中考数学试题分类汇编之 有理数试题及答案
专题01:有理数-2021年广东地区中考数学真题与模拟试题精选汇编(解析版)

专题01:有理数-2021年广东地区中考数学真题与模拟试题精选汇编一、单选题1.(2021·广东中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-【答案】A【解析】由AB 的长度结合A 、B 表示的数互为相反数,即可得出A ,B 表示的数 【解答】解:∵0a b +=∴A ,B 两点对应的数互为相反数,∴可设A 表示的数为a ,则B 表示的数为a -, ∵6AB = ∴6a a --=, 解得:3a =-, ∴点A 表示的数为-3, 故选:A .【点评】本题考查了绝对值,相反数的应用,关键是能根据题意得出方程6a a --=. 2.(2021·广东中考真题)下列运算正确的是( ) A .()22--=- B .3333+= C .()22346a b a b =D .(a -2)2=a 2-4【答案】C【解析】利用绝对值符号化简可判断A ,利用同类项定义与合并同类项法则可判断B ,利用积的乘方运算法则可判断C ,利用完全平方公式可判断D .【解答】A . ()222--=≠-,选项A 计算不正确;B . 333333≠,选项B 计算不正确;C . ()223223246a b a b a b ⨯⨯==,选项C 计算正确;D . ()2222444a a a a -=-+≠-,选项D 计算不正确. 故选择C .【点评】本题考查绝对值化简,同类项、二次根式、积的乘方与完全平方公式等知识,掌握以上知识是解题关键.3.(2021·贵州黔东南苗族侗族自治州·中考真题)实数2021的相反数是( ) A .2021 B .2021- C .12021D .12021-【答案】B【解析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案. 【解答】解:2021的相反数是:2021-. 故选:B .【点评】本题主要考查相反数的定义,正确掌握其概念是解题关键.4.(2021·广东中考真题)若0a -+=,则ab =( )A B .92C .D .9【答案】B【解析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【解答】∵0a -≥0≥,且0a -+=∴0a =0==即0a -=,且320a b -=∴a =b =∴922ab == 故选:B .【点评】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.5.(2021·广东佛山市·九年级一模)数轴上表示﹣6和4的点分别是A 和B ,则线段AB 的长度是( ) A .﹣2 B .2C .﹣10D .10【答案】D【解析】先根据A 、B 两点所表示的数分别为-6和4,得出线段AB 的长为4-(-6),然后进行计算即可. 【解答】解:∵A 、B 两点所表示的数分别为-6和4, ∴线段AB 的长为4-(-6)=10. 故选D .【点评】此题考查了两点间的距离,关键是根据两点在数轴上表示的数,列出算式,此题较简单,是一道基础题.6.(2021·广东广州市·九年级一模)下列算式中,计算正确的是( ) A .2(3)-=﹣3 B .|3﹣π|=3﹣π C .(﹣3ab )2=6a 2b 2 D .3﹣3=127【答案】D【解析】根据二次根式的化简、绝对值的化简、积的乘方以及负整数指数幂进行判断即可; 【解答】A 、()23=3- ,故该选项错误;B 、3=3ππ-- ,故该选项错误;C 、()22239ab a b -= ,故该选项错误; D 、313=27- ,故该选项正确; 故选:D .【点评】本题考查了二次根式的化简、绝对值的化简、积的乘方以及负整数指数幂,正确掌握计算方法是解题的关键.7.(2021·广东九年级二模)﹣|﹣2021|等于( ) A .﹣2021 B .2021C .﹣12021D .12021【答案】A【解析】根据绝对值的性质“负数的绝对值是它的相反数”去绝对值即可. 【解答】由绝对值的性质可知,|﹣2021|=2021, ∴﹣|﹣2021|=﹣2021, 故选:A .【点评】本题考查了绝对值的性质,准确掌握概念法则是解题的关键.8.(2021·广东惠州市·九年级二模)实数,a b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||b a <B .a b -<C .0a b +>D .||a b >【答案】D【解析】首先根据数轴,写出a ,b 的取值范围,然后根据四个选项进行逐个判断即可得到答案; 【解答】解:解:根据数轴得到,-4<a <-3,2<b <3, ∵-4<a <-3,2<b <3,∴||b a >,故A 错误;∵-4<a <-3,2<b <3,∴a b ->,故B 错误; ∵-4<a <-3,2<b <3,∴0a b +<,故C 错误; ∵-4<a <-3,2<b <3,∴||a b >,故D 正确. 故选:D .【点评】本题主要考查实数与数轴以及实数的大小比较,熟练实数相关知识点是解答此题的关键. 9.(2021·广东深圳市·九年级其他模拟)在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ). A .3- B .2- C .1-D .2【答案】B【解析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【解答】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1. 因为CO =BO ,所以|a -1| =3, 解得a =-2或4, ∵a <0, ∴a =-2. 故选B .【点评】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键. 10.(2021·广东广州市·九年级二模)下列四个数中,最大的数是( ) A .1 B .0 C .|2|- D .-3【答案】C【解析】根据理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数可得答案. 【解答】最大的数是|-2|=2, 故选C .【点评】本题考查了有理数的比较大小,关键是掌握理数大小比较的法则.二、填空题11.(2021·广东惠州市·|1|0b -=,则2()a b +=______.【答案】4【解析】根据算术平方根的非负数性质以及绝对值的非负数的性质求出a 、b 的值,再代入所求式子计算即可.【解答】解:|1|0b -=,∴10a bb-=⎧⎨-=⎩,解得11 ab=⎧⎨=⎩,22()24a b∴+==.故答案为:4.【点评】本题考查了非负数的性质,包括绝对值和算术平方根的非负性,注意:互为相反数的两个数的和为0.12.(2021·广东佛山市·九年级一模)已知(a﹣3)2+|b﹣4|=0,则a的值是_____.【答案】5【解析】根据非负数性质求出a与b的值,然后将a与b代入原式即可求出答案.【解答】解:由题意可知:a﹣3=0,b﹣4=0,∴a=3,b=4,∴a=3+2=5,故答案为:5.【点评】本题考查了实数的运算,解题的关键是根据几个非负数和为0,则这几个非负数均为0,正确求出a与b的值.13.(2021·广东佛山市·九年级二模)如果水位升高2m时,水位变化记作2m+,那么水位下降3m时,水位变化记作__________m.【答案】3-【解析】根据正数和负数表示相反意义的量,水位上升记为正,可得水位下降的表示方法.【解答】如果水位升高2m时,水位变化记作+2m,那么水位下降3m时,水位变化记作:-3m,故答案为:-3.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.14.(2021·广东惠州市·九年级一模)若|a,则a2-2b=______.【答案】-2【解析】首先根据非负数的性质,得|a-2|=0,由此即可求出a、b的值,再代入所求代数式中解答即可.【解答】解:∵,∴a-2=0,b-3=0,∴a=2,b=3,∴a2-2b=-2.故结果为:-2.【点评】此题主要考查非负数的性质,解题时注意题目中隐藏条件,掌握绝对值,平方根的非负性. 15.(2021·广东肇庆市·九年级一模)若a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值是1,则2()2021a b cd m +-+的值是__________.【答案】2020;【解析】根据题意得到20,1,1a b cd m +===,代入计算即可. 【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值是1, ∴0,1,1a b cd m +===±, ∴21m =,∴2()2021a b cd m +-+=0-1+2021=2020, 故答案为:2020.【点评】此题考查已知字母的值求代数式的值,相反数的定义,倒数的定义,绝对值的性质,正确得到0,1,1a b cd m +===±是解题的关键.16.(2021·东莞外国语学校九年级一模)若()2210a b -++=,则3a b +=_________. 【答案】1【解析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 【解答】解:∵()220a -≥,10b +≥且相加得零, ∴20a -=,10b +=, 解得2a =,1b =-,所以,()3321211a b +=+-=-=. 故答案为:1.【点评】本题考查了非负数的性质,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.(2021·广东九年级其他模拟)若x ,y 为实数,且|2x +y0,则x y 的值是_____.【答案】2【解析】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. 【解答】解:根据题意得:2010x y y +=⎧⎨+=⎩,解得:121x y ⎧=⎪⎨⎪=-⎩,则x y =-11()2=2故答案是:2【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,掌握负整数指数幂是解决本题的关键.18.(2021·广东江门市·九年级一模)若2a ++(b ﹣3)2=0,则a b =_____. 【答案】-8【解析】根据绝对值的非负性,平方的非负性求出a=-2,b=3,再代入计算. 【解答】∵2a ++(b ﹣3)2=0,且2a 20,(3)0b +≥-≥, ∴a+2=0,b-3=0, ∴a=-2,b=3, ∴a b =(-2)3=-8, 故答案为:-8.【点评】此题考查绝对值的非负性,平方的非负性,有理数的乘方运算.19.(2021·阳江市阳东区大八镇大八初级中学九年级一模)已知a 、b 满足(a ﹣1)2,则a+b=_____.【答案】﹣1【解析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【解答】∵(a ﹣1)2, ∴a=1,b=﹣2, ∴a+b=﹣1, 故答案为﹣1.【点评】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.20.(2021·广东九年级一模)若x ,y 为实数,且|x ﹣2|+(y+1)2=0的值是__.【解答】解:由题意得:x -2=0,y +1=0,∴x =2,y =-1,== 点睛:本题考查了非负数的性质:几个非负数的和为0,则每一个非负数都是0. 三、解答题21.(2021·广东惠州市·九年级一模)计算:0113tan30(4)()2|2π-︒--++.【答案】3.【解析】直接利用特殊角的三角函数值以及绝对值的性质和负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式3122=-++122=++-3=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(2021·广东阳江市·九年级一模)计算:21|12sin 45(3.14)2π-︒⎛⎫--+-- ⎪⎝⎭. 【答案】4-【解析】根据绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂进行运算即可.【解答】21|12sin 45(3.14)2π-︒⎛⎫--+-- ⎪⎝⎭12142=-⨯+-114=--4=-【点评】本题考查了绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂,熟知以上运算是解题的关键.23.(2021·东莞市东莞中学初中部九年级一模)计算:011(2021)1()2cos 453π--++-︒. 【答案】3【解析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=11322++-⨯113=+=3.【点评】本题考查零指数幂与负整指数幂、化简绝对值、余弦等知识,是重要考点,难度较易,掌握相关知识是解题关键.24.(2021·阳江市阳东区大八镇大八初级中学九年级一模)计算:202001(1)2sin 302-+-+︒-. 【答案】32【解析】根据绝对值的性质、有理数的乘方、特殊的三角函数值、零指数幂化简计算即可. 【解答】解:原式=1112122++⨯- =32. 【点评】本题考查了含绝对值、有理数乘方、特殊三角函数值、零指数幂的混合运算;掌握好相关的基础知识是解决本题的关键.25.(2021·广东惠州市·0o(2020)3tan 301π--.【答案】【解析】根据二次根式,零指数幂,特殊三角函数值,绝对值的运算法则计算即可.0o (2020)3tan 301π--+131-【点评】本题考查了二次根式,零指数幂,特殊三角函数值,绝对值,掌握运算法则是解题关键. 26.(2021·广东九年级二模)若a,b,c 为△ABC 的三边长 (1)化简:-+2+-||a b c a b c b a c -+---(2)若a,b ()220b -=,且c 是整数,求c 的值. 【答案】(1)2a ;(2)1<c<5.【解析】(1)由a ,b ,c 为三角形ABC 的三边,利用三角形的两边之和大于第三边列出关系式,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.(2)根据非负数的性质列式求出a 、b ,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求解即可.【解答】(1)∵a ,b ,c 为△ABC 的三边, ∴a+b>c ,即−a−b+c<0,a+c>b ,即a−b+c>0,b−a−c<0,则|−a−b+c|+2|a−b+c|−|b−a−c|=a+b−c+2(a−b+c)+b−a−c=a+b−c+2a−2b+2c+b−a−c=2a ; (2)由题意得,a−3=0,b−2=0, 解得a=3,b=2, ∵3−2=1,3+2=5, ∴1<c<5.【点评】此题考查二次根式的性质,绝对值,三角形三边关系的应用,解题关键在于利用两边之和大于第三边.。
浙江中考数学备考专题有理数、无理数与实数含参考答案(精选5套)

2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共36分)1.x是最大的负整数,y是最小的正整数,z是绝对值最小的数,则x−y+z的值是().A.−2B.−1C.0D.22.大于-2.5且小于3.5的整数之和为().A.-3B.2C.0D.33.下列说法中,正确的是().A.两个负数的差一定是负数B.只有0的绝对值等于它本身C.有理数可以分为正有理数和负有理数D.只有0的相反数等于它本身4.下列4个式子,计算结果最小的是()A.−5+(−12)B.−5−(−12)C.−5×(−12)D.−5÷(−1 2)5.用四舍五入法,把4.76精确到十分位,取得的近似数是()A.5B.4.7C.4.8D.4.77 6.下列说法中正确的是()A.正数都带“+”号B.不带“+”号的数都是负数C.负数一定带“−”号D.带“−”号的数都是负数7.下列说法中正确的个数有()①最大的负整数是−1;②相反数是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示−a的点一定在原点的左边;⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A.1个B.2个C.3个D.4个8.如图,a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,−a,b,−b按照从大到小的顺序排列,正确的是()A.b>−a>a>−b B.b>a>−a>−bC.−a>b>a>−b D.−a>−b>a>b9.已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5 10.7个有理数相乘的积是负数,那么其中负因数的个数最多有()A.2种可能B.3种可能C.4种可能D.5种可能11.下列对于式子(−3)2的说法,错误的是()A.指数是2B.底数是−3C.幂为−3D.表示2个−3相乘12.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3B.3,3C.2,4D.3,4二、填空题(每题3分,共18分)13.绝对值大于2且不大于4的非负整数有.14.﹣123的倒数等于.15.某平台进行“天宫课堂”中国空间站全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000=.16.若|a-1|与|b+2|互为相反数,则a+b-12的值为.17.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c.18.定义运算a∗b={a b(a≤b,a≠0)b a(a>b,a≠0),若(m−1)∗(m−3)=1,则m的值为.三、计算题(共8分)19.计算(1)(−134)−(+613)−2.25+103;(2)214×(−67)÷(12−2);(3)(−34+56−712)÷(−124);(4)−14−16×[2−(−3)2].四、解答题(共5题,共35分)20.把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③﹣13,④0.618,⑤﹣√16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{ ……};分数集合:{ ……};无理数集合:{ ……}.21.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,−(−1),−1.5,−|−2|,−312.22.如果a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2.那么代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是多少?23.暑假《孤注一掷》成为了群众观影的首选,某市7月31日该电影首映日的售票量为1.1万张,8月1日到8月7日售票量的变化如下表(正号表示售票量比前一天多,负号表示售票量比前一天少):请根据以上信息,回答下列问题:(1)8月2日的售票量为多少万张?(2)8月7日与7月31日相比较,哪一天的售票量多?多多少万张?(3)若平均每张票价为50元,则8月1日到8月7日该市销售《孤注一掷》电影票共收入多少万元?24.2022年天猫平台“双十一”促销活动如火如荼地进行.小明发现天猫平台甲、乙、丙三家店铺在销售同一款标价均为30元的杯子,但三家的促销方式不同,具体优惠信息如下:(1)若小明想买25个该款杯子,请你帮小明分别计算一下甲、乙、丙三家店铺优惠后的实际价格,再挑选哪家店铺购买更优惠.(2)若小明想从丙店铺购买n个(n>100)该款杯子,请用含n的代数式表示优惠后购买的总价.(3)若小明想花费3000元在丙店铺来购买该款杯子,且恰好用完,则他能买多少个该款杯子?(注:假设小明均一次性购买)五、实践探究题(共3题,共23分)25.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5=.(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+⋯+a100的值.26.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?27.小江同学注意到妈妈手机中的电费短信(如下左图),对其中的数据产生了浓厚的兴趣,谷85度是什么意思电费是如何计算的?第一档与第二档又有什么关系?表1:宁波市居民生活用电标准(部分修改)【解读信息】通过互联网查询后获得上表(如表1).小江家采用峰谷电价计费,谷时用电量为85度,那么峰时用电量就是227−85=142度,由于小江家年用电量处在第一档,故9月份电费为:0.568×142+0.288×85=105.136≈105.14.第一档年用电量的上限为2760度,所以截至9月底小江家已经用电2760-581=2179度.不难发现,第二档所有电价均比第一档提高0.05元/度,第三档所有电价均比第一档提高0.3元/度.【理解信息】(1)若采用普通电价计费,小江家九月份的电费为元.(精确到0.01)(2)若采用峰谷电价计费,假设某月谷时用电量与月用电量的比值为m,那么处在第一档的1度电的电费可以表示成元.(用含有m的代数式表示)(3)【重构信息】12月份,小江家谷时用电量与月用电量的比值为0.2.请根据上述对话完成下列问题:①通过计算判断:截至12月底小江家的年用电量是否仍处于第一档?②12月份谁家的用电量多,多了多少?答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】C 13.【答案】-3,-4 14.【答案】﹣3515.【答案】3.79×106 16.【答案】−3217.【答案】2 18.【答案】1或419.【答案】(1)解:原式=(−134−214)+(−613+313)=−4−3=−7;(2)解:原式=94×(−67)÷(−32)=94×(−67)×(−23)=94×67×23=97; (3)解:原式=(−34+56−712)×(−24)=−34×(−24)+56×(−24)−712×(−24) =18−20+14=12;(4)解:原式=−1−16×[2−9]=−1−16×(−7)=−1+76=16.20.【答案】解:整数有:⑤﹣√16=﹣4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③﹣13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1)21.【答案】解:如图所示,,由图可知,−312⟨−|−2|<−1.5<−(−1)<3.22.【答案】解:∵a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2,∴a+b=0,cd=1,y+1=0,x−1=2或x−1=−2,解得y=−1,x=3或x=−1,当x=3时,原式=0+13+(−2)×(−1)=0+13+2=213;当x=−1时,原式=0+1−1+(−2)×(−1)=−1+2=1;综上,代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是213或1.23.【答案】(1)解:1.1+0.5+0.1=1.7(万张)(2)解:8月1日:1.1+0.5=1.6(万张);8月2日:1.6+0.1=1.7(万张);8月3日:1.7-0.3=1.4(万张);8月4日:1.4-0.2=1.2(万张);8月5日:1.2+0.4=1.6(万张);8月6日:1.6-0.2=1.4(万张);8月7日:1.4+0.1=1.5(万张).1.5-1.1=0.4(万张)答:8月7日的售票量多,多0.4万张.(3)解:1.6+1.7+1.4+1.2+1.6+1.4+1.5=10.4(万张)50x10.4=520(万元)答:共收入520万元24.【答案】(1)解:甲:30×25×90%−30×3=585(元)乙:30×25−60−50×2=590(元)丙:30×10+30×90%×15=705(元)因为585<590<705,所以挑选甲店铺更优惠.(2)解:30×10+30×90%×(50−10)+30×80%×(100−50)+30×70%×(n−100)=21n+480(元)(3)解:假设花费3000元以标价30元来购买该款杯子,则能买3000÷30=100个,那么优惠后至少能买100个.由(2)可知,令21n+480=3000,n=120答:他能买120个该款杯子.25.【答案】(1)19×11=12(19−111)(2)1(2n−1)(2n+1);12(12n−1−12n+1)(3)解:a1+a2+a3+⋯+a100=12(1−13)+12(13−15)+12(15−17)+...+12(1199−1201) =12×(1−13+13−15+15−17+...+1199−1201)=12×(1−1201) =12×200201=100201.26.【答案】(1)2或10(2)解:设点P表示的数为y,分四种情况:①P为【A,B】的好点.由题意,得y−(−20)=2(40−y),解得y=20,t=(40−20)÷2=10(秒);②A为【B,P】的好点.由题意,得40−(−20)=2[y−(−20)],解得y=10,t=(40−10)÷2=15(秒);③P为【B,A】的好点.由题意,得40−y=2[y−(−20)],解得y=0,t=(40−0)÷2=20(秒);④A为【P,B】的好点由题意得y−(−20)=2[40−(−20)]解得y=100(舍).⑤B为【A,P】的好点30=2t,t=15.综上可知,当t为10秒、15秒或20秒时,P、A和B中恰有一个点为其余两点的好点.故答案为:2或10.27.【答案】(1)122.13(2)(0.568-0.28m)(3)解:①假设小江家12月的用电量未超过第一档,那么该月最多支付电费:281×(0.568−0.28×0.2)=143.872(元),∵143.872<154.55,∴小江家12月份的用电量必定超过第一档;②设小江家12月份用电量为x度,143.872+0.8×0.618(x−281)+0.2×0.338(x−281)=154.55,143.872+0.4944x−138.9264+0.0676x−18.9956=154.55解得x=300,300−275=25(度),即小江家用电量多,比小北家多用25度.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题1.2022的倒数是()A.2022B.-2022C.12022D.−1 20222.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(午位:dBm),则下列信号最强的是()A.-50B.-60C.-70D.-80 3.计算结果等于2的是()A.|−2|B.−|2|C.2−1D.(−2)0 4.(−2)2+22=()A.0B.2C.4D.8 5.如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.2 6.据中国宁波网消息:2023年一季度宁波全市实现地区生产总值380180000000元,同比增长4.5%.数380180000000用科学记数法表示为()A.0.38018×1012B.3.8018×1011C.3.8018×1010D.38.018×10107.已知数轴上的点A,B分别表示数a,b,其中−1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.8.已知M=20222,N=2021×2023,则M与N的大小关系是()A.M>N B.M<N C.M=N D.不能确定9.已知方程组{a−2b=63a−b=m中,a,b互为相反数,则m的值是()A.4B.﹣4C.0D.8 10.在某次演讲比赛中,五位评委要给选手圆圆打分,得到互不相等的五个分数。
最新初中数学试卷分类汇编有理数解答题(附答案)

最新初中数学试卷分类汇编有理数解答题(附答案)一、解答题1.已知点在数轴上对应的数为,点对应的数为,且 G为线段上一点,两点分别从点沿方向同时运动,设点的运动速度为点的运动速度为,运动时间为 .(1)点对应的数为________,点对应的数为________;(2)若,试求为多少时,两点的距离为;(3)若,点为数轴上任意一点,且,请直接写出的值. 2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.4.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.5.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.6.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。
中考数学复习《有理数》专项练习题-带有答案

中考数学复习《有理数》专项练习题-带有答案一、选择题1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.−a可以表示正数D.0既是正数也是负数2.在数3 0 −π215110.2121121112 -8.24中,有理数有()A.1个B.2个C.3个D.4个3.2023年9月23日,第19届亚运会在杭州开幕.据报道,开幕式的跨媒体阅读播放量达到503000000次,将503000000用科学记数法表示为()A.503×106B.5.03×108C.5.03×109D.0.503×1094.下列各式中不成立的是().A.|−5|=5B.−|5|=−|−5|C.−|−5|=5D.−(−5)=55.如图,25的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点G和点H D.点H和点I6.若|a﹣4|=|a|+|﹣4|,则a的值是()A.任意有理数B.任意一个非负数C.任意一个非正数D.任意一个负数7.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b−a<0D.ab>08.计算(−2)2022+(−2)2023的结果是()A.−2B.2 C.−22022D.22023二、填空题9.绝对值小于5且大于2的整数是.10.−14−13(填<或>).11.在-3.6 -10% 227π 0 2这六个数中,非负有理数有个.12.若p,q互为倒数,m,n互为相反数,则pq-m-n-313= 13.若|m−2023|+(n+2024)2=0,则(m+n)2023=三、解答题14.计算题:(1)(−7)−(+5)+(−4)−(−10)(2)(12−59+712)×(−36)(3)16÷(−2)3−(−18)×(−4)(4)−13−(1−0.5)×13×[2−(−3)2]15.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来﹣(﹣3) |﹣2| 0 (﹣1)3 -3.5 −85−2372.16.x和y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值.17.某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:与标准质量的差/克−3−2−1.50 1 1.5 2.5袋数 1 4 3 4 3 2 3(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?18.四个有理数A、B、C、D,其中,与6相加得0的数是A,C是13的倒数.(1)如果A+C=2B,求B的值:(2)如果A×B= D,求D的值:(3)计算:(A-D)×C÷B.参考答案1.C2.D3.B4.C5.C6.C7.B8.C9.±3,±410.>11.312.−21313.-114.(1)解:(-7)-(+5)+(-4)-(-10)=(-7)+(-5)+(-4)+10=-6(2)解:(12−59+712)×(−36)= 12×(−36)−59×(−36)+712×(−36)=-18+20-21=-19(3)解:16÷(−2)3−(−18 )×(−4)=16÷(-8)- 12=(-2)- 12=-2 12(4)解:−13−(1−0.5)×13×[2−(−3)2]=-1- 12×13×(-7)=-1+ 76= 1615.解:∵−(−3)=3|−2|=2(−1)3=−1;∴在数轴上表示,如图所示:按从小到大的顺序用“<”把这些数连接起来为:−3.5<−85<(−1)3<−23<0<|−2|<−(−3)<72.16.解:∵x与y互为相反数,m与n互为倒数,|a|=1∴x+y=0,mn=1,a=±1∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013=a2﹣(0+1)a+02012+(﹣1)2013=a2﹣a﹣1.当a=1时,a2﹣a﹣1=12﹣1﹣1=﹣1.当a=﹣1时,a2﹣a﹣1=(﹣1)2﹣(﹣1)﹣1=1+1﹣1=1.∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值为1或﹣1.17.(1)解:(−3)×1+(−2)×4+(−1.5)×3+0×4+1×3+1.5×2+2.5×3 =−3−8−4.5+0+3+3+7.5=−2(克)即这批样品的总质量比标准总质量少,少2克;(2)解:200×20−2= 4000−2= 3998(克)3998÷20=199.9(克)即这批样品平均每袋的质量是199.9克.18.(1)解:∵与6相加得0的数是A, C是13的倒数.∴A=-6,C=3∵A+C=2B∴-6+3= 2B∴B=−32(2)解:∵A ×B=D ,且B=−32,A=-6 ∴D=-6×(−32)=9(3)解:∵A=-6,B=−32,C=3, D=9∴(A-D) ×C+B= (-6-9)×3÷(−32)=-15×3×(−23)=30。
初三数学有理数试题答案及解析

初三数学有理数试题答案及解析1.(1)计算:2sin30°+(﹣1)2﹣|2﹣|(2)解方程:x2+2x﹣2=0。
【答案】(1);(2)x1=﹣1+,x2=﹣1﹣【解析】(1)原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程变形后,利用配方法求出解即可。
试题解析:(1)原式=2×+1﹣2+=;(2)方程变形得:x2+2x=2,配方得:x2+2x+1=3,即(x+1)2=3,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣。
【考点】实数的运算;解一元二次方程-配方法;特殊角的三角函数值。
2.分式的值为零,则x的值为()A.3B.﹣3C.±3D.任意实数【答案】A.【解析】根据分式分子为0分母不为0的条件,要使分式的值为0,则必须.故选A.【考点】分式的值为零的条件.3.计算:.【答案】.【解析】针对负整数指数幂,零指数幂,特殊角的三角函数值,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=.【考点】1.实数的运算;2.负整数指数幂;3.零指数幂;4.特殊角的三角函数值;5.绝对值.4.(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.【答案】(1)4;(2)2a+12.【解析】(1)分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据分式混合运算的法则进行计算即可.试题解析:(1)原式=2﹣1+3=4;(2)原式====2a+12.【考点】1.实数的运算2.分式的混合运算3.零指数幂4.负整数指数幂.5.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个【答案】B.【解析】据无理数定义得有,π和是无理数.故选B.【考点】无理数.6.如图,按此规律,第6行最后一个数字是,第行最后一个数是2014.【答案】16, 672【解析】每一行的最后一个数字构成等差数列1,4,7,10…,第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴第6行最后一个数字是3×6﹣2=16;3n﹣2=2014解得n=672.因此第6行最后一个数字是16,第672行最后一个数是2014.故答案为:16,672.【考点】规律型:数字的变化类7. -2的倒数是()A.2B.-2C.D.【答案】C.【解析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以的倒数为. 故选C.【考点】倒数.8.-2的绝对值是()A.2B.-2C.D.-【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.故选A 【考点】绝对值的性质 .9.-2的相反数是( )A.-B.C.-2D.2【答案】D.【解析】根据一个数的相反数就是在这个数前面添上“﹣”号,﹣2的相反数是:﹣(﹣2)=2.故选D.【考点】相反数.10.在-6、-2、0、3这四个数中,最小的数是()A.-6B.-2C.0D.3【答案】A.【解析】∵3>0>-2>﹣6,∴最小的数是﹣6.故选A.【考点】有理数大小比较.11. 2的相反数是【】A.2B.C.D.【答案】B。
2022年中考数学真题分类汇编:有理数

2022年中考数学真题分类汇编:有理数一、单选题(共15题;共45分)1.(3分)(2022·贺州)下列各数中,-1的相反数是()A.-1B.0C.1D.2【答案】C【解析】【解答】解:由相反数的定义可得:-1与1互为相反数.故答案为:C.【分析】根据只有符号不同的两个数互为相反数进行解答.2.(3分)(2022·北部湾)如图,数轴上的点A表示的数是−1,则点A关于原点对称的点表示的数是()A.-2B.0C.1D.2【答案】C【解析】【解答】解:∵数轴上的点A表示的数是−1,∴点A关于原点对称的点表示的数为1.故答案为:C.【分析】由题意可得数轴上的点A表示的数是-1,则点A关于原点对称的点在原点的右侧,且距离原点1个单位长度,据此解答.3.(3分)(2022·海南)为了加快构建清洁低碳、安全高效的能源体系,国家发布《关于促进新时代新能源高质量发展的实施方案》,旨在锚定到2030年我国风电、太阳能发电总装机容量达到1200000000千瓦以上的目标.数据1200000000用科学记数法表示为()A.1.2×1010B.1.2×109C.1.2×108D.12×108【答案】B【解析】【解答】解:1200000000=1.2×109.故答案为:B.【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.4.(3分)(2022·黔东南)下列说法中,正确的是()A.2与-2互为倒数B.2与12互为相反数C.0的相反数是0D.2的绝对值是-2【答案】C【解析】【解答】解:A. 2与-2互为相反数,故答案为:A不正确B. 2与12互为倒数,故答案为:B不正确;C. 0的相反数是0,故答案为:C正确;D. 2的绝对值是2,故答案为:D不正确.故答案为:C.【分析】利用倒数的定义可对A作出判断;利用只有符号不同的两个数互为相反数,可对B作出判断;根据0的相反数是0,可对C作出判断;利用正数的绝对值等于它本身,可对D作出判断.5.(3分)(2022·绥化)化简|−12|,下列结果中,正确的是()A.12B.−12C.2D.-2【答案】A【解析】【解答】解:|−12|=12故答案为:A.【分析】利用绝对值的性质求解即可。
2023年湖南省中考数学真题分类汇编:有理数(含答案)
;2023年湖南省中考数学真题分类汇编:有理数一、选择题1.(2023·常德)3的相反数是( )A.3B.―3C.13D.―132.(2023·邵阳)2023的倒数是( )A.―2023B.2023C.12023D.―120233.(2023·株洲)计算:(―4)×32=( )A.―6B.6C.―8D.8 4.(2023·岳阳)2023的相反数是( )A.12023B.―2023C.2023D.―120235.(2023·衡阳)据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为( )A.7.358×107B.7.358×103C.7358×104D.7.358×106 6.(2023·衡阳)中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作+500元,则支出237元记作( )A.+237元B.―237元C.0元D.―474元7.(2023·怀化)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×1068.(2023·长沙)2022年,长沙市全年地区生产总值约为1400000000000元,比上年增长4.5%.其中数据1400000000000用科学记数法表示为( )A.1.4×1012B.0.14×1013C.1.4×1013D.14×10119.(2023·张家界)12023的相反数是( )A.12023B.―12023C.2023D.―202310.(2023·郴州)―2的倒数是( )A.2B.―12C.―2D.1211.(2023·邵阳)党的二十大报告提出,要坚持以文塑旅、以旅彰文,推进文化和旅游深度融合发展.湖南是文化旅游资源大省,深挖红色文化、非遗文化和乡村文化,推进文旅产业赋能乡村振兴.湖南红色旅游区(点)2022年接待游客约165000000人次,则165000000用科学记数法可表示为( )A.0.165×109B.1.65×108C.1.65×107D.16.5×107二、填空题12.(2023·岳阳)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为 .13.(2023·张家界)“仙境张家界,峰迷全世界”,据统计,2023年“五一”节假日期间,张家界市各大景区共接待游客约864000人次.将数据864000用科学记数法表示为 .14.(2023·常德)联合国2022年11月15日宣布,全世界人口已达80亿.将8000000000用科学记数法表示为 .三、计算题15.(2023·郴州)计算:(12)―1―3tan30°+(π―2023)0+|―2|.16.(2023·邵阳)计算:tan45°+(12)―1+|―2|.四、综合题17.(2023·长沙)我们约定:若关于x的二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2同时满足a2―c1+(b2+b1)2+|c2﹣a1|=0,b1―b22023≠0,则称函数y1与函数y2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x的二次函数y1=2x2+kx+3与y2=m x2+x+n互为“美美与共”函数,求k,m,n的值;(2)对于任意非零实数r,s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,函数y1与y2互为“美美与共”函数.①求函数y2的图像的对称轴;②函数y2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x的二次函数y1=a x2+bx+c与它的“美美与共”函数y2的图像顶点分别为点A,点B,函数y1的图像与x轴交于不同两点C,D,函数y2的图像与x轴交于不同两点E,F.当CD=EF时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】C8.【答案】A9.【答案】B10.【答案】B11.【答案】B12.【答案】3.783×10513.【答案】8.64×10514.【答案】8×10915.【答案】解:原式=2―3×33+1+2=2―1+1+2=4.16.【答案】解:tan45°+(12)―1+|―2|=1+2+2=5.17.【答案】(1)解:由题意可知:a2=c2,a1=c2,b1=―b2≠0,∴m=3,n=2,k=―1.答:k的值为―1,m的值为3,n的值为2.(2)解:①∵点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,∴对称轴为x=r+s2=―2r2,∴s=―3r,∴y2=s x2―2xx+1,∴对称轴为x=――2r2s =rs=―13.答:函数y 2的图像的对称轴为x =―13.②y 2=―3r x 2―2rx +1=―(3x 2+2x)r +1,令3x 2+2x =0,解得x 1=0,x 2=―23,∴过定点(0,1),(―23,1).答:函数y 2的图像过定点(0,1),(―23,1).(3)解:由题意可知y 1=a x 2+bx +c ,y 2=c x 2―bx +a ,∴A(―b 2a ,4ac ―b 24a),B(b 2c ,4ac ―b 24c ),∴CD =b 2―4ac |a|, EF =b 2―4ac 1―1,∵CD =EF 且b 2―4ac >0,∴|a|=|c|;①若a =―c ,则y 1=a x 2+bx ―a ,y 2=―a x 2―bx +a ,要使以A ,B ,C ,D 为顶点的四边形能构成正方形,则△CAD ,△CBD 为等腰直角三角形,∴CD =2|y A |,∴b 2+4a 2|a |=2⋅|―4a 2―b 24a |,∴2b 2+4a 2=b 2+4a 2,∴b 2+4a 2=4,∴S 正=12C D 2=12⋅b 2―4ac a 2=12⋅b 2+4a 2a2=2a 2,∵b 2=4―4a 2>0,∴0<a 2<1,∴S 正>2;②若a =c ,则A 、B 关于y 轴对称,以A ,B ,C ,D 为顶点的四边形不能构成正方形,综上,以A,B,C,D为顶点的四边形能构成正方形,此时S>2.。
初中数学试卷有理数选择题题分类汇编(及答案)
初中数学试卷有理数选择题题分类汇编(及答案)一、选择题1.若a、b、c、d四个数满足,则a、b、c、d四个数的大小关系为()A. a>c>b>dB. b>d>a>cC. d>b>a>cD. c>a>b>d 2.已知a,b,c是三个有理数,它们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得( )A. 2c﹣2bB. ﹣2aC. 2aD. ﹣2b 3.求1+2+22+23+ +22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+ ...+52012的值为()A. 52012﹣1B. 52013﹣1C.D.4.下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线垂直;⑤不相交的两条直线叫做平行线,其中正确的有()A. 1个B. 2个C. 3个D. 4个5.a、b在数轴上的位置如图所示,则等于()A. -b-aB. a-bC. a+bD. -a+b6.已知有理数a,b,c,在数轴上的位置如图,下列结论错误的是()A. |a-b|=a-bB. a+b+c<0C. D. |c|-|a|+|-b|+|-a|=-c-b7.适合|2a+5|+|2a-3|=8的整数a的值有()A. 4个B. 5个C. 7个D. 9个8.有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A. ∣a∣-1B. ∣a∣C. 一aD. a+1 9.若 | | =-,则一定是()A. 非正数B. 正数C. 非负数D. 负数10.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A. 1个B. 2个C. 3个D. 4个11.“幻方”最早记载于春秋时期的《大戴礼》中,现将1、2、3、4、5、7、8、9这8个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.现有如图2所示的“幻方”,则(x-y)m-n的值是()A. -27B. -1C. 8D. 16 12.(-2)2002+(-2)2003结果为( )A. -2B. 0C. -22002D. 以上都不对13.下列说法:①平方等于64的数是8;②若a.b互为相反数,则;③若|-a|=a,则(-a)3的值为负数;④若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为()A. 0个B. 1个C. 2个D. 3个14.已知两数在数轴上的位置如图所示,则化简代数式的结果是()A. 1B.C. 2b+3D. -1 15.不相等的有理数a,b,c在数轴上的对应点分别是A,B,C,如果,那么点BA. 在A,C点的左边B. 在A,C点的右边C. 在A,C点之间D. 上述三种均可能16.计算:1+( 2)+3+( 4)+…+2017+( 2018)的结果是( )A. 0B. 1C. 1009D. 1010 17.2017减去它的,再减去余下的,再减去余下的,…依次类推,一直减到余下的,则最后剩下的数是( )A. B. C. D.18.在1、2、3、…99、100这100个数中,任意加上“+”或“-”,相加后的结果一定是()A. 奇数B. 偶数C. 0D. 不确定19.若,都是不为零的数,则的结果为()A. 3或-3B. 3或-1C. -3或1D. 3或-1或1 20.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【解答】解:令四个分式的分母为1,则有a=2001,b=﹣2000,c=2003,d=﹣2002,则c>a>b>d.故答案为:D【分析】先假设这四个分数的分母为1,从而可得a、b、c、d的值,然后比较大小即可解答.2.C解析:C【解析】【解答】由数轴可知:c b o a,∴a-b0,c-a0,b+c0,∴原式=a-b-(c-a)+b+c,=a-b-c+a+b+c,=2a.故答案为:C.【分析】由数轴可知:c < b < o < a,从而判断绝对值里面每个式子的符号,根据绝对值的性质去绝对值即可得出得出答案.3.C解析: C【解析】【分析】由题意设S=1+5+52+53+ +52012,则5S=5+52+53+…+52012+52013,再把两式相减即可求得结果.【解答】由题意,设S=1+5+52+53+ +52012,则5S=5+52+53+…+52012+52013所以, S=故选C.【点评】解答此类问题的关键是仔细分析所给式子的特征得到规律,再把这个规律应用于解题.4.B解析:B【解析】【解答】①的绝对值是0,不是正数,也不是负数,命题错误;②正确;③对顶角相等,但相等的角不一定是对顶角,命题错误;④正确;⑤在同一平面内,不相交的直线叫做平行线,命题错误.选B【分析】根据绝对值的意义,以及对顶角的性质,垂线的性质即可作出判断5.D解析:D【解析】【解答】根据数轴可得:a-b<0,则 =-a+b.故D符合题意.故答案为:D.【分析】由数轴可知a<0,b>0,且|a|>b,可得a-b<0,再根据负数的绝对值等于它的相反数化简.6.C解析:C【解析】【分析】根据数轴上a,b,c的位置,分别分析可得.【解答】解:由已知可得:|a-b|=a-b;a+b+c<0;-c-b+a>0;|c|-|a|+|-b|+|-a|=-c-a-b+a=-c-b.故答案为:C【分析】根据数轴上a,b,c的位置,得到a-b>0;a+b+c<0;−c−b+ a>0;|c|=-c,|a|=a,|-b|=-b,|-c|=-c,再合并即可.7.A解析: A【解析】【解答】∵|2a+5|+|2a-3|=8,∴,∴,∴整数a的值有:-2,-1,0,1共4个.故答案为:A.【分析】根据绝对值的非负性及有理数加法法则即可得出解不等式组即可求出a的取值范围,再找出这个范围内的整数即可。
最新初中数学试卷有理数解答题题分类汇编(及答案)
最新初中数学试卷有理数解答题题分类汇编(及答案)一、解答题1.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。
而|5|=|5-0|,即|5-0|表示5和0在数轴上对应的两点之间的距离。
类似的,有:|5-3|表示5和3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5和-3在数轴上对应的两点之间的距离。
一般地,点A、B在数轴上分别表示数a和b,那么点A和B之间的距离可表示为|a-b|。
利用以上知识:(1)求代数式|x-1|+|x-2|+|x-3|+…+|x-100|的最小值=________。
(2)求代数式|x-1|+| x-1|+| x-3|+| x-4|的最小值。
2.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.(1)求时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?3.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:6.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒(1)数轴上点B表示的数是________;点P表示的数是________(用含t的代数式表示) (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长。
初中数学试卷有理数解答题题分类汇编(附答案)100
初中数学试卷有理数解答题题分类汇编(附答案)100一、解答题1.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)2.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.3.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是部分①面积的一半,部分③是部分②面积的一半,以此类推(1)阴影部分的面积是多少?(2)受此启发,你能求出1+ 的值吗?4.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.5.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.6.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.7.阅读材料:求的值.解:设将等式两边同时乘以2,得将下式减去上式,得即请你仿照此法计算:(1)(2)8.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.9.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点(点C在线段AB上).例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.(1)数________所表示的点是(M,N)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?10.如图,在数轴上点A表示数a,点B表示数b,a、b满足|a﹣20|+(b+10)2=0,O 是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)t为何值时,BQ=2AQ.(3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=6?若存在,求出所有符合条件的t值,若不存在,请说明理由.11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.12.如图所示(1)A在数轴上所对应的数为﹣2.点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在A、B两点位于第(1)题所在的位置开始,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)当A、B两点位于第(2)题结束所在的位置,如果A点静止不动,B点以每秒2个单位长度沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.13.阅读材料,回答下列问题:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年中考试题-有理数试题及答案一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元B .70.25810⨯元C .62.5810⨯元D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12- C .2- D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106【答案】C6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21 D .-21 【答案】B9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元【答案】A12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -< 【答案】C 13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ). A .-6B .9C .-9D .6【答案】B17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B18.(2009年江苏省)2-的相反数是( )ab 0A .2B .2-C .12D .12-【答案】A19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A .32 B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯D .83.110-⨯解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
【答案】B22.(2009山西省太原市)在数轴上表示2-的点离开原点的距离等于( ) A .2 B .2- C .2± D .4解析:本题考查数轴的有关知识,也是考查绝对值的几何意义,数轴上表示-2的点离开原点的距离等于2,故选A . 【答案】A23.(2009年内蒙古包头)国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( ) A .42610⨯平方米B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米【答案】D【解析】本题考查科学记数法和有效数字,将一个数用科学记数法表示为()10110na a ⨯≤<的形式,其中a 的有效数字就是10na ⨯的有效数字,且n 等于这个数的整数位数减1。
所以25.8万平方米保留两个有效数字为52.610⨯,选D24.(2009年内蒙古包头)27的立方根是( )A .3B .3-C .9D .9- 【答案】A【解析】本题考查立方根的定义,求27的立方根就是求一个数,这个数的立方是27;而3327=,所以27的立方根是3。
25.(2009年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -【答案】A【解析】本题考查了绝对值和二次根式的化简。
我们知道,负数的绝对值等于它的相反数,非负数的绝对值等于它本身;)0(2≥=a a a ,)0(2<-=a a a 。
本题由数轴可看出10<<a ,所以01>-a 。
所以原式=(1-a )+a=1,选A 。
26.(2009年安顺)新建的北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为: A .39110⨯ B .291010⨯C .49.110⨯D .39.110⨯【答案】C27.(2009成都)计算2×(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 【答案】A28.(2009重庆綦江)6的相反数是( ) A .-6 B .6C .16D .16-【答案】A29.(2009年安顺)3的相反数是:A .3B .13-C .13-D .3-【答案】D 30.(2009武汉)今年某市约有102000名应届初中毕业生参加中考.102000用科学记数法表示为( ) A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯【答案】B31.(2009年陕西省)2.1978年,我国国内生产总值是3.645亿元,2007年升至249530亿元,将249530亿元用科学记数法表示为 【 】A .24.953×1013元B .24.953×1012元C .2.4953×1013元D .2.4953×1014元 【答案】C32.(2009年黄冈市)1.8的立方根为( )A .2B .±2C .4D .±4 【答案】A33.(2009武汉)1.有理数12的相反数是( ) A .12-B .12C .2-D .2【答案】A34.(2009年陕西省)1.21-的倒数是【 】A .2B .-2C .21D .21-【答案】B35.(2009年常德市)为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其中234 760 000元用科学记数法可表示为( )(保留三位有效数字).A .2.34×108元B .2.35×108元C .2.35×109 元D .2.34×109元 【答案】B 36.(2009年郴州市)我市免费义务教育已覆盖全市城乡,2008年初中招生人数达到47600人,将数据47600用科学记数法表示为( ) A . 44.7610´B . 54.7610´C . 50.47610´D . 347.610´ 【答案】A37.(2009年郴州市))-5的绝对值是( ) A .5 B .5- C .15 D . 15-【答案】A38.(2009年桂林市、百色市)下面的几个有理数中,最大的数是( ). A .2 B .13 C .-3 D .15- 【答案】A39.(2009年桂林市、百色市)8-的相反数是( ). A .8- B .8 C .18 D .18-【答案】B40.(2009年肇庆市)1.2008 年肇庆市工业总产值突破千亿大关,提前两年完成“十一五”规划预期目标.用科学记数法表示数 1 千亿,正确的是( )A .1000×108B .1000×109C .1011D .1012【答案】C41.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D42.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元43.(2009年达州)下列各数中,最小的数是A.-1B. -2C.0D.1【答案】B44.(2009年达州)下列各数中,最小的数是A.-1B. -2C.0D.1【答案】B45.(2009年新疆乌鲁木齐市)2-的绝对值是( ). A .2-B .2C .12-D .12【答案】B46.(2009年山东青岛市)下列四个数中,其相反数是正整数的是( ). A .3B .13C .2-D .12-【答案】C47.(2009年湖北十堰市)-7的相反数是( ). A .7 B .-7 C .71 D .71- 【答案】A48.(2009年湖北荆州)1在-1,1,0,-2四个实数中,最大的是( ) A .-1 B .1 C .0 D .-2 【答案】B .49.(2009年安徽)2(3)-的值是【 】A .9 B.-9 C .6 D .-6 【答案】A50.(09湖南怀化)2009)1(-的相反数是( )A .1B .1-C .2009D .2009- 【答案】A51.(09湖北宜昌)如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0 【答案】D52.(2009湖北宜昌)2009年国家将为医疗卫生、教育文化等社会事业发展投资1 500亿元.将1 500用科学记数法表示为( ).A .1.5×10-3B . 0.15×103C .15×103D .1.5×103【答案】D53.(09湖北宜昌)如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26% 【答案】C54..(2009年咸宁市)温家宝总理在2009年政府工作报告中提出,今后三年内各级政府拟投入医疗卫生领域的资金将达到8500亿元人民币,用科学记数表表示“8500亿”为( ) A .108510⨯B .108.510⨯C .118.510⨯D .120.8510⨯55.(2009年咸宁市)4-的绝对值是( ) A .4- B .14-C .4D .14【答案】C56.(2009年潍坊)太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字) A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯【答案】A57.(2009年潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )A .1a +B .21a +CD 1【答案】B58.(2009年河北)3(1)-等于( )A .-1B .1C .-3D .3 【答案】A59.(2009年宁德市)未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为( )A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元 【答案】B60.(2009年宁德市)-3的绝对值是( )A .3B .-3C .13D .13-【答案】A61.某市水质监测部门2008年全年共监测水量达28909.6万吨,将数字28909.6用科学计数法(保留两个有效数字)表示为( ).A.2.8×104B.2.9×104C.2.9×105D.2.9×103【答案】B62.(2009年 朝阳)2的倒数的相反数是( ). A.21 B.21- C.2 D.-2 【答案】B 63.(2009年北京市)改革开放以来,我国国内生产总值由1978年的3645亿元增长到2008年的300670亿元。