初中数学竞赛讲座——数论部分7(同余)
数论--同余-第4讲联赛班教师版

1.同余的概念:设m 是一个给定的正整数,把它称为模.如果两个整数,a b 用m 去除所得的余数相同,则称a 与b 对模m 同余,记为()mod a b m ≡.这个符号读作:“a 与b 模m 同余”,如()644mod3≡,()1973mod ≡,()50mod5≡.2.同余这一概念也可用下面两种方式之一来叙述,三种说法是等价的.若|m a b -,则a 与b 对模m 同余; 若a b mt =+(t 为整数),则a 与b 对模m 同余.用符号表示为:()|mod m a b a b mt a b m -⇔=+⇔≡.3.根据同余的定义,容易得到同余的一些性质,最常用的性质有以下几条: 反身性:()mod a a m ≡;对称性:()()mod mod a b m b a m ≡⇒≡; 传递性:()()()mod mod mod a b m a c m b c m ≡⎫⎪⇒≡⎬≡⎪⎭;可加性:()()()mod ()mod mod a b m a c b d m c d m ≡⎫⎪⇒±≡±⎬≡⎪⎭.推论1:()mod a c b c m ±≡±;推论2:()()mod 0mod a b c m a b c m +≡⇒+-≡.可乘性:()()mod mod a b m ac bc m ≡⇒≡(c 为整数). 推论1:()()()mod mod mod a b m ac bd m c d m ≡⎫⎪⇒≡⎬≡⎪⎭.推论2:()()mod mod n n a b m a b m ≡⇒≡(n 为自然数).除法性质:若(mod )ac bc m ≡,且(,)c m d =,则(mod )ma b d≡. 证明:由(,)c m d =可设,c de m df ==,且(,)1e f =,则有 (mod )|ac bc m m ac bc ≡⇒-,即|()|()df a b de f a b e -⇒-由(,)1e f =可知,|()(mod )f a b a b f -⇒≡,即mod m a b d ⎛⎫≡ ⎪⎝⎭.推论:若(mod )ac bc m ≡,且(,)1c m =,则(mod )a b m ≡.第4讲数论1. 若正整数m 和1995对于模6同余,则m 的值可能是 ( )A .25B .26C .27D .28【解析】 199563323=⨯+,故19953(mod6)≡273(mod6)≡,选C .一、四则运算与余数规律【例 1】 求3326(25746)+被50除所得的余数.【解析】33332577(mod50)2577(mod50)≡⇒≡ 2432337491(mod50)71(mod50)71(mod50)77(mod50)≡≡-⇒≡⇒≡⇒≡ 故332577(mod50)≡,从而3325746(746)(mod50)3(mod50)+≡+≡ 于是332626(25746)3(mod50)+≡又552507243730(mod50)37(mod50)≡+≡+≡⇒≡-,故102203(7)491(mod50)31(mod50)≡-≡≡-⇒≡,故 26205153333732129(mod50)++≡≡⨯≡-⨯≡-≡即余数为29.【变式】 设,a b 都是正整数,且a 被7除余数是2,b 被7除余数是5,求24a b +和24a b -被7除的余数. 【解析】 根据同余的定义,将题设条件“翻译”成符号形式,然后运用同余的性质来求解. 由题意可知,2(mod7),5(mod7)a b ≡≡由2(mod7)a ≡及(mod )(mod )n n a b m a b m ≡⇒≡这一性质可知 2224(mod 7)a ≡≡由5(mod7)b ≡及(mod )(mod )a b m ac bc m ≡⇒≡这一性质可知 4201(mod7)b ≡≡-故224413(mod7),4415(mod7)a b a b +≡-≡-≡+≡.【变式】 求4444441234.....19901991++++++的个位数. 【解析】 首先考查1,2,3,4,....,1990,1991除以10的余数情况,然后再拓展到4次. 4444102030....19900(mod10)102030....19900(mod10)≡≡≡≡≡⇒≡≡≡≡≡; 44441112131.....1991(mod10)1112131.....1991(mod10)≡≡≡≡≡⇒≡≡≡≡≡; 44442122232.....1982(mod10)21222.....19826(mod10)≡≡≡≡≡⇒≡≡≡≡≡; 44443132333....1983(mod10)31323....19831(mod10)≡≡≡≡≡⇒≡≡≡≡≡; ………44449192939...1989(mod10)91929...19891(mod10)≡≡≡≡≡⇒≡≡≡≡≡ 故4444441234.....1990199112006199119961995199++++++≡⨯+⨯+⨯+⨯+⨯ 6199119961991199049454949488(mod10)+⨯+⨯+⨯+⨯≡++++++++≡≡ 从而可知,个数数字为8.【变式】 ⑴ 求738547被17除的余数;⑵ 23374747a =,其中2337a =,试求233747被7整除的余数.【解析】 ⑴ 24474(mod17)47161(mod17)471(mod17)≡-⇒≡≡-⇒≡7385184641418464747(47)474713(mod17)⨯+≡≡⨯≡≡. ⑵ 36472(mod7)4781(mod7)471(mod7)≡-⇒≡-≡-⇒≡23371(mod6)371(mod6)≡⇒≡故23376164747(47)47475(mod 7)r r +≡≡⋅≡≡,其中r 为正整数即所求的余数为5.【例 2】 求证:1999199911|1023+.【解析】 看到高次项,我们就应该想到要用(mod )(mod )n n a b m a b m ≡⇒≡这一性质,但是 199910太大,可通过(mod )a c b c m ±≡±这一性质将底数变小,然后来证明. 199********(mod11)101(mod11)10(1)1(mod11)≡⇒≡-⇒≡-≡- 199********(mod11)2311(mod11)≡⇒≡≡故199919991023110(mod11)+≡-+≡,即1999199911|1023+.【例 3】 试证明32641|21+.【解析】32323232641|21210(mod641)21(mod641)21641(mod641)+⇔+≡⇔≡-⇒≡-+ 3272525264025(mod641)25(mod641)25641(mod641)⇔≡=⨯⇔≡⇔≡-25223522159(mod641)2159159641225(mod641)⇔≡-⨯⇔≡-≡--≡-⨯ 1831522525641616277(mod641)277(mod641)⇔≡-≡-+≡≡⨯⇔≡152132776415642141(mod641)2141(mod641)⇔≡-≡-≡-⨯⇔≡- 1321121411416415002125(mod641)2125(mod641)⇔≡-≡-+≡≡⨯⇔≡1129921256412129(mod641)21291296412(mod641)⇔≡-≡-⨯⇔≡-≡-+≡ 9922(mod 641)≡显然成立,反推即可得出结论.二、余数的分类讨论【例 4】 1986198719881989n n n n +++的个位不是0,求正整数n 满足的条件.【解析】19866(mod10)19866(mod10)n n ≡⇒≡ 同理,19877(mod10),19888(mod10),19899(mod10)n n n n n n ≡≡≡故1986198719881989(6789)(mod10)n n n n n n n n +++≡+++我们知道,自然数的正整数次方的个位数字周期出现,且最小公倍数为4. 故可分以下情况讨论:若4n k =,则1986198719881989(6161)144(mod10)n n n n +++≡+++≡≡; 若41n k =+,则1986198719881989(6789)300(mod10)n n n n +++≡+++≡≡; 若42n k =+,则1986198719881989(6941)200(mod10)n n n n +++≡+++≡≡; 若43n k =+,则1986198719881989(6329)200(mod10)n n n n +++≡+++≡≡. 又1986198719881989n n n n +++的个位不是0,故4n k =(k 为正整数)【变式】 试证明:当且仅当4|n 不成立时,有5|1234n n n n +++(n 为自然数)【解析】 设4n k r =+(k 为整数,0,1,2,3r =,,k r 不同时为0),则有4422(2)2162n k r k r k r +==⋅=⋅,由161(mod5)161(mod5)k ≡⇒≡,故21622(mod5)n k r r ≡⋅≡.同理,38133(mod5)n k r r ≡⋅≡,425644(mod5)n k r r ≡⋅≡. 于是,12341234(mod5)n n n n r r r r +++≡+++ 当0r =时,12344(mod5)r r r r +++≡;当1r =时,12341234100(mod5)r r r r +++≡+++≡≡; 当2r =时,123414916300(mod5)r r r r +++≡+++≡≡; 当3r =时,12341827641000(mod5)r r r r +++≡+++≡≡ 故当且仅当4|n 不成立时,有5|1234n n n n +++(n 为自然数).三、同余性质的相关应用【例 5】 261322431503985(mod )m ≡≡≡,且2613被m 除余数不为1,求自然数m 及余数. 【解析】 设261322431503985(mod )r m ≡≡≡≡,则2613,2243,1503,985am r bm r cm r dm r =+=+=+=+(,,,a b c d 为整数) 由此可知,()261322433702537a b m -=-==⨯⨯ ()150********c d m -=-=⨯⨯由m 是2537,2737⨯⨯⨯⨯的公约数,故m 可取2,37,237⨯. 当2m =时,余数为1r =,不合题意,舍去. 当37m =时,余数为23r =; 当74m =时,余数为23r =; 综上所述,37m =或74m =.【变式】 如果m 是大于1的整数,69,90,125对于m 同余,那么m 的值是_____________. 【解析】 由题意可知,6990125(mod )m ≡≡,则有2135560(mod )m ≡≡≡又m 是大于1的整数,()21,35,567=,故7m =.【例 6】 试证明:对任意自然数n ,2903803464261n n n n A =--+都能被1897整除.【解析】(2903464)(803261)n n n n A =--- (2903464)(803261)'M M =---(,'M M 为整数) 92712271'M M =⨯-⨯又(2903803)(464261)n n n n A =---(2903803)(464261)'N N =---(,'N N 为整数) 7210729'N N =⨯-⨯故0(mod271)A ≡,0(mod7)A ≡又(7,271)1=,18977271=⨯,故0(mod1897)A ≡.【例 7】 十进制下,44444444的各位数字之和等于A ,A 的各位数字之和为B ,B 的各位数字之和为C ,求C .【解析】 44444444是一个很大的数字,但是它的位数我们可以估计出来.设44444444N =,则444454444222204444(10)10<=,这表明N 的位数不多于22220位. 因此,它的各位数字之和A 应小于222209⨯,即222209199980A <⨯=. 由此可知,A 最多为6位数,从而可知6954B <⨯=.在1,2,3,...53中,数字和最大的一个数是49,因此4913C ≤+=. 根据上例能被9整除的数的特点可知: (mod9)N A B C ≡≡≡又3344447(mod9)444473431(mod9)≡⇒≡≡≡,4444314811=⨯+,故14813777(mod9)N ⨯≡⨯≡.又7(mod9)C ≡,13C ≤,故7C =.点评:①101(mod9)n ≡;②一个正整数与其各位数字之和对于整数9同余.【变式】 证明:一个正整数能被9整除的充要条件是它的各位数字之和能被9整除. 【解析】 设能被9整除的任意的正整数均能表示为12....n a a a ,12....n A a a a =+++,则1212121....1010...10n n n n n a a a a a a a ---=⋅+⋅++⋅+我们知道,10199...9n n-=,故101(mod9)n ≡故121212112....1010...10...(mod9)n n n n n n a a a a a a a a a a A ---≡⋅+⋅++⋅+≡+++≡ 又12....9n a a a k =(k 为正整数),故90(mod9)A k ≡≡,即9|A .反之,若一个数的各位之和能被9整除,则这个数必然能被9整除.【变式】 A 为任意n 位数,将组成A 的各位数字任意重新排列后得到一个新数B ,如果A B >,证明A B-是9的倍数.【解析】 设12...n A a a a =,123..n N a a a a =++++,则有1212121...1010...10(mod9)n n n n n A a a a a a a a N ---≡≡⋅+⋅++⋅+≡同理,(mod9)B N ≡,故0(mod9)A B -≡,得证.【例 8】 求整数x ,使得2(mod 3)3(mod 5)2(mod 7)x x x ≡⎧⎪≡⎨⎪≡⎩【解析】 解法一:将同余式转化成等式的形式,然后不停的作代换. 由2(mod3)x ≡可知,32x m =+(m 为整数),故323(mod5)31(mod5)36(mod5)2(mod5)m m m m +≡⇒≡⇒≡⇒≡ 设52m k =+,(k 为整数),则有3(52)2158x k k =++=+,故 1582(mod7)15615(mod7)1(mod7)k k k +≡⇒≡-≡⇒≡,故 71k n =+(n 为整数),从而15815(71)810523x k n n =+=++=+ 故整数x 是被105除余23的一切整数. 解法二:运用中国剩余定理首先求出一组123,,M M M 满足:()()()1111mod3,0mod5,0mod7M M M ≡≡≡ ()()()2110mod3,1mod5,0mod7M M M ≡≡≡()()()2110mod3,0mod5,1mod7M M M ≡≡≡ 本题当中12370,21,15M M M ===满足上述条件. 容易证明:()123mod3aM bM cM a ++≡()123mod5aM bM cM b ++≡ ()123mod 7aM bM cM c ++≡所以2,3,2a b c ===时123S aM bM cM =++满足题目条件.习题 1. 求所有满足3|21n +的正整数n .【解析】30(mod3)21(mod3)2(1)21(1)1(mod3)n n n n ≡⇒≡-⇒≡-⇒+≡-+ 若3|21n +,则210(mod3)n +≡,故(1)10n -+=从而可知,当且仅当n 为奇数时,3|21n +.习题 2. a 除以5余1,b 除以5余4,且3a b >,求3a b -除以5的余数. 【解析】 由题意可知,1(mod5),4(mod5)a b ≡≡,则有 33414(mod5)a b -≡-≡-≡ 故余数为4.习题 3. 求10002除以13的余数.【解析】41232163(mod13)23271(mod13)≡≡⇒≡≡≡ 10001283442223(mod13)⨯+≡≡≡故余数为3.习题 4. 求9992的最后两位数字.【解析】()()()91210251212mod1002512840964mod10021mod100≡≡⇒≡⨯≡≡-⇒≡- 99999099909992222(1)121288(mod100)+⇒≡≡⋅≡-⨯≡-≡习题 5. 求证:555522227|(22225555)+【解析】226322223(mod7)222232(mod7)222221(mod7)≡⇒≡≡⇒≡≡ 故5555692522169252222222222(2222)(2222)3125(mod7)⨯+⨯+≡≡⋅⋅≡≡ 226355554(mod7)555542(mod7)555521(mod7)≡⇒≡≡⇒≡≡ 故22226370225555555542(mod7)⨯+≡≡≡从而可知,55552222222255555270(mod7)+≡+≡≡即555522227|(22225555)+.习题 6. 设n 为自然数,若1914103(mod83)n n +≡+,则n 的最小值可能是 ( )A .4B . 8C . 16D . 32【解析】 1914103(mod83)91109720(mod83)n n n n +≡+⇒+≡⇒-≡,故选B .生肖为何取数12?《周礼·春官·冯相氏》载:“掌十有二岁,十有二月,十有二辰,十日,二十八星之位,辨其叙事,以会天位。
(完整版)同余问题知识点讲解

数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.【余数的加法定理】a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.【余数的乘法定理】a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
数学奥赛辅导 第三讲 同 余

数学奥赛辅导 第三讲同余知识、方法、技能同余是数论中的重要概念,同余理论是研究整数问题的重要工作之一.本讲介绍同余的基本概念,剩余类和完全剩余系,同余方程,整数模的阶和中国剩余定理.Ⅰ.基本概念定义一:设m 是一个给定的正整数.如果两个整数a 、b 用m 除所得的余数相同,则称a 、b 对模m 同余,记为a ≡b (modm );否则,记为a ≡b (modm ).例如,15≡7(mod4),-23≡12(mod7).同余有如下两种等价定义法:定义一* 若m|a -b ,则称a 、b 对模m 同余.定义一**若a =b+mt(t ∈Z),则称a 、b 对模m 同余.同余的基本性质:(1).|)(mod 0a m m a ⇔≡(2)))((mod 反身性m a a ≡))((mod )(mod )(mod ))((mod )(mod 传递性对称性m c a m c b m b a m a b m b a ≡⇔⎭⎬⎫≡≡≡⇔≡(3)若则),(mod ),(mod m d c m b a ≡≡①);(mod m d b c a ±≡±②).(mod m bd ac ≡(4)若).(mod ,.,,2,1,0),(mod 0101m b x b x b a x a x a n i m b a n n n n i i +++=+++=≡ 则特别地,设)(mod ),()(01m b a Z a a x a x a x f i n n ≡∈+++=若 ,则).)(mod ()(m b f a f ≡(5)若).),((mod ),(mod c m m b a m bc ac ≡≡则特别地,又若(c,m )=1,则).(mod m b a ≡ 【证明】因),(|b a c m -这等价于).(),(|),(b a c m c c m m -又因若(a ,b )=),(d b d a d ⇒=1(d ≠0)及b|a c ,且(b,c )=1,|a b ⇒ 从而有).(|),(b a c m m - 这个性质说明同余式两边的同一非零因数,不能像等式那样“约去”,只有当这非零因数与模互质时,才可“约去”.(6)),(mod m b a ≡而).(mod ),0(|d b a d m d ≡>则(7)设),(mod m b a ≡①若c>0,则);(mod mc bc ac ≡②d 为a 、b 、m 的任一公约数,则).(mod dm d b d a ≡ (8)若).(mod ,1),()(mod ),(mod 212121m m b a m m m b a m b a ≡=≡≡则且(9)若).,(),(),(mod m b m a m b a =≡则Ⅱ.剩余类和完全剩余系若按对某一模m 的余数进行分类,就可以引入所谓的剩余类和完全剩余系的概念.定义二:设m ∈N*,把全体整数按其对模m 的余数r (0≢r ≢m -1)归于一类,记为k r ,每一类k r (r=0,1,…,m -1)均称模m 的剩余类(又叫同余类).同一类中任一数称为该类中另一数的剩余.剩余类k r 是数集{}{})(mod |,,,|m r a Z a a k Z q r m r qm k r r ≡∈=∈+=且也即是余数是模,它是一个公差为m 的(双边无穷)等差数列.根据定义,剩余类具有如下性质:(1));(,1210j i k k k k k k Z j i m ≠=⋂⋃⋃⋃=-φ而(2)对任一数n ∈Z ,有惟一的00r k n r ∈使;(3)对任意的a ,b ∈Z ,a ,b ).(mod m b a k r ≡⇔∈定义三:设110,,,-m k k k 是模m 的(全部)剩余类.从每个k r 中任取一个数a r ,这m 个数110,,,-m a a a 组成的一个组称为模m 的一个完全剩余系,简称完系.例如,取m=4,则有{}{} ,9,5,1,3,7,,8,4,0,4,8,10--=--=k k ,k 2={…,-6,-2,2,6,10,…},k 3={…,-5,-1,3,7,11,…}.数组0,1,2,3;-8,5,2,-1等等都是模的4的一个完全剩余系.显然,模m 的完全剩余系有无穷多个.但最常用的是下面两种:(1)非负数最小完全剩余系:0,1,2,…,m -1;(2)绝对值最小完全剩余系:它随m 的奇偶性不同而略有区别.当.),1(,,1,0,1,),1(,,12k k k k k m -----+= 为时(对称式)当).1(,,1,0,1,),1(,.),1(,1,0,1,),2(),1(,2-----------=k k k k k k k k m 或为时 由定义不难得到如下判别完全剩余系的方法:定理一:m 个整数m a a a ,,,21 是模m 的一个完系i a j i ,时当≠⇔≡)(mod m a j 定理二:设(b,m )=1,c 为任意整数.若n a a a ,,,21 为一个完系,则c ba c ba c ba m +++,,,21 也是模m 的一个完全剩余系.特别地,任意m 个连续整数构成模m 的一个完全剩余系.【证明】只需证明:当).(mod ,m c ba c ba j i j i +≡+≠时而这可用反证法得证.下略. 设m 为一正整数,由于在0,1,…,m -1中与m 互质的数的个数是由m 惟一确定的一个正整数,因此,可给出如下定义.定义四:m 为一正整数,把0,1,…,m -1与m 互质的数的个数叫做m 的欧拉函数,记为).(m ϕ显然,)(m ϕ的定义域是正整数N*,前n 个值为:,,6)7(,2)6(,4)5(,2)4(,2)3(,1)2(,0)1( =======ϕϕϕϕϕϕϕ当m=p 为质数时,.1)(-=p p ϕ设k 是模的一个剩余类.若a 、b ∈k ,则).(mod m b a ≡于是由性质9知,(a ,m )=(b,m ).因此,若(a ,m )=1,则k 中的任一数均与m 互质.这样,又可给出如下定义.定义五:如果一个模m 的剩余类k r 中任一数与m 互质,则称k r 是与模m 互质的剩余类;在与模m 互质的每个剩余类中任取一个数(共)(m ϕ个)所组成的数组,称为模m 的一个简化剩余系.例如,取m=6,在模6的六个剩余类中,{},,13,7,1,5,11,1 --=k{} ,17,11,5,1,7,5--=k 是与模6互质的剩余类.数组1,5;7,-7;1,-1;等等都是模6的简化剩余类.由此定义,不难得到:定理三:)(21,,,m a a a ϕ 是模m 的简化剩余系)).(,2,1,,)((mod ,1),(m j i j i m a a m a j i i ϕ =≠≡=⇔且 定理四:在模m 的一个完全剩余系中,取出所有与m 互质的数组成的数组,就是一个模m 的简化剩余系.这两个定理,前者是简化剩余系的判别方法,后者是它的构造方法.显然,模m 的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.由定理不难证得简化剩余系的如下性质定理.定理五:设)(21,,,m a a a ϕ 是模m 的简化剩余系.若(k,m )=1,则)(21,,,m ka ka ka ϕ 也是模m 的简化剩余系.下面介绍两个有关欧拉函数的重要结论.其证明略.定理六:(欧拉定理)若(a ,m )=1,则)(mod 1)(m a m ≡ϕ特别地,(费马小定理)若m=p 为质数,p a ,则).(mod 11p a p ≡-定理七:(威尔逊定理)设p 素数,则(p -1)!).(mod 1p -≡定理八:(欧拉函数值计算公式)令m 的标准分解式为k k p p p m ααα 2121=,则 ∏=-=k i ip m m 1).11()(ϕ 例如,30=2·3·5,则.8)511)(311)(211(30)30(=---=ϕ读者应认识到:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.Ⅲ.同余方程设x a x a xa x a x f n n n n 为0111)(++++=-- 的整系数多项式.类似于多项式和代数方程式的有关定义,我们有定义六:同余式)(mod 0),(mod 0)(m a m x f n ≡≡叫做一元n 次同余方程.例如, )3(mod 03539257≡-+-x x x 是七次同余方程.定义七:若c 使得)(mod ,)(mod 0)(m c x m c f ≡≡则成立叫做同余方程)(mod 0)(m x f ≡的一个解.显然,同余方程的解是一些剩余类,而不仅是一个或n 个类.例如,),5(mod 1≡x )5(mod 4≡x 都是二次同余方程)5(mod 12≡x 的解.1.一次同余方程)(mod m b ax ≡(其中m a )称为一次同余方程.关于它的解,有如下共知的结论: 定理九:若(a ,m )=1,则)(mod m b ax ≡有一个解.定理十:若(a ,m )=d>1,d b ,则)(mod m b ax ≡无解,其中)(mod 0m a ≡.定理十一:若(a ,m )=d>1,d|b ,则)(mod m b ax ≡有d 个解.并且,若)(mod 1m x βα=的一个解为),(mod 1m r x ≡则d 个解为:1,,1,0),(mod 1-=+≡d k m km r x ,其中.,,1dm m d b d a ===βα 下面介绍一次同余方程1),(),(mod =≡m a m b ax (*) 的解法.【解法1】因(a ,m )=1,则存在二数s,t ,使得as +mt=1,即)(mod 1m as =,由此有 )(mod ),(mod m bs x m bs asx ≡≡于是为(*)的解.【解法2】先把(*)变形成ab m a b x )((mod ≡仅只是形式上的记号),然后用与m 互质的数陆续乘右端的分子分母,直至把分母绝对值变成1(通过分子分母各对模m 取余数)而得到解.【解法3】得用欧拉定理.因),(mod )(mod ),(mod 11)()()(m a b x a m b ax m a m m m -⋅≡≡≡ϕϕϕ可得由 从而有解 ).(mod 1)(m a b x m -⋅≡ϕ2.一次同余方程组定义八:若数r 同时满足n 个同余方程:r n k m x f k k 则.,,2,1),(mod 0)( =≡叫做这n 个同余方程组成的同余方程组的解.定理十二:对同余方程组⎩⎨⎧≡≡).(mod ),(mod 2211m c x m c x记.],[,),(2121M m m d m m ==①若d 21c c -,则此同余方程组无解;②若21|c c d -,则此同余方程组有对模M 的一类剩余解.Ⅳ.模m 的阶和中国剩余定理(1)模m 的阶定义九:设m>1是一个固定的整数,a 是与m 互素的整数,则存在整数k ,1≢k <m ,使得)(mod 1m a k ≡.我们将具有这一性质的最小正整数(仍记为k )称为a 模m 的阶.a 模m 的阶具有如下性质:①设m a k m a 模是,1),(=的阶,ν,u 是任意整数,则)(mod m a a v u ≡的充要条件是)(mod k u ν≡.特别地,)(mod 1m a u ≡的充分必要条件是k|u.【简证】充分性显然.必要性.设).(mod 11),()(mod ,,m a m a m a a u l u l u 易知及则由记=≡-=>ννν用带余除法,k r m a m a a k r r kq l r r kq <≤≡≡⋅<≤+=0).(mod 1),(mod 1,0,由即故这里及k 的定义知,必须r=0,所以).(mod k r u ≡②设a m a ,2),(=模m 的阶为k ,则数列,,,,32 a a a 模m 是周期的,且最小正周期是k ,而k 个数k a a a ,,,2 模m 互不同余.③设a m a 则,1),(=模m 的阶整除欧拉函数).(m ϕ特别地,若m 是素数p ,则a 模p 的阶整除p -1.(2)中国剩余定理(即孙子定理)设n m m m n ,,,,221 ≥是两两互质的正整数,记M=∏===n i ii i n i m M M m 1),,2,1(, 则同余方程组 ),,2,1)((mod n i m c x i i =≡有且只有解 ∑=≡ni ii i M c M x 1).(mod α (△) 其中.,,2,1),(mod 1n i m M i i i =≡α (△△)【证明】由)(1),(j i m m j i ≠=知,1),(=j i m M ,因此每一个同余方程)(mod 1i iy m M ≡ (i =1,2,…n )都有解,于是必存在),(|,).(mod 1,j i M m M m M m M i i i i i i i ≠=≡又因使得αα 所以对模).(mod ),,2,1(111i i i i i n n n i i i i m c c M c M c M c M n i m ≡≡++++=αααα 有故(△△)是(△)的解.若21,x x 是适合(△)的任意两个解,则).(1),(,,,2,1),(mod 21j i m m n i m x x j i i ≠===因 故),(mod ),(mod 212121M x x m m m x x n ≡≡即 因此,(△△)是(△)的惟一解.赛题精讲例1:数1978n 与1978m 的最末三位数相等,试求正整数m 和n ,使得n+m 取最小值,这里.1≥>m n (第20届IMO 试题)【解】由已知而),1000(mod 10781978mn ≡1000=8×125,所以)8(m o d 10781978m n ≡ ① )125(mod 10781978m n ≡ ②因1≥>m n ,且(1978m ,125)=1,则由②式知1978n -m ≡1(mod125)③又直接验证知,1978的各次方幂的个位数字是以8、4、2、6循环出现的,所以只有n -m 为4的倍数时,③式才能成立,因而可令n -m=4k.由于. n+m=( n -m )+2m=4k+2m ,因而只需确定出k 和m 的最小值.先确定k 的最小值:因为19784=(79×25+3)4≡34≡1(mod5),19784≡34≡1(mod25).故可令19784=5t+1,而5 t ,从而0≡1978n -m -1=19784k -1=(5k+1)k -1≡2)5(2)1(t k k ⋅- +)125(mod5t k ⋅,显然,使上式成立的k 的最小值为25. 再确定m 的最小值:因1978≡2(mod8),则由①式知,)8(mod 22mn ≡ ④ 由于,1≥>m n ④式显然对m=1,2不成立,从而m 的最小值为3.故合于题设条件的n+m 的最小值为106.【评述】比例中我们用了这样一个结论:1978的各次方幂的个位数字是以8,4,2,6循环出现,即,当r=1,2,3,4时,).10(mod 6,2,4,8197819784≡=+r q p 这种现象在数学上称为“模同期现象”.一般地,我们有如下定义:整数列{}n x 各项除以m (m ≣2,m ∈N*)后的余数n a 组成数列{}n a .若{}n a 是一个周期数列,则称{}n x 是关于模m 的周期数列,简称模m 周期数列.满足n T n a a =+(或n T n x a ≡+ (modm ))的最小正整数T 称为它的周期.例如,(1){}n 1978是模10周期数列,周期为4;(2)自然数列{n}是一个模m (m ≣2,m ∈N*)周期数列,周期为m ;(3)任何一个整数等差数列都是一个模m (m ≣2,m ∈N*)周期数列,周期为m.例2:设a 是方程01323=+-x x 的最大正根,求证:17可以整除[a 1788]与[a 1988].其中[x ]表示不超过x 的最大整数. (第29届IMO 预选题)【证明】根据如下符号表可知,若设三根依次为a <<βα, 则,121,211<<-<<-βα.||,,02)12(2)(,223233βαβαααααα<<->-=+-+-=-<于是由于f a另一方面,由韦达定理知,)8(1296292)3(2)(233322222a aa a a a a a a -+=+-+=+-+=+-=-+=+αββαβα .1,8)22(2222<+∴=>βαa为了估计[1788a ]、[1988a ],先一般考察[a n ],为此定义:),2,1,0.( =++=n a u n n n n βα直接计算可知:).0(3,9.32,323222210≥-==++==++==++n n u u a u a u u n n 以及βαβ 又因,12223,0,||(10<-<-=+>+<<+<αβαβαβαβα又即n n n n 当2≥n 时,)].(1[1)(),1||22n n n n n n n n n n n u u a βαβαβαβαβα+---=+-=<+<+≤+则),2,1.(1][ =-=∴n u a n n由此知,命题变为证明:1119881788--u u 和能被17整除.现考察{}n u 在模17的意义下的情况:,2,6,5,16,9,9,11,1,7,9,3,311109876543210≡≡≡≡≡≡≡≡≡≡≡≡u u u u u u u u u u u u ,9,3,3,0,6,14,118171615141312≡≡≡≡≡≡≡u u u u u u u可见,在模17意义下,{}n u 是16为周期的模周期数列,即).17(mod 16n n u u ≡+由于 1788),17(mod 1),17(mod 1),16(mod 41988),16(mod 1241988121788≡≡≡≡≡≡u u u u 故故 ).17(mod 01,0119881788≡-≡-u u 命题得证.例3:求八个整数821,,,n n n 满足:对每个整数k (-1985<k<1985),有八个整数a 1,a 2,…,a 8∈{-1,0,1},使得.882211n a n a n a k +++= (第26届IMO 预选题)【解】令数集{}.1,,2,1},1,0,1{,333|12321+=-∈⋅++⋅+⋅+==+n i a a a a a k k G i n n 显然 3331m a x 12=++++=+n nG H , .33312H mixG n -=----=且G 中的元素个数有1231+=+H n 个.又因G 中任意两数之差的绝对值不超过2H ,所以G 中的数对模2H+1不同余.因此,G 的元素恰好是模2H+1的一个绝对值最小的完系,于是,凡满足H k H ≤≤-的任意整数都属于G ,且可惟一地表示为:nn a a a a 33312321⋅++⋅+⋅++形式.当n=7时,H=3280>1985,而n=6时,H=1043<1985.故n 1=1,n 2=3,…,n 8=37为所求. 例4:设n 为正整数,整数k 与n 互质,且0<k<n.令M={1,2,…,n -1},给M 中每个数染上黑、白两种颜色中的一种,染法如下:(i )对M 中每个i ,i 与n -i 同色;(ii )对M 中每个i ,i ≠k,i 与|k -i |同色.求证:M 中所有的数必为同色. (第26届IMO 试题)【证明】因,1),(=n k 又0,1,…n -1是模n 的一个完全剩余系,所以0,k ,2k ,…,(n -1)k 也是模n 的一个完全剩余系.若设),1,,2,1,11)((mod -=-≤≤≡n j n r n r jk j j 其中 则M=}.,,,{121-n r r r 下只需证).21(1-≤≤+n j r r j j 与因为,若如此,当r 1的颜色确定后,M 中所有都与r 1同色.由于)(mod ),(mod )1(11n r k r n r k j j j j ++≡+≡+则,因此,(1)若k r r n k r j j j +=<++1,则,于是,由条件(i )知,j j j j r r n n r n r k =---=-+)(1与同色.又由条件(ii )知,111||+++=---j j j r k r k r k 与同色,故j j r r 与1+同色.综上所述可知,j j r r 与1+同色.命题得证.例5:设a 和m 都是正整数,a >1.证明:).1(|-m a m ϕ【证明】实上,显然1-m a a 与互素,且1-m a a 模的阶是m ,所以由模阶的性质③导出).1(|-m a m ϕ例6:设p 是奇素数,证明:2p -1的任一素因了具有形式x px ,12+是正整数.【证明】设q 是2p -1的任一素因子,则q ≠2.设2模q 的阶是k ,则由)(mod 12q p ≡知k|p ,故k=1或p (因p 是素数,这是能确定阶k 的主要因素).显然k ≠1,否则),(mod 121q ≡这不可能,因此k=p.现在由费马小定理)(mod 121q q ≡-推出.1|,1|--q p q k 即因p 、q 都是奇数,故q -1=2p x (x 是个正整数),证毕.例7:设m,a ,b 都是正整数,m>1,则.1)1,1),(-=--b a b a mm m 【证明】记).1,1(--=b a m m d 由于(a ,b )|a 及(a ,b )|b ,易知1|1),(--a b a m m及11 1|1),(--b b a m m ,故d m b a |1),(-,另一方面设m 模d 的阶是k ,则由)(mod 1),(mod 1d m d m b a ≡≡推出,k|a 及k|b ,故k|(a ,b ).因此.1|),(mod 1),(),(-≡b a b a m d d m 即综合两方面可知,.1),(-=b a m d 证毕.例8:设n ,k 是给定的整数,n>0,且k (n -1)是偶数.证明:存在,1),(),(,,==n y n x y x 使得是).(mod n k y x ≡+【证明】我们先证明,当n 为素数幂αp 时结论成立.实际上,我们能证明,存在x ,y ,使 p x y ,且k y x =+.如p=2,则条件表明k 为偶数,可取2,11,1,2;1,1-==-==>-==k y x k y x p k y x 或则如中有一对满足要求.一般情形下,设r r p p n αα 11=是n 的标准分解,上面已证明,对每个i p ,均有整数i x ,i y ,使p i x i y i ,且).,,2,1(r k y x i i =+现在孙子定理表明,同余方程组)(mod ,),(mod 111r a r r p x x p x x ≡≡ α有解x ,同样)(mod ,),(mod 111r a r r p y y p y y ≡≡ α也有解y.现在易证x ,y 符合问题中的要求:因p i x i y i ,故p i x y (i =1,…,r ),于是(x y ,n )=1.又).(mod ),,,1)((mod 1n k y x r i p k y x y x i i i ≡+==+=+故 α例9:设n 为任意的正整数.证明:一定存在n 个连续的正整数解,使其中任何一个都不是质数的整数幂. (第30届IMO 试题)【证明】取2n 个两两不同的质数.,,,,,,2121n n q q q p p p 和同余方程组),(mod i i q p i x -≡ n i ,,2,1 =.由于n n q p q p q p ,,,2211 两两互质,根据孙子定理必有解,取为正整数N ,则n 个连续正整数N+1,N+2,…,N+n 都至少含有两个不同的质因数,因而它们中的任一个都不是质数的整数幂.证毕.。
同余的概念与性质

同余的概念与性质同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。
性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。
性质2:同余关系满足下列规律:(1)自反律:对任何模m 都有)(mod m a a ≡;(2)对称律:若)(mod m b a ≡,则)(mod m a b ≡;(3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。
性质 3:若,,,2,1),(mod s i m b a i i =≡则).(mod ),(mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++推论: 设k 是整数,n 是正整数,(1)若)(mod m c b a ≡+,则)(mod m b c a -≡。
(2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。
性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。
性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。
性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。
性质7:若)(mod m b a ≡,且m m |1,则)(mod 1m b a ≡。
性质8:若)(mod i m b a ≡,s i ,,2,1 =,则]),,,(mod[21s m m m b a ≡这里],,,[21s m m m 表示s m m m ,,,21 的最小公倍数。
奥数讲义数论专题:余数及同余

华杯赛数论专题:余数及同余一、带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q…r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,记作b|a,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,记作,q称为a除以b的商或不完全商二、同余的概念两个整数被同一个大于1的整数m除,所得的余数相同,就说这两个整数对于除数m来说是同余的.也可以换句话来说这个概念,如果两个整数的差能被大于1的整数m整除,那么这两个整数对于除数m来说是同余的.同余的概念和符号都是德国伟大数学家高斯引进的.一般地,两个整数a和b,除以大于1的正整数m,如果所得的余数相同,就说a、b对于模m同余,记作a≡b(mod m).由于一个整数被m除的余数只能是0、1、2、3、…、m-1这m个数,所以全体整数可按被m除的余数分类,凡是余数相同的归为一类,全体整数就被划分成了m类,同一类中的任何两数被m除的余数都相等,即同一类中任何两数的差都能被m整除,不同类的任何两数被m除的余数都不相等.三、同余的性质1.如果a≡b(mod m),那么m|(a-b);如果整数a和b对于模m是同余的,那么a 与b的差能被m整除.2.a≡a(mod m),即任何整数都与自身同余.3.若a≡b(mod m),则b≡a(mod m).4.若a≡b(mod m),b≡c(mod m),则a≡c(mod m).5.若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d (mod m),a×c≡b×d (mod m).6.若a≡b(mod m),则an≡bn(mod m)。
(其中n为正整数).例1.用一个两位数除708,余数为43,求这个两位数.【答案】95【解答】根据被除数-余数=商×除数,可知,所求两位数一定是707-43=665的大于43的约数,所以所求的两位数是95.例2.数713、1103、830、947被一个数除所得余数相同(余数不为0),求这个除数.【答案】39,13或3.【解答】1103-713=390=3×13×2×5,947-830=117=3×13×3,1103-947=156=2×13×3×2,除数为39,13或3.例3.从1、2、…100中最多能选出多少个数,使选出的数中每两个的和都不能被3整除?【答案】35【解答】1、2、…100中,除以3余1的数共34个,即1、4、7、10、…、100.除以3余2的数共33个,选出的数中,如果有除以3余1的,就一定不能有除以3余2的;如果有除以3余2的,也就不能有除以3余1的。
小升初奥数备考讲义第六讲数论之同余定理、个位律精英版

小升初奥数备考讲义第六讲数论之同余定理、个位律精英版同余定理及其应用同余定理是数论的一个重要概念,它在奥数竞赛中经常被用来解决问题。
同余定理的精髓可以用下面的一句话来概括:如果两个数除以一个数得到的余数相等,那么这两个数对于这个数来说是同余的。
具体来说,对于给定的整数 a、b 和正整数 m,如果 a 除以 m 得到的余数与 b 除以 m 得到的余数相等,即 a mod m = b mod m,那么就可以说 a 和b 是关于模 m 同余的,记作 a ≡ b (mod m)。
同余定理可以表示为以下几个性质:1.自反性:对于任意整数 a 和正整数 m,有 a ≡ a (mod m)。
2.对称性:对于任意整数 a、b 和正整数 m,如果 a ≡ b (mod m),则 b ≡ a (mod m)。
3.传递性:对于任意整数 a、b、c 和正整数 m,如果 a ≡ b (mod m) 且b ≡c (mod m),则 a ≡ c (mod m)。
了解了同余定理的性质后,我们就可以开始利用同余定理解决一些有关数的性质或问题了。
应用一:同余定理的运算第1页/共4页同余定理对于数的加减乘除运算有一些有趣且有用的性质。
1.加法性:对于任意整数 a、b、c 和正整数 m,如果 a ≡ b (mod m) 且c ≡ b (mod m),那么 a + c ≡ b + b (mod m)。
2.减法性:对于任意整数 a、b、c 和正整数 m,如果 a ≡ b (mod m) 且c ≡ b (mod m),那么 a - c ≡ b - b (mod m)。
3.乘法性:对于任意整数 a、b、c 和正整数 m,如果 a ≡ b (mod m) 且c ≡d (mod m),那么 a × c ≡ b × d (mod m)。
4.除法性:对于任意整数 a、b、c 和正整数 m,如果 a ≡ b (mod m) 且c ≡d (mod m),且 c 和 m 互素,那么 a ÷ c ≡ b ÷ d (mod m)。
初中数学竞赛讲座——数论部分8(同余系的应用)
第8讲剩余系及其一次同余方程一、基础知识:(1)剩余系对于任意正整数n而言,一个整数除以m所得的余数只能是0,1,2, …,n-1中的某一个。
依次可将整数分成n个类(例如n=2时,就是奇数或偶数),从每一类中各取一个数所组成的集合就称为模的一个完全剩余系,简称为模的完系。
定义1:如果一个剩余系中包含了这个正整数所有可能的余数(一般地,对于任意正整数n,有n个余数:0,1,2,...,n-1),那么就被称为是模n的一个完全剩余系。
定义2:剩余系:设模为m,则根据余数可将所有的整数分成m类,分别记成[0],[1],[2],…[m-1],这m个数{0,1,2,…m-1}称为一个完全剩余系,每个数称为相应类的代表元。
例如:当m=10则,{0,1,2,3,4,5,6,7,8,9}最小非负完全{-5,-4,-3,-2,-1,0,1,2,3,4}绝对值最小{-4,-3,-2,-1,0,1,2,3,4,5}绝对值最小(一)根据剩余类的概念,很容易得到以下几条有关剩余类的性质:①每一个整数一定包含在而且仅包含在模m的一个剩余类中②整数p所属的模m的剩余类中的每一个数都可以写成km+p的形式,这里k是整数用符号p mod m表示p所属的模m的剩余类,这条性质写成数学表达式就是p mod m= {p+km(k是整数)}③整数p、q在模m的同一个剩余类中的充要条件是p、q对模m同余。
这条性质用数学符号就可表示为:p mod m= q mod m p≡q(mod m)实际上,同余式就是剩余类等式的一个特殊情况,是集合中的一个元素,前面有关同余的一些性质对剩余类仍然成立。
这条性质表明,对于模m的两个剩余类要么相等,要么它们的交集为空集,因此,模m有且仅有m个剩余类,它们是:0mod m,1 mod m,2 mod m,…(m―1)mod m。
在解决一些有关模m余数的问题时,我们就可以查看m个数:0,1,2,…,m―1,从而得相应的剩余类的情况,使问题变得异常简单,具体例子,请看后面的例题。
初中数学竞赛讲座——数论部分7(同余)
第7讲同余的概念及基本性质数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯.先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜?取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜.在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以2000年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用.同余,顾名思义,就是余数相同.一、基础知识定义1 给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作a≡b(modm),并读作a同余b,模m.否则,就称a与b对于模m不同余,记作a≡b(mod m),根据定义,a与b是否同余,不仅与a、b有关,还与模m有关,同一对数a和b,对于模m同余,而对于模n也许就不同余,例如,5≡8(mod3),而5≡8(mod4),若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以a-b=m(q1-q2),即m|a-b.反之,若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2.于是,我们得到同余的另一个等价定义:定义2若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.另外,根据同余的定义,显然有以下几种关系是成立的:⑴a≡a(mod n)⑵a≡b(modm)⇔b≡a(mod n)⑶a≡b(mod n)⇒a≡c(mod m)b≡c(modm)由此可见,同余是一种等价关系,以上这三条分别叫做同余的反射性,对称性和传递性,而等式也具有这几条性质.二、典型例题;例1.如果a≡b(mod m),以下命题正确的有哪些?请说明理由?⑴m| a-b⑵a=b+mt⑶a=k1m+ r1,b =k2m+r2(0≤r1,r2<m)⇔r1= r2解:⑴因a≡b(modm),所以可得a =k1m+r,b =k2m+ r,那么a-b=(k1-k2)m,由于k1-k2是整数,因此m|a-b是正确的.⑵根据⑴可得a-b= mt,即a=b+mt⑶根据⑴可得,m|r1-r2,又因为0≤| r1-r2 |<m,所以| r1-r2 |=0,故r1=r.2例2.判断正误,并说明理由.⑴如果a≡b(mod m)那么ka≡kb(mod m)⑵如果a≡b(modm),c是整数,那么a±c≡b±c(mod m)⑶如果a1≡b1(mod m),a2≡b2(mod m),那么a1±a2≡b1±b2 (modm),a1a2≡b1b2 (mod m).⑷如果3a≡3b(mod 6 ),那么a≡b (mod 6 )解:⑴∵a≡b(modm),∴m| a-b,∴m|k (a-b)即m|(ka-kb)∴ka≡kb(mod m) ⑴成正确⑵∵a≡b(mod m),∴m | a-b又因为c是整数,所以m| a-c-b+c,即m | (a-c)-(b-c)即a-c≡b-c(mod m)同理可得,a+c≡b+c(mod m)⑶仿照上面的两个小题的方汪,可以判定这个命题也是正确的⑷显然6≡12(mod6),而2≡4(mod 6),因此,这个命题不正确说明:⑶的结论可以得到同余的另一条性质,即a≡b(mod m)⇒a n≡b n(modm) 此题说明两个同余式能够象等式一样进行加、减、乘、乘方,但同余式两边却不能除以同一数,那么,同余式的两边在什么情况下可以同除以一个数呢?我们先看下面的例题.例3.由下面的哪些同余式可以得到同余式a≡b(mod5)①3a ≡3b (mo d 5) ②10a ≡10b (mod 5)③6a≡6b(mod 10) ④10a ≡10b (mod 20) 解:①因3a ≡3b (mod 5),所以5 | 3(a -b),而5 | 3 , 因此5 | a-b,故a ≡b(mod 5)②由10a≡10b (mo d 5)可以得到5 | 10(a -b ),而5 | 10,因此5不一定整除a -b ,故a ≡b (mod 5)就成立③由6a≡6b (mod 10)可得10 | 6(a -b ),而10=2×5,6=2×3,因此5 | a -b ,故a≡b(m od 5)成立④由10a ≡10b (mo d 20)可得到20 | 10(a-b ),而20= 4×5,4 | 10,因此5 | (a-b )故a≡b (mod 5)不成立综上所述,由3a ≡3b (m od 5)或6a ≡6b (mod 10)都可以得到a ≡b (mod 5)说明:在①中,因为(3,5)=1,因此由5 | 3(a -b )一定可以得到5 | a-b ,进而得到a ≡b (mod 5),一般地,如果(k ,m)=1,ka ≡kb (mo d m),那么a≡b (mod m )在③中,因(6,10)=2,因此由10| 6(a-b)一定可以得到5 | a -b ,进而得a ≡b(mo d 5),一般地,如果(k ,m )= d ,ka ≡kb (mod m ),那么a ≡b )(moddm .例4.如果a ≡b(mod 12)且a ≡b (mod 8),那么以下同余式一定成立的是哪些?①a ≡b(mod 4) ②a ≡b(mod 24) ③a ≡b(m od 20) ④a≡b (m od 48)解:正确的有①和②①由题中的条件可得12 | a -b,又因4 | 12,所以4 | a -b ,故a ≡b (mod 4).②因12 | a -b ,8| a -b ,所以a -b 是12和8的公倍数,又因为[8,12]=24,因此 a -b 必是24的倍数,即24 | a -b ,故a ≡b (mod 24).③显然,当a= 26,b = 2时满足条件a ≡b (mod 12)和a ≡b (mo d 8),但却不满足a≡b (mod 20).④同③,用a = 26,b = 2验证即可. 【说明】:⑴一般地,若a ≡b (mod m )且n | m ,那么a≡b (mo d n) ⑵若a ≡b (m od m ),a ≡b (mod n ),那么a ≡b (mod [m ,n ]),它的一个特殊情况就是: 如果a ≡b (mod m ),a ≡b (mo d n )且(m ,n )=1,那么a ≡b (mod m n )【一些结论】1.同余定义的等价形式①a ≡b(mod m ) m | a-b②a ≡b (mod m ) a = b+mt 2.同余式的同加、同乘性如果a 1≡b1(m od m ),a 2≡b 2(mod m )那么 ⑴a 1±a 2≡b 1±b 2(mod m) ⑵ka 1≡kb 1(mod m)(k ∈Z ) ⑶a 1a 2≡b 1b 2(m od m) ⑷a 1n ≡b 1n (m od m)(n是整数). 3.如果(k ,m )=d ,ka ≡kb (mod m ),那么a ≡b )(moddm. 这条性质的直接推论就是:如果(k ,m)=1,k a≡kb (mod m ),那么a ≡b (mo d m ) 4.如果a ≡b (mo d m )且n | m ,那么a ≡b(mod n )5.如果a≡b (m od m),a≡b (mo d n),那么a ≡b (mod [m,n ])这条性质的一个推论就是: 如果a ≡b(m od m ),a≡b (m od n )且(m ,n )=1,那么a ≡b (m od m n )例5.⑴求19992002除以9的余数;⑵求1010除以7的余数解:⑴∵9 | 1999-1000,∴1999≡1000≡1(mod 9)∴19992000≡12002≡1(mod 9),∴19992000除以9的余数是1⑵∵10≡3(mod 7),∴103≡33≡-1(mod 7)∴106≡(-1)2≡1(m od 7),∴1010≡104(mod 7) 又∵102≡9≡2(mod 7),∴102≡10 4≡22≡4(mod 7) 所以1010除以7的余数是4.说明:求较大数的余数时,可先设法找到与±1同余的数,然后利用同余式的性质,求出所求数的余数.例6.求14589+32002除以13的余数.解:∵145≡2(mod 13),∴1456≡26≡-1(mod 13)∴(1456)14≡(-1)14≡1(mod 13)即14584≡1(mod 13)又∵1455≡25≡6(mod 13)所以14589≡14584·1455≡6×1≡6(mod 13)又∵33≡1(mod 13),∴(33)667≡32001≡1(mo d 13),∴32002≡3(mod 13) 所以,14589+32002≡6+3≡9(mod 13)即14589+32002除以13的余数是9例7.求19982002的十位数字分析:此题可以通过19982002的末两位数来求解,与前面的方法类似解:∵199898≡-2(m od 100),∴19982002≡(-2)2002≡22002≡41001(mod 100)因为4≡4(m od 100),42≡16(m od 100),43≡64(m od 100),44≡56(mod100),45≡24(m od 100),46≡96(mod 100),47≡84(mod 100),48≡36(mod 100),49≡44(mo d 100),410≡76(m od 100),411≡4(mod 100)…所以4 n 除以100的余数是以4、16、64、56、24、96、84、36、44、76周期性出现的,因41001=410×100+1,所以41001≡4(m od 100),因此19982002≡4(m od 100),故19982002的十位数字是0.说明:正整数幂的末位数、末两位数、末三位数都具有周期性.例8(1998年匈牙利奥林匹克竞赛题)求使2n +1能被3整除的一切自然数n . 解∵∴则2n +1∴当n 为奇数时,2n+1能被3整除; 当n 为偶数时,2n +1不能被3整除.例9 求证31980+41981能被5整除. 证明 ∵∴∴∴例10.求20032002的末位数字.分析:此题就是求20032002除以10的余数解:∵2003≡3(mod 10),∴20034≡34≡1(mod 10),∴20032002≡(20034)500·20033≡1500·33≡27≡7(mod 10)∴20022002的末位数字是7.说明:对于十进制的整数011a a a a n n -有如下性质:)10(mod 0011a a a a a n n ≡- 例11.已知n 是正整数,证明48 | 72n ―2352n ―1 证明:∵48=3×16,(3,16)=1∴只需证明3| 72n ―2352n ―1且16 | 72n ―2352n ―1即可 ∵7≡1(mod 3),2352≡0(m od 3) ∴72n ―2352n ―1≡12n ―2352×0-1≡0(mod 3) ∴3 | 72n ―2352n ―1,又∵2352=16×147,∴2352≡0(m od 16) ∴72n ―2352n ―1≡49n -1≡1n -1≡0(m od 16)∴16 | 72n―2352n ―1,所以48| 72n ―2352n ―1.说明:当模很大时,可以用本题的方法把问题化为较小的模来求解,请同学位用这个方法重解例8.例12.已知n是任意的正整数,且m | 7n+12n―1,求正整数m的最大值.解:设an=7n+12n―1,那么,a1=7+12―1=18,a2=72+24―1=72∴(a1,a2)=(18,72)=18,∴m≤18,下面证明对任何正整数n,都有18 | 7n+12n―1又因为18=2×9,所以只须证明2| 7n+12n,9|7n+12n―1即可.∵7≡1(mod2),∴7n+12―1≡1n+0―1≡0(mod 2)即2 |7n+12n―1,对n进行分类讨论,⑴若n≡0(mod 3),则n=3k(k为正整数)7n+12n―1≡73k+36k+1≡(―2)3k+0―1≡(―8)k―1≡1k―1≡0(mod 9)⑵若n≡1(mod 3),则n=3k+1(k为非负整数)7n+12n―1≡73k+36k+127+12―1≡0(mod9)⑶若n≡2(mod 3),则n=3k+2(k为非负整数)7n+12n―1≡73k·72+36k+24―1≡72+24―1≡0(mod9)因此,对一切自然数n,都有9 | 7n+12n―1.综上所述,18 | 7n+12n―1,因此m的最大值为18.例13把1,2,3…,127,128这128个数任意排列为a1,a2,…,a128,计算出|a1-a2|,|a3-a4|,…,|a127-a128|,再将这64个数任意排列为b1,b2,…,b64,计算|b1-b2|,|b3-b4|,…,|b63-b64|.如此继续下去,最后得到一个数x,问x是奇数还是偶数?解因为对于一个整数a,有|a|≡a(mod2), a≡-a(mod2),所以b1+b2+…+b64=|a1-a2|+|a3-a4|+…+|a127-a128|≡a1-a2+a3-a4+…+a127-a128≡a1+a2+a3+a4+…+a127+a128(mod 2),因此,每经过一次“运算”,这些数的和的奇偶性是不改变的.最终得到的一个数x≡a1+a2+...+a128=1+2+ (12)=64×129≡0(mod2),故x是偶数.例14求证:一个十进制数被9除的余数等于它的各位数字之和被9除的余数.10≡1(mod9),故对任何整数k≥1,有10k≡1k=1(mod 9).因此即A被9除的余数等于它的各位数字之和被9除的余数.说明(1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.三、模拟训练1求证: (1)8|(551999+17);(2) 8(32n +7); (3)17|(191000-1).证 (1)因55≡-1(mod 8),所以551999≡-1(mo d 8),551999+17≡-1+17=16≡0(m od 8),于是8|(551999+17).(2)32=9≡1(m od 8),32n ≡1(mod 8),所以32n +7≡1+7≡0(mod 8),即8|(32n +7).(3)19≡2(mod 17),194≡24=16≡-1(m od 17),所以191000=(194)250≡(-1)250≡1(mod 17),于是17|(191000-1).2.求20032002的末位数字分析:此题就是求20032002除以10的余数解:∵2003≡3(m od 10),∴20034≡34≡1(mod 10),∴20032002≡(20034)500·20033≡1500·33≡27≡7(mod 10)∴20022002的末位数字是7说明:对于十进制的整数011a a a a n n -有如下性质:011a a a a n n -)10(mod 0a ≡.3求2999最后两位数码.解 考虑用100除2999所得的余数. ∵∴又∴∴∴2999的最后两位数字为88.4.求证:22000+1不能被7整数.分析:只需证明22000≡-1(mod 7)即可证明:∵26≡1(mod7),∴22000≡(26)333·22≡1·22≡4(mod 7),∴22000+1≡5(mod7)所以7 | 22000+15 对任意的自然数n,证明A=2903n-803n-464n+261n 能被1897整除.证1897=7×271,7与271互质.因为2903≡5(mod 7),803≡5(mod 7),464≡2(mod7),261≡2(mod7), 所以A=2903n-803n-464n+261n≡5n-5n-2n+2n=0(mod 7), 故7|A.又因为2903≡193(mod 271),803≡261(mod271),464≡193(mod 271),所以故271|A.因(7,271)=1,所以1897整除A.6任意平方数除以4余数为0和1(这是平方数的重要特征). 证因为奇数2=(2k+1)2=4k2+4k+1≡1(mod 4),偶数2=(2k)2=4k2≡0(mod 4),所以7任意平方数除以8余数为0,1,4(这是平方数的又一重要特征).证奇数可以表示为2k+1,从而奇数2=4k2+4k+1=4k(k+1)+1.因为两个连续整数k,k+1中必有偶数,所以4k(k+1)是8的倍数,从而奇数2=8t+1≡1(mod8),偶数2=(2k)2=4k2(k为整数).(1)若k=偶数=2t,则4k2=16t2=0(mod 8).(2)若k=奇数=2t+1,则4k2=4(2t+1)2=16(t2+t)+4≡4(mod 8),所以求余数是同余的基本问题.在这种问题中,先求出与±1同余的数是一种基本的解题技巧.8形如Fn=22n+1,n=0,1,2,…的数称为费马数.证明:当n≥2时,Fn的末位数字是7.证当n≥2时,2n是4的倍数,故令2n=4t.于是F n=22n+1=24t+1=16t+1≡6t+1≡7(mod 10),即F n的末位数字是7.说明费马数的头几个是F0=3,F1=5,F2=17,F3=257,F4=65537,它们都是素数.费马便猜测:对所有的自然数n,F n都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数F5是合数.。
数学竞赛精讲精练专题—初等数论中的同余问题_1
∴
(
pk k
)
pk k
[
pk k p
]
pk k
pk 1 k
∴
(m)
(
p1 1
)
(
p2 2
)
(
pk k
)
(
p1 1
p1 1
1
)(
p2 2
p2 2
1
)
(
pk k
pk k
1
)
p1 1
(1
p11
)
p2 2
(1
p21)
pk k
(1
又 p 为奇素数, p 1为偶数,∴ ( p 1)!1 0(mod p) ,得证.
6、设 a 为整数, p 为正整数,若存在 x Z ,使得 x2 a(mod p) ,则称 a 为模 p 的二
次剩余,否则,称 a 为模 p 的二次非剩余.
p1
设 p 为奇素数,a Z 且 p a ,证明:a 是模 p 的二次剩余充要条件是 a 2 1(mod p) ;
若 a b(mod m) , c d(mod m) , n N* 则 a c b d(mod m) , a c b d(mod m) ac bd(mod m) , an bn (mod m) .
3)除法运算:
ac bc(mod m) ,则 a b(mod m ) . (c, m)
(1)k m p1 p2 pk
k
m(1
1
1 (1)k 1 )
p p p i1 i 1i jk i j
2021年初中数学竞赛辅导 第四十六讲《同余式》教案 北师大版
2021年初中数学竞赛辅导第四十六讲《同余式》教案1 北师大版数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯.先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜?取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜.在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,xx年元旦是星期五,xx年有365天,365=7×52+1,所以xx年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用.同余,顾名思义,就是余数相同.定义1给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作a≡b(modm),并读作a同余b,模m.若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以 a-b=m(q1-q2),即 m|a-b.反之,若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2.于是,我们得到同余的另一个等价定义:定义2若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.同余式的写法,使我们联想起等式.其实同余式和代数等式有一些相同的性质,最简单的就是下面的定理1.定理1 (1)a≡a(modm).(2) 若a≡b(modm),则b≡a(modm).(3) 若a≡b(modm),b≡c(modm),则a≡c(modm).在代数中,等式可以相加、相减和相乘,同样的规则对同余式也成立.定理2若a≡b(modm),c≡d(modm),则a±c≡b±d(modm),ac≡bd(modm).证由假设得m|a-b,m|c-d,所以m|(a±c)-(b±d), m|c(a-b)+b(c-d),即a±c≡b±d(modm),ac≡bd(modm).由此我们还可以得到:若a≡b(modm),k是整数,n是自然数,则a±k≡b±k(modm),ak≡bk(modm),a n≡b n(modm).对于同余式ac≡bc(modm),我们是否能约去公约数c,得到一个正确的同余式a≡b(modm)?在这个问题上,同余式与等式是不同的.例如25≡5(mod 10),约去5得5≡1(mod 10).这显然是不正确的.但下面这种情形,相约是可以的.定理3若ac≡bc(modm),且(c,m)=1,则a≡b(modm).证由题设知ac-bc=(a-b)c=mk.由于(m,c)=1,故m|a-b,即a≡b(modm).定理4若n≥2,a≡b(modm1),a≡b(modm2),…………a≡b(modm n),且M=[m1,m2,…,m n]表示m1,m2,…,m n的最小公倍数,则a≡b(modM).前面介绍了同余式的一些基本内容,下面运用同余这一工具去解决一些具体问题.应用同余式的性质可以简捷地处理一些整除问题.若要证明m整除a,只需证a ≡0(modm)即可.例1求证:(1)8|(55xx+17);(2) 8(32n+7);(3)17|(191000-1).证 (1)因55≡-1(mod 8),所以55xx≡-1(mod 8),55xx+17≡-1+17=16≡0(mod 8),于是8|(55xx+17).(2)32=9≡1(mod 8),32n≡1(mod 8),所以32n+7≡1+7≡0(mod 8),即8|(32n +7).(3)19≡2(mod 17),194≡24=16≡-1(mod 17),所以191000=(194)250≡(-1)250≡1(mod 17),于是17|(191000-1).例2求使2n-1为7的倍数的所有正整数n.解因为23≡8≡1(mod 7),所以对n按模3进行分类讨论.(1) 若n=3k,则2n-1=(23)k-1=8k-1≡1k-1=0(mod 7);(2) 若n=3k+1,则2n-1=2·(23)k-1=2·8k-1≡2·1k-1=1(mod 7);(3) 若n=3k+2,则2n-1=22·(23)k-1=4·8k-1≡4·1k-1=3(mod 7).所以,当且仅当3|n时,2n-1为7的倍数.例3 对任意的自然数n,证明A=2903n-803n-464n+261n能被1897整除.证 1897=7×271,7与271互质.因为2903≡5(mod 7),803≡5(mod 7),464≡2(mod 7),261≡2(mod 7),所以A=2903n-803n-464n+261n≡5n-5n-2n+2n=0(mod 7),故7|A.又因为2903≡193(mod 271),803≡261(mod 271),464≡193(mod 271),所以故271|A.因(7,271)=1,所以1897整除A.例4把1,2,3…,127,128这128个数任意排列为a1,a2,…,a128,计算出|a1-a2|,|a3-a4|,…,|a127-a128|,再将这64个数任意排列为b1,b2,…,b64,计算|b1-b2|,|b3-b4|,…,|b63-b64|.如此继续下去,最后得到一个数x,问x是奇数还是偶数?解因为对于一个整数a,有|a|≡a(mod 2), a≡-a(mod 2),所以b1+b2+…+b64=|a1-a2|+|a3-a4|+…+|a127-a128|≡a1-a2+a3-a4+…+a127-a128≡a1+a2+a3+a4+…+a127+a128(mod 2),因此,每经过一次“运算”,这些数的和的奇偶性是不改变的.最终得到的一个数x≡a1+a2+…+a128=1+2+…+128=64×129≡0(mod 2),故x是偶数.如果要求一个整数除以某个正整数的余数,同余是一个有力的工具.另外,求一个数的末位数字就是求这个数除以10的余数,求一个数的末两位数字就是求这个数除以100的余数.例5求证:一个十进制数被9除的余数等于它的各位数字之和被9除的余数.10≡1(mod 9),故对任何整数k≥1,有10k≡1k=1(mod 9).因此即A被9除的余数等于它的各位数字之和被9除的余数.说明 (1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.例6 任意平方数除以4余数为0和1(这是平方数的重要特征).证因为奇数2=(2k+1)2=4k2+4k+1≡1(mod 4),偶数2=(2k)2=4k2≡0(mod 4),所以例7任意平方数除以8余数为0,1,4(这是平方数的又一重要特征).证奇数可以表示为2k+1,从而奇数2=4k2+4k+1=4k(k+1)+1.因为两个连续整数k,k+1中必有偶数,所以4k(k+1)是8的倍数,从而奇数2=8t+1≡1(mod 8),偶数2=(2k)2=4k2(k为整数).(1)若k=偶数=2t,则4k2=16t2=0(mod 8).(2)若k=奇数=2t+1,则4k2=4(2t+1)2=16(t2+t)+4≡4(mod 8),所以求余数是同余的基本问题.在这种问题中,先求出与±1同余的数是一种基本的解题技巧.例8 (1)求33除2xx的余数.(2)求8除72n+1-1的余数.解 (1)先找与±1(mod 33)同余的数.因为25=32≡-1(mod 33),所以 210≡1(mod 33),2xx=(210)199·25·23≡-8≡25(mod 33),所求余数为25.(2)因为7≡-1(mod 8),所以72n+1≡(-1)2n+1=-1(mod 8),72n+1-1≡-2≡6(mod 8),即余数为6.例9形如F n=22n+1,n=0,1,2,…的数称为费马数.证明:当n≥2时,F n的末位数字是7.证当n≥2时,2n是4的倍数,故令2n=4t.于是F n=22n+1=24t+1=16t+1≡6t+1≡7(mod 10),即F n的末位数字是7.说明费马数的头几个是F0=3,F1=5,F2=17,F3=257,F4=65537,它们都是素数.费马便猜测:对所有的自然数n,F n都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数F5是合数.证明F5是合数,留作练习.利用同余还可以处理一些不定方程问题.例10证明方程x4+y4+2=5z没有整数解.证对于任一整数x,以5为模,有x≡0,±1,±2(mod 5),x2≡0,1,4(mod 5),x4≡0,1,1(mod 5),即对任一整数x,x4≡0,1(mod 5).同样,对于任一整数yy4≡0,1(mod 5),所以 x4+y4+2≡2,3,4(mod 5),从而所给方程无整数解.说明同余是处理不定方程的基本方法,但这种方法也非常灵活,关键在于确定所取的模(本例我们取模5),这往往应根据问题的特点来确定.练习二十五1.求证:17|(191000-1).2.证明:对所有自然数n,330|(62n-52n-11).4.求21000除以13的余数.5.求15+25+35+…+995+1005除以4所得的余数.6.今天是星期天,过3100天是星期几?再过5xx天又是星期几?7.求n=1×3×5×7×…×xx的末三位数字.8.证明不定方程x2+y2-8z=6无整数解.40492 9E2C 鸬29860 74A4 璤28883 70D3 烓24333 5F0D 弍23887 5D4F 嵏mz37366 91F6 釶22632 5868 塨^31924 7CB4 粴> 30584 7778 睸1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲同余的概念及基本性质数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯.先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜?取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜.在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以2000年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用.同余,顾名思义,就是余数相同.一、基础知识定义1 给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作a≡b(mod m),并读作a同余b,模m.否则,就称a与b对于模m不同余,记作a≡b(mod m),根据定义,a与b是否同余,不仅与a、b有关,还与模m有关,同一对数a和b,对于模m同余,而对于模n也许就不同余,例如,5≡8(mod 3),而5≡8(mod 4),若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以a-b=m(q1-q2),即m|a-b.反之,若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2.于是,我们得到同余的另一个等价定义:定义2 若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a 与b对模m同余.另外,根据同余的定义,显然有以下几种关系是成立的:⑴a≡a(mod n)⑵a≡b(mod m)⇔b≡a(mod n)⑶a≡b(mod n)⇒a≡c(mod m)b≡c(mod m)由此可见,同余是一种等价关系,以上这三条分别叫做同余的反射性,对称性和传递性,而等式也具有这几条性质.二、典型例题;例1.如果a≡b(mod m),以下命题正确的有哪些?请说明理由?⑴m | a-b⑵a = b+mt⑶a = k1m+ r1,b = k2m+ r2(0≤r1,r2<m)⇔r1= r2解:⑴因a≡b(mod m),所以可得a = k1m+ r,b = k2m+ r,那么a-b=(k1-k2)m,由于k1-k2是整数,因此m | a-b是正确的.⑵根据⑴可得a-b= mt,即a= b+mt⑶根据⑴可得,m | r1-r2,又因为0≤| r1-r2 |<m,所以| r1-r2 |=0,故r1= r2.例2.判断正误,并说明理由.⑴如果a≡b(mod m)那么ka≡kb(mod m)⑵如果a≡b(mod m),c是整数,那么a±c≡b±c (mod m)⑶如果a1≡b1(mod m),a2≡b2(mod m),那么a1±a2≡b1±b2 (mod m),a1a2≡b1b2 (mod m).⑷如果3a≡3b(mod 6 ),那么a≡b (mod 6 )解:⑴∵a≡b(mod m),∴m | a-b,∴m | k (a-b)即m | (ka-kb)∴ka≡kb(mod m)⑴成正确⑵∵a≡b(mod m),∴m | a-b又因为c是整数,所以m | a-c-b+c,即m | (a-c) -(b-c)即a-c≡b-c(mod m)同理可得,a+c≡b+c(mod m)⑶仿照上面的两个小题的方汪,可以判定这个命题也是正确的⑷显然6≡12(mod 6),而2≡ 4 (mod 6),因此,这个命题不正确说明:⑶的结论可以得到同余的另一条性质,即a≡b(mod m)⇒a n≡b n(mod m)此题说明两个同余式能够象等式一样进行加、减、乘、乘方,但同余式两边却不能除以同一数,那么,同余式的两边在什么情况下可以同除以一个数呢?我们先看下面的例题.例3.由下面的哪些同余式可以得到同余式a≡b(mod 5)①3a ≡3b (mod 5) ②10a ≡10b (mod 5)③6a ≡6b (mod 10) ④10a ≡10b (mod 20)解:①因3a ≡3b (mod 5),所以5 | 3(a -b ),而5 | 3 ,因此5 | a -b ,故a ≡b (mod 5)②由10a ≡10b (mod 5)可以得到5 | 10(a -b ),而5 | 10,因此5不一定整除a -b ,故a ≡b (mod 5)就成立③由6a ≡6b (mod 10)可得10 | 6(a -b ),而10=2×5,6=2×3,因此5 | a -b , 故a ≡b (mod 5)成立④由10a ≡10b (mod 20)可得到20 | 10(a -b ),而20= 4×5,4 | 10,因此5 | (a -b )故a ≡b (mod 5)不成立综上所述,由3a ≡3b (mod 5)或6a ≡6b (mod 10)都可以得到a ≡b (mod 5)说明:在①中,因为(3,5)=1,因此由5 | 3(a -b )一定可以得到5 | a -b ,进而得到a ≡b (mod 5),一般地,如果(k ,m )=1,ka ≡kb (mod m ),那么a ≡b (mod m )在③中,因(6,10)=2,因此由10| 6(a -b )一定可以得到5 | a -b ,进而得a ≡b (mod 5),一般地,如果(k ,m )= d ,ka ≡kb (mod m ),那么a ≡b )(mod dm .例4.如果a ≡b (mod 12)且a ≡b (mod 8),那么以下同余式一定成立的是哪些?①a ≡b (mod 4) ②a ≡b (mod 24) ③a ≡b (mod 20) ④a ≡b (mod 48) 解:正确的有①和②①由题中的条件可得12 | a -b ,又因4 | 12,所以4 | a -b ,故a ≡b (mod 4). ②因12 | a -b ,8| a -b ,所以a -b 是12和8的公倍数,又因为[8,12]=24,因此 a -b 必是24的倍数,即24 | a -b ,故a ≡b (mod 24).③显然,当a = 26,b = 2时满足条件a ≡b (mod 12)和a ≡b (mod 8),但却不满足 a ≡b (mod 20).④同③,用a = 26,b = 2验证即可.【说明】:⑴一般地,若a ≡b (mod m )且n | m ,那么a ≡b (mod n )⑵若a ≡b (mod m ),a ≡b (mod n ),那么a ≡b (mod [m ,n ]),它的一个特殊情况就是:如果a ≡b (mod m ),a ≡b (mod n )且(m ,n )=1,那么a ≡b (mod m n )【一些结论】1.同余定义的等价形式①a ≡b (mod m )⇔m | a -b②a ≡b (mod m )⇔a = b +mt2.同余式的同加、同乘性如果a 1≡b 1(mod m ),a 2≡b 2(mod m )那么⑴a 1±a 2≡b 1±b 2(mod m )⑵ka 1≡kb 1(mod m )(k ∈Z )⑶a 1a 2≡b 1b 2(mod m )⑷a 1n ≡b 1n (mod m )(n 是整数).3.如果(k ,m )=d ,ka ≡kb (mod m ),那么a ≡b )(mod dm . 这条性质的直接推论就是:如果(k ,m )=1,ka ≡kb (mod m ),那么a ≡b (mod m )4.如果a ≡b (mod m )且n | m ,那么a ≡b (mod n )5.如果a ≡b (mod m ),a ≡b (mod n ),那么a ≡b (mod [m ,n ])这条性质的一个推论就是:如果a ≡b (mod m ),a ≡b (mod n )且(m ,n )=1,那么a ≡b (mod m n )例5.⑴求19992002除以9的余数;⑵求1010除以7的余数解:⑴∵9 | 1999-1000,∴1999≡1000≡1(mod 9)∴19992000≡12002≡1(mod 9),∴19992000除以9的余数是1⑵∵10≡3(mod 7),∴103≡33≡-1(mod 7)∴106≡(-1)2≡1(mod 7),∴1010≡104(mod 7)又∵102≡9≡2(mod 7),∴102≡10 4≡22≡4(mod 7)所以1010除以7的余数是4.说明:求较大数的余数时,可先设法找到与±1同余的数,然后利用同余式的性质,求出所求数的余数.例6.求14589+32002除以13的余数.解:∵145≡2(mod 13),∴1456≡26≡-1(mod 13)∴(1456)14≡(-1)14≡1(mod 13)即14584≡1(mod 13)又∵1455≡25≡6(mod 13)所以14589≡14584·1455≡6×1≡6(mod 13)又∵33≡1(mod 13),∴(33)667≡32001≡1(mod 13),∴32002≡3(mod 13) 所以,14589+32002≡6+3≡9(mod 13)即14589+32002除以13的余数是9例7.求19982002的十位数字分析:此题可以通过19982002的末两位数来求解,与前面的方法类似解:∵199898≡-2(mod 100),∴19982002≡(-2)2002≡22002≡41001(mod 100) 因为4≡4(mod 100),42≡16(mod 100),43≡64(mod 100),44≡56(mod 100),45≡24(mod 100),46≡96(mod 100),47≡84(mod 100),48≡36(mod 100), 49≡44(mod 100),410≡76(mod 100),411≡4(mod 100)…所以4 n 除以100的余数是以4、16、64、56、24、96、84、36、44、76周期性出现的,因41001=410×100+1,所以41001≡4(mod 100),因此19982002≡4(mod 100),故19982002的十位数字是0.说明:正整数幂的末位数、末两位数、末三位数都具有周期性.例8(1998年匈牙利奥林匹克竞赛题)求使2n +1能被3整除的一切自然数n . 解∵ ∴则2n +1∴当n 为奇数时,2n +1能被3整除;当n 为偶数时,2n +1不能被3整除.例9 求证31980+41981能被5整除.证明 ∵∴∴∴例10.求20032002的末位数字.分析:此题就是求20032002除以10的余数解:∵2003≡3(mod 10),∴20034≡34≡1(mod 10),∴20032002≡(20034)500·20033≡1500·33≡27≡7(mod 10)∴20022002的末位数字是7. 说明:对于十进制的整数011a a a a n n -有如下性质:)10(mod 0011a a a a a n n ≡- 例11.已知n 是正整数,证明48 | 72n ―2352n ―1证明:∵48=3×16,(3,16)=1∴只需证明3| 72n ―2352n ―1且16 | 72n ―2352n ―1即可∵7≡1(mod 3),2352≡0(mod 3)∴72n ―2352n ―1≡12n ―2352×0-1≡0(mod 3)∴3 | 72n ―2352n ―1,又∵2352=16×147,∴2352≡0(mod 16)∴72n ―2352n ―1≡49n -1≡1n -1≡0(mod 16)∴16 | 72n ―2352n ―1,所以48| 72n ―2352n ―1.说明:当模很大时,可以用本题的方法把问题化为较小的模来求解,请同学位用这个方法重解例8.例12.已知n是任意的正整数,且m | 7n+12n―1,求正整数m的最大值.解:设a n=7n+12n―1,那么,a1=7+12―1=18,a2=72+24―1=72∴(a1,a2)=(18,72)=18,∴m≤18,下面证明对任何正整数n,都有18 | 7n+12n―1又因为18=2×9,所以只须证明2 | 7n+12n,9 | 7n+12n―1即可.∵7≡1(mod 2),∴7n+12―1≡1n+0―1≡0(mod 2)即2 | 7n+12n―1,对n进行分类讨论,⑴若n≡0(mod 3),则n=3k(k为正整数)7n+12n―1≡73k+36k+1≡(―2)3k+0―1≡(―8)k―1≡1k―1≡0(mod 9)⑵若n≡1(mod 3),则n=3k+1(k为非负整数)7n+12n―1≡73k+36k+127+12―1≡0(mod 9)⑶若n≡2(mod 3),则n=3k+2(k为非负整数)7n+12n―1≡73k·72+36k+24―1≡72+24―1≡0(mod 9)因此,对一切自然数n,都有9 | 7n+12n―1.综上所述,18 | 7n+12n―1,因此m的最大值为18.例13 把1,2,3…,127,128这128个数任意排列为a1,a2,…,a128,计算出|a1-a2|,|a3-a4|,…,|a127-a128|,再将这64个数任意排列为b1,b2,…,b64,计算|b1-b2|,|b3-b4|,…,|b63-b64|.如此继续下去,最后得到一个数x,问x是奇数还是偶数?解因为对于一个整数a,有|a|≡a(mod 2),a≡-a(mod 2),所以b1+b2+…+b64=|a1-a2|+|a3-a4|+…+|a127-a128|≡a1-a2+a3-a4+…+a127-a128≡a1+a2+a3+a4+…+a127+a128(mod 2),因此,每经过一次“运算”,这些数的和的奇偶性是不改变的.最终得到的一个数x≡a1+a2+…+a128=1+2+…+128=64×129≡0(mod 2),故x是偶数.例14 求证:一个十进制数被9除的余数等于它的各位数字之和被9除的余数.10≡1(mod 9),故对任何整数k≥1,有10k≡1k=1(mod 9).因此即A被9除的余数等于它的各位数字之和被9除的余数.说明(1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.三、模拟训练1求证:(1)8|(551999+17);(2) 8(32n +7);(3)17|(191000-1).证 (1)因55≡-1(mod 8),所以551999≡-1(mod 8),551999+17≡-1+17=16≡0(mod 8),于是8|(551999+17).(2)32=9≡1(mod 8),32n ≡1(mod 8),所以32n +7≡1+7≡0(mod 8),即8|(32n +7).(3)19≡2(mod 17),194≡24=16≡-1(mod 17),所以191000=(194)250≡(-1)250≡1(mod 17),于是17|(191000-1).2.求20032002的末位数字分析:此题就是求20032002除以10的余数解:∵2003≡3(mod 10),∴20034≡34≡1(mod 10),∴20032002≡(20034)500·20033≡1500·33≡27≡7(mod 10)∴20022002的末位数字是7说明:对于十进制的整数011a a a a n n -有如下性质:011a a a a n n -)10(mod 0a ≡. 3求2999最后两位数码.解 考虑用100除2999所得的余数. ∵∴又∴∴ ∴2999的最后两位数字为88.4.求证:22000+1不能被7整数.分析:只需证明22000≡-1(mod 7)即可证明:∵26≡1(mod 7),∴22000≡(26)333·22≡1·22≡4(mod 7),∴22000+1≡5(mod 7)所以7 | 22000+15 对任意的自然数n,证明A=2903n-803n-464n+261n 能被1897整除.证1897=7×271,7与271互质.因为2903≡5(mod 7),803≡5(mod 7),464≡2(mod 7),261≡2(mod 7),所以A=2903n-803n-464n+261n≡5n-5n-2n+2n=0(mod 7),故7|A.又因为2903≡193(mod 271),803≡261(mod 271),464≡193(mod 271),所以故271|A.因(7,271)=1,所以1897整除A.6 任意平方数除以4余数为0和1(这是平方数的重要特征).证因为奇数2=(2k+1)2=4k2+4k+1≡1(mod 4),偶数2=(2k)2=4k2≡0(mod 4),所以7 任意平方数除以8余数为0,1,4(这是平方数的又一重要特征).证奇数可以表示为2k+1,从而奇数2=4k2+4k+1=4k(k+1)+1.因为两个连续整数k,k+1中必有偶数,所以4k(k+1)是8的倍数,从而奇数2=8t+1≡1(mod 8),偶数2=(2k)2=4k2(k为整数).(1)若k=偶数=2t,则4k2=16t2=0(mod 8).(2)若k=奇数=2t+1,则4k2=4(2t+1)2=16(t2+t)+4≡4(mod 8),所以求余数是同余的基本问题.在这种问题中,先求出与±1同余的数是一种基本的解题技巧.8 形如F n=22n+1,n=0,1,2,…的数称为费马数.证明:当n≥2时,F n的末位数字是7.证当n≥2时,2n是4的倍数,故令2n=4t.于是F n=22n+1=24t+1=16t+1≡6t+1≡7(mod 10),即F n的末位数字是7.说明费马数的头几个是F0=3,F1=5,F2=17,F3=257,F4=65537,它们都是素数.费马便猜测:对所有的自然数n,F n都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数F5是合数.。