初中数学竞赛讲座之数论初步(一)

合集下载

数论初步PPT课件

数论初步PPT课件

04 素数与合数
素数的定义与性质
素数的定义
素数是大于1的自然数,且只能被 1和它自身整除的数。
素数的性质
素数是无穷多的,最小的素数是2, 所有偶数(除了2)都不是素数, 任何素数的因数都只有两个。
合数的定义与性质
合数的定义
合数是除了1和它自身以外,还有其 他整数能够整除的整数。
合数的性质
合数一定是大于2的偶数或大于3的奇数, 最小的合数是4,合数的因数除了1和它 自身外,至少还有一个其他的因数。
素数的分布与猜想
素数的分布
素数在自然数中的分布比较稀疏,它们的出现似乎有一定的规律性,但尚未被完全证明。
素数的猜想
哥德巴赫猜想和孪生素数猜想是关于素数的两个著名数学猜想,至今仍未被解决。哥德巴赫猜想是猜想任何一个 大于2的偶数都可以写成两个素数之和;孪生素数猜想是猜想存在无穷多对相邻素数,它们之间的距离不超过一 个给定的常数。
代数数域的构建
代数数域的定义
代数数域是具有某种代数结构的域,通常是由有理数域通 过添加代数数得到的。
代数数域的构建方法
通过添加代数数,可以得到不同的代数数域,如添加二次 方程的根可以得到二次数域,添加更高级的方程的根可以 得到更高级的代数数域。
代数数域的性质
代数数域具有一些重要的性质,如封闭性、完备性等,这 些性质对于研究代数数论和数学其他分支都有重要的意义。
THANKS FOR WATCHING
感谢您的观看
05 代数数论基础
代数数论简介
代数数论的定义
代数数论是数学的一个重要分支,主 要研究代数数域和代数整数环的理论。
代数数论的发展历程
代数数论的基本概念
代数数论涉及到许多基本概念,如代 数数域、代数整数环、素数、分解整 环等。

初中数学竞赛中的数论问题

初中数学竞赛中的数论问题

初中数学竞赛中的数论问题近年来,初中数学竞赛的参赛人数增加,涌现出一批数学爱好者,数论问题成为竞赛中的重要内容。

本文介绍了初中数学竞赛中的数论问题,旨在提高初中学生数学竞赛的水平,提高他们解决数论问题的能力。

首先,数论问题是指分析、研究自然数、整数和实数之间的关系、规律以及与它们有关的运算方式及其性质。

它是数学中一个基本领域,也是数学竞赛中的一个重要内容。

数论问题涉及大整数分解、素数分解、欧拉函数等多种内容,涉及许多理论和方法,使得学习起来更具有挑战性和吸引力。

其次,解决数论问题需要学生掌握一定的数学知识,加强对数论理论的掌握,培养相应的解题思路,有利于培养学生的抽象思维能力、逻辑思维能力和自主学习能力。

针对初中生,可以通过实例讲解、习题训练等方式,结合学生的实际能力,引导学生学习,依次深入,循序渐进,从而提高学生解决数论问题的能力。

此外,在初中数学竞赛中,数论问题的教学也很重要,主要包括以下几个方面:(1)系统知识、方法和思维:学生必须掌握一些有关数论方面的知识,如欧拉函数、因子分解、素数因子分解等,以及有关的一些算法和思维;(2)解题思路:学生要逐步掌握把握数论问题的总体解题思路,明确问题的解法,刻画出问题的有效解法,从经典例题中总结出解题思路;(3)实践:学生要通过不断练习,培养准确实用的解题技巧,不断熟悉各种数论问题的特点,以及有效的应用两者的解决方案;(4)提高解题水平:学生要参加练习和竞赛,不断提高解决数论问题的能力,熟悉解题思路和技巧,增强解题的自信心和适应能力,实现竞赛的胜利。

最后,数论问题在初中数学竞赛中也扮演着至关重要的角色,是竞赛中必不可少的一部分,学习数论除了提高数学水平以外,也可以提高学生分析问题、解决问题的能力。

因此,在数学竞赛中,数论问题的教学应当重视,为初中学生提供更多的学习资源,为他们的数学知识学习、解决数论问题提供更多的支持。

竞赛数论基础课件

竞赛数论基础课件
思考:从同余类的记法可以看出,它是否与代表元的 选取有关?
模n的完全剩余系
从每一个模n同余类中取一个数为代表,形成一个集 合,此集合称为模n的完全剩余系,记为Zn
Zn即最Z简n=单{0表,1示,就2,是…集n-合1}{0,1,2,…,n-1},
2 整数同余与模运算
模运算的性质: 自反性: aa (mod m). 对称性: 若ab(mod m), 则 ba(mod m). 传递性: 若ab(mod m), bc(mod m),
如果n为素数,则(n)=n-1 如果gcd(m,n)=1,则(mn)= (m)(n)
2 欧拉定理
费尔马定理(欧拉定理实际上是费尔 马定理的推广) 如果p是素数,则对任意的a,有
a p1 mod p 1
2 欧拉定理
如果p不是素数,则对任意的a,有
a phi( p) mod p 1
phi( p)
逆元的存在性 加法逆元总存在,例如n-a 乘法逆元存在的充要条件是a与n互素时
A.3 欧拉定理
1 欧拉函数
对于正整数n,(n)定义为小于n且与n互 质的正整数的个数。
例如(6) = 2,这是因为小于6且与6互质的 数有1和5共两个数
再如(7) = 6,这是因为互质数有1,2,3,4, 5,6共6个。
是b的真因数.
1 整除
关于整除,显然有下列定理: 定理1.1
①对所有a, 1|a. ②对所有a, a|0. ③对所有 a, a|a. ④若a|b且b|c, 则a|c. ⑤若a|b, 则对任意的c≠0, 有ac|bc. ⑥若ac|bc且c≠0, 则a|b.
1 整除
⑦若 a | b且a|c,则对任意的 m,n,有 a|(bm+cn).

《数学竞赛辅导》——初等数论

《数学竞赛辅导》——初等数论

《数学竞赛辅导》——初等数论部分数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。

数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。

可是这也说明了最难的数论问题,适合于任何人去研究。

初等数论最基础的理论在于整除,由它可以演化出许多数论定理。

做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。

这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈∃∈∀,,,,满足r bq a +=,其中b r <≤0。

除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。

相信通过对本书学习,您可以对数论有一个大致的了解。

希望我们共同学习,相互交流,在学习交流中,共同提高。

编者:刘道生2007-8-21于江西赣州第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。

进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。

在本节,我们着重介绍进位制及其广泛的应用。

基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。

由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即012211101010a a a a A m m m m +⨯++⨯+⨯=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。

数学竞赛筑阶系列讲座01—初等数论之一

数学竞赛筑阶系列讲座01—初等数论之一

b a 数学竞赛筑阶系列讲座——初等数论之一讲解人:凌 彬姓名__________专题一:整数的基本知识一、十进制整数和整除概念十进制中的n 位数表示为:12121121101010n n n n n n a a a a a a a a ----=⨯+⨯++⨯+ , 其中i a 是0到9中整数且0n a ≠.设a 、b 是两个整数,0b ≠,假如有一个整数c ,使得a bc =,则称b 能整除a ,记作|b a .如果没有这样的c ,则称b 不能整除a ,记作 .例1.一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,则7,11,13是此六位数的约数.例2.证明:201001能被11整除.二、数的整除的特征1.一个整数被2整除(即是偶数),则它的个位是偶数;反之亦然. 2.一个整数被5整除,则它的个位数是0或5;反之亦然.3.设整数1n N a a = 被3(或9)整除,则N 的各位数码之和1n a a ++ 被3(或9)整除,反之亦然.4.设整数1n N a a = 被11整除,则N 的各位数码的正负交错和:111(1)n n n a a a ---++-被11整除;反之亦然.例3.用数码1,2,3,4,5,6各十个,随意排成一个六十位数n ,求证:n 一定是3的倍数.例4.由数码0,1,2,3,4,5能否组成各位数码不同而又能被11整除的六位数?例5.已知1345n xy z =能被792整除,试确定x 、y 、z 的值.三、整除的两个基本性质和一个基本公式基本性质1 如果|c ab ,(, )1a c =,那么|c b .基本性质2 设|b a ,|c a ,如果(, )1b c =,那么|bc a . 基本公式 对任意正整数n 以及整数a 、b ,总有|n n a b a b --.例6.已知有n 使1987|111n,求证:对此n 也有 1987|111999888777nnnn.例7.证明:对任意一个整数a ,都有36|a a -.例8.已知|10n a b -,|10n c d -,求证:|n ad bc -.四、平方数的性质(也叫完全平方数)1.性质1 平方数的个位数只能取0、1、4、5、6、9这六种情形. 2.性质2 偶数的平方必是4的倍数即偶数的平方必是8n 或84n +型. 3.性质3 奇数的平方必是8的倍数加1即81n +型.4.性质4 平方数与平方数的乘积必为平方数,平方数与非平方数的乘积必为非平方数. 5.性质5 平方数的形式必为下列两种之一:3k ,31k +. 6.性质6 平方数的数字之和只能是0,1,4,7,9.(注:256的各位数字相加25613++=,13叫做256的各位数字之和,再把13的各位数字相加134+=,4也叫做256的各位数字之和)例9.证明: 111n,222n , ,999n(1)n >都不是平方数.例10.证明:225671987m mn n -+=无整数解.例11.证明:方程2222n a b c abc ++=(*)n N ∈只有0a b c ===这一组整数解.例12.证明:49,4489,444889, ,14448889nn -都是平方数.例13.证明: 1111100051nn -⨯+是平方数.五、巩固练习1.设n 为正整数,证明:421n -能被15整除.2.已知存在正整数n ,使 111n被1987整除,证明:数 111999888777nn n np =和数 1111111999888777n n n n q ++++=都能被1987整除.3.已知八位数141283x y 是9及11的倍数,求这个八位数的万位数码x 及十位数码y .4.设n 为非负整数,求证:2211112n n +++是133的倍数.5.证明:有一个且只有一个n ,使811222n ++是平方数.6.设正整数n 不是4的倍数,证明:10|1234n n n n +++.。

初一数学竞赛讲座⑴数论的方法与技巧

初一数学竞赛讲座⑴数论的方法与技巧

初一数学竞赛讲座第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

初中数学中的数论初步(初中数学培优)

初中数学中的数论初步(初中数学培优)

第1章整除在日常生活中,我们会过到许多有趣而又耐人寻味的问题:某同学到文具店买了七个一角二分钱的本子、五个六分钱的铅笔和三个活页夹子。

售货员收了他三元钱,并找还三角七分钱。

这个同学马上对售货员说:“您的账算错了!”你能知道他为什么这样快就知道“算错了账”吗?排练团体操时,要求队伍变成10行、15行、18行、24行时,队形都能成为矩形,问最少需要多少人参加团体操的排练?§1.1 十进制整数在小学数学中,我们主要学习的是整数的运算,思考整数是怎样表示的?“逢十进一”是什么意思?我们通常接触到整数都是十进制的整数。

十进制计数法就是采取逢十进一的法则进行计数的方法。

例如,1995就是由1个一千,9个一百,9个十和1个五组成,因此1995这个数就可以写成.那么对于任意一个n+1位的正整数怎样用这种形式表示?为了表示方便,我们经常把用字母表示数字的多位数,在这个多位数上面加一个横线,以避免和乘法混淆,例如,就表示一个五位数。

§1.2 数的整除设有两个整数a,b(b≠0),若有另一整数q,使得,则称a被b 整除;或b能整除a;若a被b整除,也成a是b的倍数;b是a的约数,并记作b|a.若a不能被b整除,则记作.我们曾经学过下述有关整除的判别法则:1、被2或5整除的数的特征是末位数字能被2或5整除;2、被4或25整除的数的特征是末两位数字能被4或25整除;3、被8或125整除的数字的特征是末三位数字能被8或125整除;4、被3或9整除的数的特征是个位数字的和能被3或9整除;5、被11整除的数的特征是其奇数位数字之和与偶数位数字之和的差能被11整除;解题过程中我们常用的性质:1、若,,则;2、若,,则;3、若,则是正整数;4、若a、b互质,且,则;5、若a、b互质,且,,则;6、n个连续整数中,必有一个能被n整除;§1.3~1.4 奇数和偶数把全体整数分成奇数类和偶数类是一种最常用的分类方法;奇数就是通常所述的单数,偶数就是通常所说的双数;一般的,一个整数如果能被2整除就叫做偶数,如果不能被2整除(即被2除余1)就叫做奇数;偶数可以记作2n,奇数可以记作2n-1或2n+1(n为整数);奇数和偶数有一些十分简单又明显的性质:1、奇数不等于偶数;2、奇数奇数偶数,偶数偶数偶数,奇数偶数奇数;3、奇数个奇数的和是奇数,偶数个奇数的和是偶数,任意多个偶数的和都是偶数;4、奇数奇数奇数,偶数整数偶数,偶数偶数的倍数;5、两个整数的和与这两个整数的差具有相同的奇偶性;6、奇数的平方为4k+1型的数,偶数的平方为4k型的数(k为整数);7、任意两个整数的平方和被4除一定不余3;8、任意两个整数的平方差被4除一定不余2;§1.5 质数与合数对于正整数可以依照它们的正约数的个数分为三类:一类是只有一个正约数的数,它就是1;一类是只有两个正约数的数,这两个正约数只能是1和它本身,例如5,7,11,这样的数叫做质数(也叫做素数);第三类是有两个以上的正约数的数,例如6就有4个正约数:1,2,3,6,这样的数叫做合数。

初中数学竞赛讲座——数论部分1(进位制)

初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制一、基础知识:1.我们通常接触的整数都是“十进制”整数,十进制计数法就是用0,1,2…9十个数码,采用“逢十进一”的法则进行计数的方法。

例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:1999=1×1000+9×100+9×10+9底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1位上的数)故1999=1×103+9×102+9×101+9×1003na记作:3na=10n-1+…+102a n-2+10其中最高位a1≠0,即,其它则是0≤a1,a.各位上的数字相同的正整数记法:999=1000-1104-1,∴999n个=10n-1111n个=1019n-,333n个=103n555n个=5(101)9n-解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据示0到9的整数这一性质进行讨论。

.二进制及其它进制二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。

例如二进制中的111记为(111)2111=1×22+1×2+1=73na )2记作:3na=2n-1××a3+…+22×a其中最高位a1≠0,,其它则是0≤a1,a2,位数(n为正整数3na )b记作:3na=b n-1××a3+…+b2×a其中最高位a1≠0,,其它则是0≤a1,(一)十进制转二进制(整数部分)辗转相除直到结果为,将余数和最后的60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛讲座之数论初步(一)
整数的整除性
定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a.
显然,1能整除任意整数,任意整数都能整除0.
性质:设a ,b ,c 均为非零整数,则
①.若c|b ,b|a ,则c|a.
②.若b|a ,则bc|ac
③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb
④.若b|ac ,且(a ,b)=1,则b|c
证明:因为(a ,b)=1
则存在两个整数s ,t ,使得
as +bt =1
∴ asc +btc =c
∵ b|ac ⇒ b|asc
∴ b|(asc +btc) ⇒ b|c
⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c
证明:a|c ,则c =as(s ∈Z)
又b|c ,则c =bt(t ∈Z)
又(a ,b)=1
∴ s =bt'(t'∈Z)
于是c =abt'
即ab|c
⑥.若b|ac ,而b 为质数,则b|a ,或b|c
⑦.(a -b)|(a n -b n )(n ∈N),(a +b)|(a n +b n
)(n 为奇数)
整除的判别法:设整数N =121n 1a a a a -
①.2|a 1⇔2|N ,
5|a 1⇔ 5|N
②.3|a 1+a 2+…+a n ⇔3|N
9|a 1+a 2+…+a n ⇔9|N
③.4|a a
⇔ 4|N
25|a a
⇔ 25|N
④.8|a a a
⇔8|N
125|a a a ⇔125|N
⑤.7||41n n a a a --a a a |⇔7|N
⑥.11||41n n a a a --a
a a |⇔11|N
⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)]
⇔11|N
⑧.13||41n n a a a --a a a |⇔13|N
推论:三个连续的整数的积能被6整除.
例题:
1.设一个五位数d a c b a ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|d a c b a
∴ 11|a +c +d -b -a
即11|c +3
∴ c =8
1≤a ≤9,且a ∈Z
2.设72|b 673a ,试求a ,b 的值.
解:72=8×9,且(8,9)=1
∴ 8|b 673
a ,且9|
b 673a ∴ 8|b 73 ⇒ b =6
且 9|a +6+7+3+6
即9|22+a
∴ a =5
3.设n 为自然数,A =3237n -632n -855n +235n

求证:1985|A.
证明:∵1985=397×5
A=(3237n-632n)-(855n-235n)
=(3237-632)×u-(855-235)×v(u,v∈Z)
=5×521×u-5×124×v
∴5|A
又A=(3237n-855n)-(623n-235n)
=(3237-855)×s-(623-235)×t(s,t∈Z)
=397×6×s-397×t
∴ 397|A
又∵(397,5)=1
∴397×5|A
即1985|A
4.证明:没有x,y存在,使等式x2+y2=1995(x,y∈Z)成立.
证:假设有整数x,y存在,使x2+y2=1995成立。

∵x2,y2被4除余数为0或1.
∴x2+y2被4除余数为0,1或2.
又∵1995被4除余数为3.
∴得出矛盾,假设不成立.
故没有整数x,y存在,使x2+y2=1995成立.
费马小定理:若p是素数,(m,p)=1
则 p|m p-1-1
5.试证:999…9能被13整除.
12个
证明:∵10-1=9,100-1=99,…‚1012-1=999…9.
12个
又(10,13)=1
∴13|(1013-1-1),即13|(1012-1)
∴13 |999…9.
12个
6.请确定最小的正整数A ,其末位数是6,若将未位的6移至首位,其余数字不变,其值变为原数的4倍.
解:设该数为A =12n 1n n a a a a --,其中a 1=6
令x =22n 1n n a a a a --
则A =6x =x ·10+6
于是4A =x 6=6×10n -1+x
即有4×10x +24=6×10n -1+x
x =13
)410(21n -- ∵ (2,13)=1,x 是整数
∴ 13|(10n -1-4)
n =1,2时,10
n -1-4<10显然不满足条件 n =3时,10
n -1-4=96 不满足条件 n =4时,10
n -1-4=996 不满足条件 n =5时,10
n -1-4=9996不满足条件 n =6时,10
n -1-4=99996 满足条件 ∴ x =13
999962⨯=15384 即A =153846
7.一个正整数,如果用7进制表示为abc ,如果用5进制表示为cba ,请用10进制表示这个数. 解:由题意知:0<a,c ≤4,0≤b ≤4,设这个正整数为n,则
n =abc =a×72+b×7+c, n=cba =c×52
+b×5+a ∴49a +7b +c =25c +5b +a
48a +2b -24c =0
b =12(
c -2a)
∴12|b,
又∵0≤b≤4
∴b=0,
∴c=2a
∴当a=1,c=2时,n=51
当a=2,c=4时,n=102
练习:
1.证明:设N=19881988-19861986,则1987∣N
2.设n是自然数,求证n5-n可被30整除.
3.请确定最小的正整数A,其末位数为2,若将末位数2移至首位,其余数字不变,则是原数的2倍.
4.一个正整数,若用9进制表示为abc,若用7进制表示为cba,请用10进制表示此数.
5.五位数
67a
a4能被4整除,最末两位组成的数a7能被6整除,求此五位数.。

相关文档
最新文档