)若是整数,则满足条件的最小正整数n为7.解:∵28=4×7,4是平方数,∴若是整数,则n的最小值为7.故答案为:7.17.(4分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是(0,21009).解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21009故答案为:(0,21009)三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:÷﹣×+.解:原式=﹣+2=4+19.(6分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF∥EC,AF=EC,∴四边形AECF是平行四边形.20.(6分)小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是1500米,小红在商店停留了4分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.四、解答题(本大题3小题,每小题8分,共24分)21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.【解答】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.∴∠A+∠C=360°﹣180°=180°.22.(8分)已知:如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.(1)求证:∠CAE=∠CEA;(2)若AD=1,∠E=30°,求△ACE的周长.【解答】证明:(1)∵四边形ABCD是矩形,∴DC∥BE,AC=BD.又EC∥BD,∴四边形DBEC是平行四边形.∴CE=DB.∴AC=EC.∴∠CAE=∠CEA;(2)由(1)得∠DBA=∠E=30°,∴BD=2AD=2,AB=.∴AC=CE=BD=2,AE=2AB=2.所以△ACE周长为4+2.23.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点M,使△AOM是等腰三角形?若存在,求点M的坐标;若不存在,请说明理由.解:(1)∵点A的横坐标为3,△AOH的面积为3,点A在第四象限,∴点A的坐标为(3,﹣2).将A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)①当OM=OA时,如图1所示,∵点A的坐标为(3,﹣2),∴OH=3,AH=2,OA==,∴点M的坐标为(﹣,0)或(,0);②当AO=AM时,如图2所示,∵点H的坐标为(3,0),∴点M的坐标为(6,0);③当OM=MA时,设OM=x,则MH=3﹣x,∵OM=MA,∴x=,解得:x=,∴点M的坐标为(,0).综上所述:当点M的坐标为(﹣,0)、(,0)、(6,0)或(,0)时,△AOM是等腰三角形.五、解答题(本大题2小题,每小题10分,共20分)24.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=﹣.②参照(三)式化简=﹣.(2)化简:+++…+.解:(1)①==﹣;②===﹣;(2)原式=+++…+==.故答案为:(1)①﹣;②﹣25.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四边形AFCE为菱形.②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=5,∴AF=5.2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.1、三人行,必有我师。

2020-2021学年陕西省西安市高新一中八年级(上)期中数学试卷(Word+答案)

2020-2021学年陕西省西安市高新一中八年级(上)期中数学试卷(Word+答案)

2020-2021学年陕西省西安市高新一中八年级(上)期中数学试卷一、填空题(每小题3分,共30分)1.(3分)如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)2.(3分)下列各图象中,不表示y是x的函数的是()A.B.C.D.3.(3分)下列四组点中,在同一个正比例函数图象上的一组点是()A.(2,5),(﹣4,10)B.(2,5),(﹣1,10)C.(2,﹣5),(4,﹣10)D.(﹣2,5),(1,﹣10)4.(3分)如图所示,点E在AC的延长线上,下列条件中能判断BD∥AC的是()A.∠3=∠A B.∠D=∠DCEC.∠1=∠2D.∠A+∠ACD=180°5.(3分)直线y=kx的图象如图所示,则函数y=(1﹣k)x﹣k的图象大致是()A.B.C.D.6.(3分)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=120°,∠AOF的度数是()A.20°B.30°C.40°D.60°7.(3分)如图,直线l1、l2的交点坐标可以看作方程组()的解.A.B.C.D.8.(3分)点P(﹣a,a+2)一定不在第()象限.A.一B.二C.三D.四9.(3分)如图,在四边形ABCD中,AB=8,BC=1,∠DAB=30°,∠ABC=60°,四边形ABCD的面积为5,则AD的长为()A.B.2C.2D.310.(3分)若直线l1经过点(0,3),直线l2经过点(5,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣3,0)D.(3,0)二、填空题(每小题3分,共21分)11.(3分)命题“﹣a一定表示一个负数”是命题.(填“真”或“假”)12.(3分)在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于.13.(3分)若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣x+1的图象上,则m和n的大小关系是.14.(3分)把直线y=﹣2x﹣1向右平移2个单位后得到直线AB,则直线AB的表达式为.15.(3分)把长方形AB′CD沿对角线AC折叠,得到如图所示的图形,已知∠BAO=40°,则∠ACD=.16.(3分)在平面直角坐标系中,有点A(a,1),点B(﹣2,b),当线段AB∥y轴,且AB=3时,则a﹣b=.17.(3分)如图,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C逆时针旋转90°至线段CB,连接BO,则BO的最小值是.三、解答题(共69分)18.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上.(1)写出A、B、C三点的坐标;(2)画出△ABC关于x轴对称的△A1B1C1.19.(6分)尺规作图如图,△ABC中,∠B=2∠C,在AC边上找一点P,使PB=PC.(保留作图痕迹,不写作法)20.(7分)如图,在△ABC中,∠B=40°,∠C=60°,点D,E分别在边BC,AC上,且DE∥AB,若∠CAD=25°,求∠ADE的度数.21.(8分)在平面直角坐标系中,点A是x轴上一点,点B是y轴上一点,若线段OA=1,∠ABO=30°.(1)则A点的的坐标是,B点的坐标是;(2)以线段AB为边,在平面直角坐标系中作等边△ABC,求出C点坐标.22.(10分)如图,直线l交x轴于A(﹣4,0),交y轴于B(0,6),C(m,3)是直线l上的一点.(1)求直线AB,OC的表达式;(2)在直线AB上找一点P,使S△OCP=S△OAB,求出点P的坐标.23.(10分)在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.24.(10分)为了提高饮水质量,越来越多的居民选择家用净水器,光明商场计划从生产厂家购进甲、乙两种型号的家用净水器,甲型号净水器进价为160元/台,乙型号净水器进价为280元/台,经过协商沟通,生产厂家拿出了两种优惠方案:第一种优惠方案:甲、乙两种型号净水器均按进价的8折收费;第二种优惠方案:甲型号净水器按原价收费,乙型号净水器的进货量超过10台后超过的部分按进价的6折收费.光明商场只能选择一种优惠方案,已知光明商场计划购进甲型号净水器数量是乙型号净水器数量的1.5倍,设光明商场购进乙型号净水器x台,选择第一种优惠方案所需费用为y1元,选择第二种优惠方案所需要费用为y2元.(1)分别求出y1、y2与x的关系式;(2)光明商场计划购进乙型号净水器40台,请你为光明商场选择合适的优惠方案,并说明理由.25.(12分)如图,一次函数y=x+2的图象与x,y轴分别交于A,B两点,点C与点A关于y轴对称.动点P,Q分别在线段AC,AB上(点P与点A,C不重合),且满足∠BPQ=∠BAO.(1)点A的坐标为,点B的坐标为,线段BC的长度=;(2)当点P在什么位置时,△APQ≌△CBP?说明理由;(3)当△PQB为等腰三角形时,求点P的坐标.2020-2021学年陕西省西安市高新一中八年级(上)期中数学试卷试题解析一、填空题(每小题3分,共30分)1.解:如图,嘴的位置可以表示成(1,0).故选:C.2.解:A、根据图象知给自变量一个值,故A选项是函数,B、根据图象知给自变量一个值,故B选项是函数,C、根据图象知给自变量一个值,故C选项不是函数,D、根据图象知给自变量一个值,故D选项是函数,故选:C.3.解:A、∵≠,∴两点不在同一个正比例函数图象上;B、∵,∴两点不在同一个正比例函数图象上;C、∵=,∴两点在同一个正比例函数图象上;D、∵≠,∴两点不在同一个正比例函数图象上.故选:C.4.解:A、由∠3=∠A不能判断BD∥AC;B、∵∠D=∠DCE,故本选项符合题意;C、∵∠1=∠7,故本选项不合题意;D、∵∠A+∠ACD=180°,故本选项不合题意.故选:B.5.解:∵直线y=kx的图象经过第二、四象限,∴k<0,∴1﹣k>4,﹣k>0,∴函数y=(1﹣k)x﹣k的图象经过第一、二、三象限.故选:B.6.解:∵CD∥AB,∠D=120°,∴∠AOD+∠D=180°,∴∠AOD=60°,∠DOB=120°,∵OE平分∠BOD,∴∠DOE=60°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°﹣60°=30°,∴∠AOF=∠AOD﹣∠DOF=60°﹣30°=30°.故选:B.7.解:设l1的解析式为y=kx+b,∵图象经过的点(1,2),﹣2),∴,解得:,∴l4的解析式为y=2x﹣2,可变形为3x﹣y=2,设l2的解析式为y=mx+n,∵图象经过的点(﹣2,0),1),∴,解得:,∴l5的解析式为y=x+4,可变形为x﹣2y=﹣2,∴直线l8、l2的交点坐标可以看作方程组的解.故选:A.8.解:当a>0时,﹣a<0,∴点P(﹣a,a+2)在第二象限;当a<0时,﹣a>0,也可能为负,∴点P(﹣a,a+2)可能在第一象限;∴点P(﹣a,a+2)可能在第一、二;不可能在第三象限,故选:C.9.解:如图,延长AD,∵∠DAB=30°,∠ABC=60°,∴∠E=90°,又∵AB=8,∠DAB=30°,∴BE=AB=4BE=5,∴CE=3,∵四边形ABCD的面积为5,∴×AE×BE﹣,∴DE=2,∴AD=3,故选:C.10.解:设直线l2的解析式为y=kx+b,∵直线l1经过点(6,3),l2经过点(8,2)1与l2关于x轴对称,∴两直线相交于x轴上,点(0,﹣3)在直线l3上,把(0,﹣3)和(7,得,解得:,故直线l3的解析式为:y=x﹣3,令y=0,则x=6,即l1与l2的交点坐标为(4,0).故选:D.二、填空题(每小题3分,共21分)11.解:当a=0时,﹣a=0,∴命题“﹣a一定表示一个负数”是假命题,故答案为:假.12.解:∵在△ABC中,∠A:∠B:∠C=3:4:7,∴设∠A=3x,∠B=4x,∵∠A+∠B+∠C=180°,∴8x+4x+5x=180°,∴x=15°,∴∠C=3x=75°,故答案为:75°.13.解:∵k=﹣<2,∴y随x的增大而减小,又∵﹣7>﹣8,∴m<n.故答案为:m<n.14.解:把直线y=﹣2x﹣1向右平移5个单位后得到直线AB,则直线AB的表达式为:y=﹣2(x﹣2)﹣5.故答案为y=﹣2x+3.15.解:∵四边形AB'CD是矩形∴AD∥B'C,∠B'=900∴∠1=∠2,∵翻折后∠1=∠2,∴∠6=∠3.∵翻折后∠B=∠B'=90°,∠BAO=40°,∴∠AOC=∠B+∠BAO=130°,∴∠2=∠2=25°,∴∠BAC=∠BAO+∠3=65°,∵CD∥AB′,∴∠ACD=∠CAB′=∠CAB=65°,故答案为:65°.16.解:∵当线段AB∥y轴,点A(a,b)的横坐标相同,∴a=﹣2,∵AB=3,∴|b﹣8|=3,∴b﹣1=7或b﹣1=﹣3,∴b=2或b=﹣2.∴a﹣b=﹣2﹣2=﹣6,或a﹣b=﹣2﹣(﹣5)=0,故答案为:﹣6或3.17.解:设C(0,m),垂足为点M,∴∠BMC=90°,∴∠MCB+∠B=90°,∵线段CA绕着点C按逆时针方向旋转90°至线段CB,∴∠BAC=90°,CB=CA,∴∠MCB+∠ACO=90°,∴∠B=∠ACO,∵∠AOC=90°,∴△AOC≌△CMB(AAS),∴MC=OA,MB=OC,∵点C(0,m),6),∴点B的坐标为(m,m+1),∴点B的运动轨迹是直线y=x+1,∵直线Y=x+4交x轴于E(﹣1,0),6),∴OE=OF=1,EF=,过点O作OT⊥EF于T.则OT=,根据垂线段最短可知,当点B与点T重合时,最小值为,故答案为:.三、解答题(共69分)18.解:(1)A(2,4),6),3);(2)如图,△A1B4C1为所作.19.解:如图,点P即为所求.20.解:在△ABC中,∠BAC+∠B+∠C=180°,∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵∠BAD=∠BAC﹣∠CAD,∠CAD=25°,∴∠BAD=80°﹣25°=55°,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=55°.21.解:(1)在Rt△AOB中,∵∠ABO=30°,∴AB=2OA=2,∴OB===,∴A(﹣1,0),);故答案为(﹣1,0),);(2)如图,作A点关于y轴的对称点C,∴OA=OC=1,∴AB=AC,而∠BAC=60°,∴△ABC为等边三角形,此时C点坐标为(1;把B点向左平移3个单位得到C′点,则BC′=BA=2,∵BC′∥OA,∴∠ABC′=∠BAO=60°,∴△ABC′为等边三角形,此时C′点坐标为(﹣2,),综上所述,C点坐标为(1,).22.解:(1)设直线AB的表达式为y=kx+b(k≠0),∵点A(﹣4,2),6)在直线AB上,∴,∴,∴直线AB的表达式为y=x+6,∵C(m,3)是直线l上的一点,∴m+6=3,解得:m=﹣2,∴C(﹣2,2),设直线OC的表达式为:y=nx(n≠0),把C(﹣2,7)代入得:﹣2n=3,∴n=﹣,∴直线OC的表达式为:y=﹣x;(2)∵S△OCP=S△OAB,∴S△OCP=×=6,设P(x,x+7),分两种情况:①当点P在第一象限时,过P作PD⊥x轴于D,∵C(﹣2,3),∴OE=3,CE=3,∴S△OCP=(3+=8,解得:x=,∴P(,2);②当点P在第三象限时,同理得:P(﹣;综上,点P的坐标为P(,﹣1).23.(1)证明:∵AE=AF,∠A=∠A,∴△ABE≌△ACF(AAS),∴AB=AC,∠ABE=∠ACF,∴∠ABC=∠ACB,∴∠ABC﹣∠ABE=∠ACB﹣∠ACF,即∠DBC=∠DCB,∴△BCD是等腰三角形;(2)解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣40°)=70°,∵BD=BC,∴∠BDC=∠BCD,∵∠DBC=∠DCB,∴△DBC是等边三角形,∴∠DBC=60°,∴∠ABE=10°,∴∠BEC=∠A+∠ABE=50°.24.解:(1)由题意可得,y1=(280x+160×1.2x)×0.8=416x,y4=160×1.5x+280×10+280×(x﹣10)×3.6=408x+1120,即y1,y8与x之间的函数关系式分别为:y1=416x,y2=408x+1120;(2)当x=40时,y6=16640元,y2=17440元,∵y2>y8,∴选择第一种优惠方案.25.解:(1)∵y=x+3,∴当x=0时,y=2,当y=7时,x=﹣4,即点A的坐标是(﹣4,8),2),∵C点与A点关于y轴对称,∴C的坐标是(4,5),∴OA=4,OC=4,由勾股定理得:BC==2.故答案为:(﹣6,0),2),7.(2)当P的坐标是(2﹣4,△APQ≌△CBP,理由是:∵OA=4,P(4,0),∴AP=6+2﹣8=2,∵∠BPQ=∠BAO,∠BAO+∠AQP+∠APQ=180°,∠APQ+∠BPQ+∠BPC=180°,∴∠AQP=∠BPC,∵A和C关于y轴对称,∴∠BAO=∠BCP,在△APQ和△CBP中,,∴△APQ≌△CBP(AAS),∴当P的坐标是(7﹣4,△APQ≌△CBP;(3)分为三种情况:①当PB=PQ时,由(2)知,∴PB=PQ,即此时P的坐标是(5﹣4;②当BQ=BP时,则∠BPQ=∠BQP,∵∠BAO=∠BPQ,∴∠BAO=∠BQP,而根据三角形的外角性质得:∠BQP>∠BAO,∴此种情况不存在;③当QB=QP时,则∠BPQ=∠QBP=∠BAO,即BP=AP,设此时P的坐标是(x,8),∵在Rt△OBP中,由勾股定理得:BP2=OP2+OB5,∴(x+4)2=x5+22,解得:x=﹣,即此时P的坐标是(﹣,0).∴当△PQB为等腰三角形时,点P的坐标是(2,0)或(﹣.。

人教版2020-2021学年八年级数学下学期期中检测卷 (含答案)

人教版2020-2021学年八年级数学下学期期中检测卷 (含答案)

2020-2021学年八年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,共30分)每小题只有一个正确答案.1.(3分)要使式子有意义,则x的取值范围是()A.x≥4B.x≠4C.x<4D.x>42.(3分)下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个3.(3分)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是()A.7B.9C.12D.134.(3分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=95.(3分)烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分6.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 7.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤C.k≤12且k≠0D.k≤且k≠0 8.(3分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.20189.(3分)一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.10.(3分)如图,在▱ABCD中,点E、F分别在AD和AB上,依次连接EB、EC、FC、FD,阴影部分面积分别为S1,S2,S3,S4,已知S1=3,S2=15,S3=4,则S4的值是()A.8B.14C.16D.22二、认真填一填(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)化简:=.12.(4分)若n边形的每一个外角都等于30°,则n=.13.(4分)一组数据x1,x2,x3,…,x n的平均数为5,则数据x1+5,x2+5,x3+5,…,x n+5的平均数是.14.(4分)在▱ABCD中,∠A的平分线分BC成4cm和3cm的两条线段,则▱ABCD的周长为.15.(4分)直线y=ax(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为.16.(4分)如图,反比例函数y=(x<0),△OAB和△BCD均为等腰直角三角形,点D 在反比例函数图象上,若S△OAB﹣S△BCD=10,则k=.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自已能写出的答案写出一部分也可以.17.(6分)计算下列各式:(1)﹣3+×;(2)(﹣)2+.18.(8分)解方程:(1)x2﹣8x﹣9=0;(2)2x(x﹣3)+x=3.19.(8分)如图,▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.20.(10分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.22.(12分)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y1=的图象上.一次函数y2=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求反比例函数和一次函数的解析式;(2)连结OA和OB,求△OAB的面积;(3)根据图象直接写出y1>y2时,x的取值范围.23.(12分)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s 的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A 出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,△APQ的面积;(3)当△APQ的面积是平行四边形ABCD面积的时,求t的值.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)每小题只有一个正确答案.1.(3分)要使式子有意义,则x的取值范围是()A.x≥4B.x≠4C.x<4D.x>4【分析】根据二次根式有意义的条件求解.【解答】解:∵式子有意义,∴x﹣4≥0,∴x≥4.故选:A.2.(3分)下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:根据中心对称图形的定义可知从左到右第1个图形和第三个图形是中心对称图形,第二和第四个图形不是中心对称图形.故选:C.3.(3分)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是()A.7B.9C.12D.13【分析】根据中位数为9和数据的个数,可求出x的值.【解答】解:由题意得,(6+x)÷2=9,解得:x=12,故选:C.4.(3分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=9【分析】根据n边形的内角和等于外角和的3倍,可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.5.(3分)烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分【分析】利用加权平均数的计算公式直接计算即可求得答案.【解答】解:这位厨师的最后得分为:=90(分).故选:A.6.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 【分析】根据平行四边形的判定和题中选项,逐个进行判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.7.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤C.k≤12且k≠0D.k≤且k≠0【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣x+3=0,解得x=3,当k≠0时,方程kx2﹣x+3=0是一元二次方程,根据题意可得:△=1﹣4k×3≥0,解得k≤,k≠0,综上k≤,故选:B.8.(3分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.2018【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)+21=0,设t=x﹣1得到at2+bt+2=0,利用at2+bt+2=0有一个根为t=2019得到x﹣1=2019,从而可判断一元二次方程a(x ﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,则x﹣1=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故选:B.9.(3分)一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k 的图象经过一、二、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项正确;C、∵由反比例函数的图象在二、四象限可知,k<0,∴一次函数y=﹣kx+k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项错误.故选:B.10.(3分)如图,在▱ABCD中,点E、F分别在AD和AB上,依次连接EB、EC、FC、FD,阴影部分面积分别为S1,S2,S3,S4,已知S1=3,S2=15,S3=4,则S4的值是()A.8B.14C.16D.22【分析】阴影部分S2是三角形CDF与三角形CBE的公共部分,而S1,S4,S3这三块是平行四边形中没有被三角形CDF与三角形CBE盖住的部分,故△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,而△CDF与△CBE的面积都是平行四边形ABCD面积的一半,据此求得S4的值.【解答】解:设平行四边形的面积为S,则S△CBE=S△CDF=S,由图形可知,△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,∴S=S△CBE+S△CDF+3+S4+4﹣15,即S=S+S+3+S4+4﹣15,解得S4=8,故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)化简:=+.【分析】把分子分母都乘以+,然后利用平方差公式计算.【解答】解:原式==.故答案为+.12.(4分)若n边形的每一个外角都等于30°,则n=12.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数n.【解答】解:多边形的边数n:360°÷30°=12,则n=12.故答案为:12.13.(4分)一组数据x1,x2,x3,…,x n的平均数为5,则数据x1+5,x2+5,x3+5,…,x n+5的平均数是10.【分析】根据平均数的性质知,要求x1+5,x2+5,x3+5,…,x n+5的平均数,只要把数x1,x2,x3,…,x n的和表示出即可.【解答】解:∵x1,x2,x3,…,x n的平均数为5∴x1+x2+x3+…+x n=5n,∴x1+5,x2+5,x3+5,…,x n+5的平均数为:=(x1+5+x2+5+x3+5+…+x n+5)÷n=(5n+5n)÷n=10,故答案为:10.14.(4分)在▱ABCD中,∠A的平分线分BC成4cm和3cm的两条线段,则▱ABCD的周长为22cm或20cm.【分析】∠A的平分线分BC成4cm和3cm的两条线段,设∠A的平分线交BC于E点,有两种可能,BE=4或3,证明△ABE是等腰三角形,分别求周长.【解答】解:设∠A的平分线交BC于E点,∵AD∥BC,∴∠BEA=∠DAE,又∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.而BC=3+4=7.①当BE=4时,AB=BE=4,▱ABCD的周长=2×(AB+BC)=2×(4+7)=22;②当BE=3时,AB=BE=3,▱ABCD的周长=2×(AB+BC)=2×(3+7)=20.所以▱ABCD的周长为22cm或20cm.故答案为22cm或20cm.15.(4分)直线y=ax(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为﹣6.【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1•y1=x2•y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点,∴x1•y1=x2•y2=3,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故答案为:﹣6.16.(4分)如图,反比例函数y=(x<0),△OAB和△BCD均为等腰直角三角形,点D 在反比例函数图象上,若S△OAB﹣S△BCD=10,则k=﹣20.【分析】根据题意列式表示出D点的坐标,然后在根据k的几何意义即可求出答案.【解答】解:设AO=a,CD=b,∵△OAB和△BCD均为等腰直角三角形,∴AO=AB=a,BO=a,CD=BC=b,DB=b,∴D(﹣a﹣b,a﹣b),∵点D在反比例函数图象上,∴(﹣a﹣b)(a﹣b)=k,即b2﹣a2=k,又∵S△OAB﹣S△BCD=10,即,∴﹣k=20,∴k=﹣20.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自已能写出的答案写出一部分也可以.17.(6分)计算下列各式:(1)﹣3+×;(2)(﹣)2+.【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=6﹣6+=;(2)原式=2﹣2+3+2=5.18.(8分)解方程:(1)x2﹣8x﹣9=0;(2)2x(x﹣3)+x=3.【分析】(1)方程利用因式分解法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣9)(x+1)=0,可得x﹣9=0或x+1=0,解得:x1=9,x2=﹣1;(2)移项得:2x(x﹣3)+(x﹣3)=0,因式分解得:(x﹣3)(2x+1)=0,可得x﹣3=0或2x+1=0,解得:x1=3,x2=﹣.19.(8分)如图,▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.【分析】(1)先证明∠B=∠EAD,然后利用SAS可进行全等的证明;(2)证明△ABE为等边三角形,可得∠BAE=60°,求出∠BAC的度数,即可得∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS).(2)解:∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=60°+25°=85°,∵△ABC≌△EAD,∴∠AED=∠BAC=85°.20.(10分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=60,b=68,c=70.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.【分析】(1)利用中位数的定义确定a、c的值,根据平均数的定义计算出b的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【解答】解:(1)甲组学生成绩的中位数为=60,即a=60;乙组学生成绩的平均数为(50+3×60+4×70+80+90)=68;乙组学生成绩的中位数为=70,即b=68,c=70;(2)选择乙组.理由如下:乙组学生成绩的方差为[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=1>0,进而可证出方程有两个不相等的实数根;(2)利用因式分解法可求出AB,AC的长,分BC为直角边及BC为斜边两种情况,利用勾股定理可得出关于k的一元一次方程或一元二次方程,解之即可得出k值,取其正值(利用三角形的三边关系判定其是否构成三角形)即可得出结论.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.22.(12分)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y1=的图象上.一次函数y2=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求反比例函数和一次函数的解析式;(2)连结OA和OB,求△OAB的面积;(3)根据图象直接写出y1>y2时,x的取值范围.【分析】(1)只需把点A的坐标代入一次函数和反比例函数的解析式,就可解决问题;(2)只需求出直线AB与y轴的交点,然后运用割补法就可解决问题;(3)观察函数图象即可求解.【解答】解:(1)∵点A(2,5)是直线y=x+b与反比例函数y=的图象的一个交点,∴5=2+b,k=2×5=10,∴b=3,即k和b的值分别为10、3,故反比例函数和一次函数的解析式分别为y1=和y2=x+3;(2)解方程组,得,∴点B(﹣5,﹣2).∵点C是直线y=x+3与y轴的交点,∴点C(0,3),∴S△OAB=S△OAC+S△OBC=×3×2+×3×5=,即△OAB的面积为;(3)观察函数图象可知,y1>y2时,x的取值范围为:x<﹣5或0<x<2.23.(12分)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s 的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A 出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,△APQ的面积;(3)当△APQ的面积是平行四边形ABCD面积的时,求t的值.【分析】(1)过点B作BE⊥CD于点E,由30°角所对的直角边等于斜边的一半,得出平行四边形的高,再按底乘以高,即可得解;(2)过点Q作QM⊥AP,分别计算出t=0.5s时,AP,AQ和QM的长,则按三角形面积公式计算即可;(3)分点P在线段AB上,点Q在线段AD上和点P在线段BC上,点Q在线段CD上,两种情况计算即可.【解答】解:(1)平行四边形ABCD中,AB=4cm,AD=2cm∴CD=AB=4cm,BC=AD=2cm如图,过点B作BE⊥CD于点E,∵∠C=30°∴BE=BC=1cm∴平行四边形ABCD的面积为:CD×BE=4×1=4(cm2)答:平行四边形ABCD的面积为4cm2.(2)当t=0.5s时,AP=2×0.5=1cm,AQ=1×0.5=0.5cm如图,过点Q作QM⊥AP∵四边形ABCD为平行四边形,∴∠A=∠C∵∠C=30°∴∠A=30°∴QM=AQ=×0.5=(cm)∴△APQ的面积为:×AP×QM=×1×=(cm2)答:当t=0.5s时,△APQ的面积为(cm2).(3)∵由(1)知平行四边形ABCD的面积为4cm2.∴当△APQ的面积是平行四边形ABCD面积的时,△APQ的面积为:4×=(cm2)当点P在线段AB上运动t秒时,点Q在AD上运动t秒,AP=2tcm,AQ=tcm,高为=cm∴×2t×=∴t=﹣(舍)或t=∴t=时符合题意;当点P运动到线段BC上时,且运动时间为t秒时,点Q也运动到线段CD上,如图,过点P作MN垂直CD于点M,垂直于AB延长线于点N∵四边形ABCD为平行四边形,∠C=30°,∴AB∥CD∴∠PBN=∠C=30°PN=PB=(2t﹣4)=(t﹣2)(cm),PM=1﹣(t﹣2)=(3﹣t)(cm)S△APQ=4﹣×4×(t﹣2)﹣×[4﹣(t﹣2)]×[1﹣(t﹣2)]﹣(t﹣2)×1=∴4﹣2t+4﹣(6﹣t)(3﹣t)﹣+1=化简得:t2﹣4t+3=0∴(t﹣1)(t﹣3)=0∴t=1(不符合题意,舍)或t=3当t=3时,点P位于点C处,点Q位于线段CD上,符合题意.综上,t的值为或3.1、三人行,必有我师。

人教版2020-2021学年初二数学下学期期中检测题 (含答案)

人教版2020-2021学年初二数学下学期期中检测题 (含答案)

2020-2021学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3分)计算×2=.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子有意义,则x的取值范围是.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.3610.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.1011.(4分)下列计算中,正确的是()A.B.C.D.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18三、解答题(本大题共9小题,共70分)15.(6分)计算:16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.19.(7分)先化简,再求值:,其中a=﹣1.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.参考答案一、填空题1.(3分)计算×2=4.解:×2=2×2=4.故答案为:4.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.解:由勾股定理得,斜边长==5,故答案为:5.3.(3分)要使式子有意义,则x的取值范围是x≥﹣5.解:因为式子有意义,则x的取值范围是x≥﹣5.故答案为:x≥﹣5.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为4.解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4,故答案为:4.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是10m.解:如图,作BE⊥OC于点E,由题意得:AD=BE=3m,AB=DE=2m,∵DC=6m,∴EC=4m,∴由勾股定理得:BC==5(m),∴大树的高度为5+5=10(m),故答案为:10m.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为或.解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=AC=2,BO=BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF===;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF===,综上所述,BF长为或.故答案为:或.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.解:A、是最简二次根式;B、==,被开方数含分母,不是最简二次根式;C、==2,被开方数含能开得尽方的因数,不是最简二次根式;D、=,被开方数含分母,不是最简二次根式;故选:A.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=AC,BO=DO=BD=3,AC⊥BD,∴AO===4,∴AC=8,∴菱形ABCD的面积=×AC×BD=×6×8=24,故选:B.10.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.10解:∵在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,∴AC=2BD=2×5=10,故选:D.11.(4分)下列计算中,正确的是()A.B.C.D.解:(A)原式=3,故A错误.(B)原式==3,故B错误.(D)原式=×=2,故D错误.故选:C.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°解:∵CE=CA,∴∠E=∠CAE,∵四边形ABCD是矩形,∴∠B=90°,∴∠ACB=90°﹣∠BAC=90°﹣52°=38°,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=19°;故选:B.14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18解:∵a=2+,b=2﹣,∴a+b=4,ab=4﹣3=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)计算:解:原式=2+1﹣+8=+9.16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)解:由勾股定理得:BC=(米);60÷4=15米/秒=54千米/小时<60千米/小时,所以不超速了.17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠FCE,∠F=∠BAE,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∵AB=DC,∴DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.解:∵AB=1,AD=,BD=2,∴AB2+AD2=BD2,∴∠DAB=90°,∵∠ABC+∠ADC=180°,∴∠C=90°∴BC===,∴四边形ABCD的面积=×AB×AD+×CD×CB=×1×+××=1+.19.(7分)先化简,再求值:,其中a=﹣1.解:===,当a=﹣1时,原式==.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.解:设CE=x,则DE=20﹣x,由勾股定理得:在Rt△ACE中,AE2=AC2+CE2=82+x2,在Rt△BDE中,BE2=BD2+DE2=142+(20﹣x)2,由题意可知:AE=BE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距C点13.3km,即CE=13.3km.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5,由(1)得:四边形ABCD是矩形,∴∠ABC=90°,AC=2OA=10,∴BC===5.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.解:(1)化简:,观察已知等式可知:原式=﹣;(2)因为,所以a(﹣1)+b(+1)=2﹣1,(a+b)﹣(a﹣b)=2﹣1,所以a+b=2,a﹣b=1,答:a+b的值为2.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS);(2)解:连接AC,BD交于点O,则AC⊥BD,∵菱形ABCD中,∠ABC=60°,AB=10,∴∠ABD=30°,AC=10,∴BO=5,∴BD=10,∴菱形ABCD的面积为==50;(3)解:因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时,∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵∠ABC=60°,AB=10,∴BP=2AB=20.②当∠CEP=90°时,∵△ABE≌△CBE,∴∠AEB=∠CEB=45°,∴AO=OE=AB=5,∴OB=OD=5,∴ED=5﹣5,BE=5+5.∵AD∥BP,∴△ADE∽△PBE,∴,∴,∴BP=10+5.综上所述,当△EPC是直角三角形时,线段BP的长为20或10+5.1、三人行,必有我师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(感悟)解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形进而求解.
问题解决:(2)如图②,在四边形ABCD中,AD∥BC,∠D=90°,M是AB的中点.若CM=6.5,BC+CD+DA=17,求四边形ABCD的面积.
问题拓展:(3)如图③,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,∠DFE与∠AEF的度数满足数量关系:∠DFE=k∠AEF,求k的值.
∴BE∥AC
∴∠EBA+∠BAC=180°
∵∠BAC=90°
∴∠EBA=90°
在△EBA和△CAB中
∴△EBA≌△CAB
∴AE=BC
∵BC=10
∴AD= AE= BC=5
(1)若将上述问题中条件“BC=10”换成“BC=a”,其他条件不变,则可得AD=.
从上得到结论:直角三角形斜边上的中线,等于斜边的一半.
A.8B.6C.4D.3
10.如图,平行四边形ABCD的对角线AC,BD相交于点O,AE平分∠BAD,分别交BC,BD于点E,P,连接OE,∠ADC=60°,AB= BC=2,下列结论:①∠CAD=30°;②BD=2 ;③S四边形ABCD=AB•AC;④OE= AD;⑤S△BOE= .其中正确的个数有()个
A.AD⊥BCB.AD为BC边上的中线
C.AD=BDD.AD平分∠BAC
8.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为().
A. B.
C. D.
9.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()
A.2B.3C.4D.5
二、填空题
11.因式分解:2x﹣x2=_____.
12.如果分式 值为零,那么x=_____.
13.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____边形.
14.关于x的分式方程 +2= 有增根,那么m=_____.
15.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,若∠E=50°,则∠BAO的大小为_____.
16.如果一个四边形的两条对角线长分别为6cm和10cm,那么顺次连接这个四边形各边中点所得新四边形的周长为_____cm.
17.如图,已知▱ABCO的顶点A、C分别在直线x=2和x=7上,O是坐标原点,则对角线OB长的最小值为_____.
18.如图所示,若用2张1号正方形卡片,2张2号正方形卡片,5张3号长方形卡片拼成一个大的长方形,则这个大的长方形的长和宽可分别表示为_____,_____.
19.已知关于x的方程 =3的解是非负数,则m的取值范围是_____.
三、解答题
20.因式分解
(1)9y﹣25x2y
(2)﹣a2bc+2ab2c﹣b3c
21.先化简,再求值:( ﹣x﹣1)÷ ,请从0,1,2中选择一个合适的数作为x的值代入求值.
22.解分式方程: ﹣1=
23.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?
26.问题发现:数学兴趣小组在活动时,老师提出了这样一个问题:如图①,在Rt△ABC中,∠BAC=90°,BC=10,AD是BC边上的中线,求AD的长度.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,则AD= AE
在△ADC和△EDB中
∴△ADC≌△EDB
∴∠DBE=∠DCA,BE=AC
A. B. C. D.
3.下面式子从左边到右边的变形中是因式分解的是()
A. B.
C. D.
4.在平行四边形ABCD中,∠A:∠B:∠C=1:3:1,则∠D的度数是()
A.45°B.60°C.120°D.135°
5.如果把分式 中的x、y的值都扩大5倍,那么分式的值()
A.不变B.扩大5倍
C.缩小为原来的 倍D.以上都不正确
24.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线与BE的延长线相交于点F,连接CF.
(1)求证:四边形CFAD为平行四边形.
(2)若∠BAC=90°,AB=4,BD= ,请求出四边形CFAD的面积.
25.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
6.如图,在平面直角坐标系中,A(0,0)、B(4,0)、D(1,2)为平行四边形的三个顶点,则第四个顶点C的坐标是( )
A.(2,5)B.(4,2)C.(5,2)D.(6,2)
7.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列条件能判定四边形AEDF是菱形的是()
陕西省西安市高新第一中学2020-2021学年八年级下学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列式子: , , , , 中,是分式的有()
A.1B.2C.3D.4
2.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )
(1)如图(1),连接AF、CE.
①四边形AFCE是什么特殊四边形?说明理由;
②求AF的长;
(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
相关文档
最新文档