初中数学竞赛竞赛讲座(数字、数位及数谜问题)

初中数学竞赛竞赛讲座(数字、数位及数谜问题)
初中数学竞赛竞赛讲座(数字、数位及数谜问题)

竞赛讲座(数字、数位及数谜问题)

一、 知识要点

1、整数的十进位数码表示

一般地,任何一个n 位的自然数都可以表示成:

122321*********a a a a a n n n n +?+?++?+?---

其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0.

对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=1

21a a a a n n - 2、正整数指数幂的末两位数字

(1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。

(2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。

3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。

二、 例题精讲

例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。

解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得:

(a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988

∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988

比较等式两边首、末两位数字,得 a+d=8,于是b+c18

又∵c-2=d ,d+2=b ,∴b-c=0

从而解得:a=1,b=9,c=9,d=7

故所求的四位数为1997

评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。

例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。

分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定。

解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba 。由“新生数”的定义,得

N=()()()c a a b c c b a cba abc -=++-++=-991010010100

由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990。这9个数中,只有954-459=495符合条件。

故495是唯一的三位“新生数”

评注:本题主要应用“新生数”的定义和整数性质,先将三位“新生数”进行预选,然后再从中筛选出符合题意的数。这也是解答数学竞赛题的一种常用方法。

例3 从1到1999,其中有多少个整数,它的数字和被4整除?

将每个数都看成四位数(不是四位的,在左面补0),0000至1999共2000个数。千位数字是0或1,百位数字从0到9中选择,十位数字从0到9中选择,各有10种。

在千、百、十位数字选定后,个位数字在2到9中选择,要使数字和被4整除,这时有两种可能:设千、百、十位数字和为a ,在2,3,4,5中恰好有一个数b ,使a+b 被4整除(a+2、a+3、a+4、a+5除以4,余数互不相同,其中恰好有一个余数是0,即相应的数被4整除);在6,7,8,9中也恰好有一个数c(=b+4),使a+c 被4整除。因而数字和被4整除的有:2?10?10?2=400个.

再看个位数字是0或1的数。千位数字是0或1,百位数字从0到9中选择,在千、百、个位数字选定后,十位数字在2到9中选择。与上面相同,有两种可能使数字和被4整除。因此数字和被4整除的又有:2?2?10?2=80个。

在个位数字、十位数字、千位数字均为0或1的数中,百位数字在2到9中选择。有两种可能使数字和被4整除。因此数字和被4整除的又有:2?2?2?2=16个。

最后,千、百、十、个位数字为0或1的数中有两个数,数字和被4整除,即1111和0000,而0000不算。

于是1到1999中共有400+80+16+1=497个数,数字和被4整除。

例4 圆上有9个数码,已知从某一位起把这些数码按顺时针方向记下,得到的是一个9位数并且能被27整除。证明:如果从任何一位起把这些数码按顺时针方向记下的话,那么所得的一个9位数也能被27整除。

分析:把从某一位起按顺时针方向记下的9位数记为:9

321a a a a ,其能被27整除。 只需证明从其相邻一位读起的数:1

932a a a a 也能被27整除即可。 证明:设从某一位起按顺时针方向记下的9位数为:9

321a a a a 依题意得:9

321a a a a =987281101010a a a a +?++?+? 能被27整除。 为了证明题目结论,只要证明从其相邻一位读起的数:1932a a a a 也能被27整除即可。 1932a a a a =197382101010a a a a +?++?+?

∴10?9321a a a a -1

932a a a a =10(987281101010a a a a +?++?+? )-(197382101010a a a a +?++?+? ) =101010109738291?++?+?+?a a a a -(1

97382101010a a a a +?++?+? ) =()()131

91911100011010a a a a -=-=-? ∵()()()

1100010009991100010001100011000223++=++-=- 而999能被27整除,∴10003-1也能被27整除。

因此,1

932a a a a 能被27整除。从而问题得证。 评注:本题中,109-1难以分解因数,故将它化为10003-1,使问题得到顺利解决。 这种想办法降低次数的思想,应注意领会掌握。

例5 证明:111111+112112+113113能被10整除

分析:要证明111111+112112+113113能被10整除,只需证明111111+112112+113113的末位数字为

0,即证111111,112112,113113三个数的末位数字和为10。

证明:111111的末位数字显然为1;

112112=(1124)28,而1124的末位数字是6,所以112112的末位数字也是6;

113113=(1134)28?113,1134的末位数字是1,所以113113的末位数字是3;

∴111111,112112,113113三个数的末位数字和为1+6+3=10

∴111111+112112+113113能被10整除

评注:本题是将证明被10整除转化为求三数的末位数字和为10。解决数学问题时,常将未知的问题转化为熟知的问题、复杂的问题转化为简单的问题,这是化归思想。

例6 设P (m)表示自然数m 的末位数,()()n P n P a n

-=2 求199521a a a ++的值。

解:199521a a a ++=()()112P P -+()()222P P -+…+()()199519952P P -

=()()()[]()()()[]1995

21199521222P P P P P P +++-+++ =()

()199521199521222+++-+++ P P ∵1995=10?199+5,又因为连续10个自然数的平方和的末位数都是5

∴()()

()51995432119952122222222?+++++=+++P P P =5+5=10

又()??

?

???=+++219961995199521P P =0 ∴199521a a a ++=10 评注:本题用到了连续10个自然数的平方和的末位数都是5这个结论。

例7 1111111=+++++?

????? 请找出6个不同的自然数,分别填入6个问号中,使这个等式成立。(第三届华杯赛口试题)

分析:分子为1分母为自然数的分数称作单位分数或埃及分数,它在很多问题中经常出现。解决这类问题的一个基本等式是:

()

11111+++=n n n n ,它表明每一个埃及分数都可以写成两个埃及分数之和。 解:首先,1=

2

121+ 从这个式子出发,利用上面给出的基本等式,取n=2可得: 613121+= ∴1=6

13121++ 又利用上面给出的基本等式,取n=3可得:12

14131+= ∴ 1=6

11214121+++ 再利用上面给出的基本等式,取n=4可得:20

15141+= ∴ 1=6

11212015121++++ 最后再次利用上面给出的基本等式,取n=6可得:42

17161+= ∴ 1=421711212015121+++++ 即可找出2,5,20,12,7,42六个自然数分别填入6个问号中,使等式成立。

评注:1、因为问题要求填入的六个自然数要互不相同,所以每步取n 时要适当考虑,如:最后一步就不能取n=5,因为n=5将产生30161+,而6

1已出现了。 2、本题的答案是不唯一的,如最后一步取n=12,就可得: 1=6

115611312015121+++++

例8 如图,在一个正方体的八个顶点处填上1到9这些数码中的8个,每个顶点处只填一

个数码,使得每个面上的四个顶点处所填的数码之和都相等,并且这个和数不能被那个未被填上的数码整除。求所填入的8个数码的平方和。(第12届“希望杯”数学竞赛培训题)

解:设a是未填上的数码,s是每个面上的四个顶点处所填的

数码之和,由于每个顶点都属于3个面,所以

6s=3(1+2+3+4+5+6+7+8+9)-3a

即6s=3?45-3a,于是2s=45-a,可以断定a是奇数

而a不整除s,所以a只能是7,则填入的8个数码是

1,2,3,4,5,6,8,9,它们的平方和是:

12+22+32+42+52+62+82+92=236

例9在右边的加法算式中,每个 表示一个数字,任意两个数字都不同。试求A和B乘积的最大值。

+)

A B

分析:先通过运算的进位,将能确定的 确定下来,再来分析求出A和B乘积的最大值。解:设算式为:

a

b c

+) d e f

g h A B

显然,g=1,d=9,h=0

a+c+f=10+B,b+c=9+A, ∴A≤6

2 (A+B)+19=2+3+4+5+6+7+8=35,∴A+B=8

要想A?B最大,∵ A≤6,∴取A=5,B=3。此时b=6,e=8,a=2,c=4,f=7,故A?B的最大值为15.

评注:本题是通过正整数的十进制的基本知识先确定g,d,h,然后再通过分析、观察得出A、B的关系,最后求出A?B的最大值。

例10在一种游戏中,魔术师请一个人随意想一个三位数abc。并请这个人算出5个数acb、bac、bca、cab、cba的和N,把N告诉魔术师,于是魔术师就能说出这个人所想的数abc。现在设N=3194,请你做魔术师,求出数abc来。

(第四届美国数学奥林匹克试题)

解:将abc也加到和N上,这样a、b、c就在每一位上都恰好出现两次,所以有

abc +N=222(a+b+c) ①

从而 3194<222(a+b+c)<3194+1000,而a 、b 、c 是整数

所以 15≤a+b+c ≤18

因为 222?15-3194=136,222?16-3194=358,222?17-3194=580,222?18-3194=802 其中只有3+5+8=16能满足①式,所以abc =358 评注:本题将abc 也加到和N 上,目的是使得由a 、b 、c 组成的6个三位数相加,这样a 、b 、c 在每个数位上出现的次数相同。这一技巧在解决数字问题中经常使用。

三、 巩固练习

选择题

1、两个十位数1111111111和9999999999和乘积的数字中有奇数( )

A 、7个

B 、8个

C 、9个

D 、10个

2、若自然数n 使得作竖式加法n+(n+1)+(n+2)时均不产生进位现象,便称n 为“连绵数”。如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有( )个

A 、9

B 、11

C 、12

D 、15

3、有一列数:2,22,222,2222,…,把它们的前27个数相加,则它们的和的十位数字是( )

A 、9

B 、7

C 、5

D 、3

4、19932002+19952002的末位数字是( )

A 、6

B 、4

C 、5

D 、3

5、设有密码3?BIDFOR =4? FORBID ,其中每个字母表示一个十进制数字,则将这个密码破译成数字的形式是

6、八位数141?28?3是99的倍数,则?= ,?=

填空题

7、若bbb ab b a =??,其中a 、b 都是1到9的数字,则a= ,b=

8、在三位数中,百位比十位小,并且十位比个位小的数共有 个。

9、在六位数25xy 52中y x ,皆是大于7的数码,这个六位数被11整除,那么,四位数____51=xy 。

10、4343的末位数字是

11、2 m+2000-2 m (m 是自然数)的末位数字是

12、要使等式*

+*=1181成立,*处填入的适当的自然数是 解答题

13、有一个5位正奇数x ,将x 中的所有2都换成5,所有的5都换成2,其他数字不变,

得到一个新的五位数,记作y。若x和y满足等式y=2 (x+1),求x

14、有一个若干位的正整数,它的前两位数字相同,且它与它的反序数之和为10879,求

原数。

15、求出所有满足如下要求的两位数:分别乘以2,3,4,5,6,7,8,9时,它的数字

和不变。

16、求12+22+32+42+…+1234567892的末位数

17、求符合下面算式的四位数abcd

abcd

9

dcba

18、设123a a a 是一个三位数,a 3>a 1,由123a a a 减去321a a a 得一个三位数123b b b , 证明:123b b b +3

21b b b =1089

19、对于自然数n ,如果能找到自然数a 和b ,使得n=a+b+ab,那么n 就称为“好数”。如3=1+1+1 1,所以3是“好数”。在1到100这100个自然数中,有多少个“好数”?

20、AOMEN 和MACAO 分别是澳门的汉语拼音和英文名字。如果它们分别代表两个5位数,其中不同的字母代表从1到9中不同的数字,相同字母代表相同的数字,而且它们的和仍是一个5位数,求这个和可能的最大值是多少?

初中数学竞赛讲座之数论初步(一)

初中数学竞赛讲座之数论初步(一) 整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)|(a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N

②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N ⑧.13||41n n a a a --a a a |?13|N 推论:三个连续的整数的积能被6整除. 例题: 1.设一个五位数d a c b a ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|d a c b a ∴ 11|a +c +d -b -a 即11|c +3 ∴ c =8 1≤a ≤9,且a ∈Z 2.设72|b 673a ,试求a ,b 的值. 解:72=8×9,且(8,9)=1 ∴ 8|b 673 a ,且9| b 673a ∴ 8|b 73 ? b =6 且 9|a +6+7+3+6 即9|22+a ∴ a =5 3.设n 为自然数,A =3237n -632n -855n +235n ,

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

初中数学竞赛教程

七年级 第一讲 有理数(一) 一、【能力训练点】 1、正负数,数轴,相反数,有理数等概念。 2、有理数的两种分类: 3、有理数的本质定义,能表成 m n (0,,n m n ≠互质)。 4、性质:① 顺序性(可比较大小); ② 四则运算的封闭性(0不作除数); ③ 稠密性:任意两个有理数间都存在无数个有理数。 5、绝对值的意义与性质: ① (0)||(0) a a a a a ≥?=? -≤? ② 非负性 2 (||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。ii )几个非负数的和为0,则他们都为0。 二、【典型例题解析】: 1. 如果m 是大于1的有理数,那么m 一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方 2.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求 22006 ()( )()x a b c d x a b c d -+++++-的值。 3.如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a - C.0 D.2b 4.有3个有理数a,b,c ,两两不等,那么,, a b b c c a b c c a a b ------中有几个负数? 5.设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0, b a ,b 的形式,求20062007a b +。

6.三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac = +++++则321ax bx cx +++的值是多少? 7.若,,a b c 为整数,且2007 2007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。 第二讲 有理数(二) 一、【能力训练点】: 1、绝对值的几何意义 ① |||0|a a =-表示数a 对应的点到原点的距离。② ||a b -表示数a 、b 对应的两点间的距离。 2、利用绝对值的代数、几何意义化简绝对值。 二、【典型例题解析】: 1.若20a -≤≤,化简|2||2|a a ++- 2.试化简|1||2|x x +-- 3.若|5||2|7x x ++-=,求x 的取值范围。 4.已知()|1||2||3||2002|f x x x x x =-+-+-++-求()f x 的最小值。 5.若|1|a b ++与2 (1)a b -+互为相反数,求321a b +-的值。

初中数学竞赛讲座6

第六讲整式的运算 吴忠市第一中学韩瑞峰 一、知识要点 1、整式的概念:单项式,多项式,一元多项式; 2、整式的加减:合并同类项; 3、整式的乘除: (1)记号f(x),f(a); (2)多项式长除法; (3)余数定理:多项式f(x)除以(x-a)所得的余数r等于f(a); (4)因数定理:(x-a)|f(x)?f(a)=0。 二、例题示范 1、整式的加减 例1、已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值。 提示:只有同类项才能合并为一个单项式。 例2、已知A=3x2n-8x n+ax n+1-bx n-1,B=2x n+1-ax n-3x2n+2bx n-1,A-B中x n+1项的系数为3,x n-1项的系数为-12,求3A-2B。 例3、已知a-b=5,ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值。 提示:先化简,再求值。 例4、化简:x-2x+3x-4x+5x-…+2001x-2002x。 例5、已知x=2002,化简|4x2-5x+9|-4|x2+2x+2|+3x+7。 提示:先去掉绝对值,再化简求值。 例6、5个数-1, -2, -3,1,2中,设其各个数之和为n1,任选两数之积的和为n2,任选三个数之积的和为n3,任选四个数之积的和为n4,5个数之积为n5,求n1+n2+n3+n4+n5的值。 例7、王老板承包了一个养鱼场,第一年产鱼m千克,预计第二年产鱼量增长率为200%,以后每年的增长率都是前一年增长率的一半。 (1)写出第五年的预计产鱼量;

初1数学竞赛教程含例题练习及答案⑾

初一数学竞赛讲座 第11讲染色和赋值 染色方法和赋值方法是解答数学竞赛问题的两种常用的方法。就其本质而言, 染色方法是一种对题目所研究的对象进行分类的一种形象化的方法。而凡是能用染色方法来解的题, 一般地都可以用赋值方法来解, 只需将染成某一种颜色的对象换成赋于其某一数值就行了。赋值方法的适用范围要更广泛一些, 我们可将题目所研究的对象赋于适当的数值, 然后利用这些数值的大小、正负、奇偶以及相互之间运算结果等来进行推证。 一、染色法 将问题中的对象适当进行染色, 有利于我们观察、分析对象之间的关系。像国际象棋的棋盘那样, 我们可以把被研究的对象染上不同的颜色, 许多隐藏的关系会变得明朗, 再通过对染色图形的处理达到对原问题的解决, 这种解题方法称为染色法。常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。 例1用15个“T”字形纸片和1个“田”字形纸片(如下图所示), 能否覆盖一个8×8的棋盘? 解:如下图, 将 8×8的棋盘染成黑白相间的形状。如果15个“T”字形纸片和1个“田”字形纸片能够覆盖一个8×8的棋盘, 那么它们覆盖住的白格数和黑格数都应该是32个, 但是每个“T”字形纸片只能覆盖1个或3个白格, 而1和3都是奇数, 因此15个“T”字形纸片覆盖的白格数是一个奇数;又每个“田”字形纸片一定覆盖2个白格, 从而15个“T”字形纸片与1个“田”字形纸片所覆盖的白格数是奇数, 这与32是偶数矛盾, 因此, 用它们不能覆盖整个棋盘。 例2如左下图, 把正方体分割成27个相等的小正方体, 在中心的那个小正方体中有一只甲虫, 甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去。如果要求甲虫只能走到每个小正方体一次, 那么甲虫能走遍所有的正方体吗?

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理、公式及结论 代数篇 【乘法公式】 完全平方公式:(a±b)2=a2±2ab+b2, 平方差公式:(a+b)(a-b)=a2-b2, 立方和(差)公式:(a±b)(a2 ?ab+b2)=a3±b3 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd 二项式定理:(a±b)3=a3±3a2b+3ab2±b3 (a±b)4=a4±4a3b+6a2b2±4ab3+b4) (a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5) ………… 在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- … +ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1 类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n 公式的变形及其逆运算 由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab 由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时 a n- b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。重要公式(欧拉公式) (a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc 【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。当被 除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式: f(x)=g(x)q(x)-r(x) 其中r(x)的次数小于g(x)的次数,或者r(x)=0。当r(x)=0时,就是f(x)能被g(x)整除。 【余式定理】多项式f(x)除以x-a所得的余数等于f(a)。 【因式分解方法】拆项、添项、配方、待定系数法、求根法、对称式和轮换对称式等。 【部分分式】把一个分式写成几个简单分式的代数和,称为将分式化为部分分式,它是分式运算的常用技巧。分式运算的技巧还有:换元法、整体法、逐项求和、拆项求和等。 【素数和合数】2是最小的素数,也是唯一的一个既是偶数又是素数的数.

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

初二数学竞赛试题7套整理版(含答案)

2009年初中数学(初二组)初赛试卷 01 一、选择题(本大题满分42分,每小题7分) 1、下列名人中:①比尔·盖茨 ②高斯 ③袁隆平 ④诺贝尔 ⑤陈景润 ⑥华罗庚 ⑦高尔基⑧爱因斯坦,其中是数学家的是( ) A .①④⑦ B.③④⑧ C.②⑥⑧ D.②⑤⑥ 2、已知1 11,,b c a a b c a b c +=+=+≠≠则a 2b 2c 2=( ) B.3.5 C.1 、在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点。设k 为整数,当直线2y x =-与y kx k =+的交点为整点时,k 的值可以取( ) A .4个 个 个 个 4、如图,边长为1的正方形ABCD 绕A 逆时针旋转300到正方形AB ‘C ’D ‘ ,图中阴影部分的面积为( ) A.1 1 D.12 5、已知()421M p p q =+,其中,p q 为质数,且满足29q p -=,则M =( ) .2005 C (第4题图) (第6题图) 6、四边形ABCD 中0060,90,DAB B D ∠=∠=∠=1,2BC CD ==,则对角线AC 的长为( ) 二、填空题(本大题满分28分,每小题7分) 1、 如果有2009名学生排成一列,按1、 2、 3、 4、 5、4、3、2、1、2、3、4、5、4、3、2、 1??? 的规律报数,那么第2009名学生所报的数是 。 2、已知,,a b c 满足2224222a b a c ac -+++=+,则a b c -+的值为______ 3、已知如图,在矩形ABCD 中,AE BD ⊥,垂足为E ,0 30ADB ∠=且BC =,则 ECD 的面积为_____ 4为_______度。

初中数学竞赛常用公式

初中数学竞赛常用公式Last revision on 21 December 2020

初中数学常用公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1:在角的平分线上的点到这个角的两边的距离相等 28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角) 31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论 2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1:关于某条直线对称的两个图形是全等形 43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初中奥数数论专项练习题2020

初中奥数数论专项练习题2020 1、甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少? 1.王老师给小李、小杨、小刘各一张卡片,上面分别写着19□,81□,67□,小李、小杨和小刘分别在自己卡片上的□中填入一个数码得到一个三位数交给王老师。王老师发现,无论如何排列,这三个三位数形成的九位数除以13的余数都是11,那么他们三人在□中填入的三个数字之和为多少? 2.一根红色的长线,将它对折,再对折,……,经过m次对折后将所得到的线束从中间剪断,得到一些红色的短线;一根白色的长线,经过n次对折后将所得到的线束从中间剪断,得到一些白色的短线(m>n)。若红色短线的数量与白色短线的数量之和是100的倍数,问红色短线至少有多少条? 3.20 08 ,甲乙在上面的中填入数字,甲填前两个,乙填后两个,甲先填,乙后填,如果所得的8位数是101的倍数则乙胜利,否则甲胜利。那么谁将取得胜利? 4.一根长为L的木棍,用红色刻度线将它分成m等份,用黑色刻度线将它分成n等份(m>n)。 (1)设X是红色与黑色刻度线重合的条数,请说明:X+1是m和n 的公约数; (2)如果按刻度线将该木棍锯成小段,一共能够得到170根长短不等的小棍,其中最长的小棍恰有100根。试确定m和n的值。 5.在1,2,3,…,99,100这100个数中,有一些是3的倍数,如3,6,9,12,15,…;也有一些是5的倍数,如5,10,15,20,

25,….在这些3的倍数和5的倍数中各取一个数相加,一共能够得到 多少个不同的和? 6.一个两位数,当它分别乘以1、2、3、4、5、6、7、8、9时, 所得9个乘积,每个乘积的各位数字的和都相等.则满足条件的两位数 是__________. 7.M、N是互为反序的两个三位数,且M > N.如果M和N的公约数 是21,求M. 8.一个数与它的反序数的乘积是155827,则这个数与它的反序数 之和是_________. 9.以[x]表示不超过x的整数,设自然数n满足 则n的最小值是多少? 10.已知a是各位数字相同的两位数,b是各位数字相同的两位数,c是各位数字相同的四位数,且 .求所有满足条件的(a,b,c). 11.纸板上写着100、200、400三个自然数,再写上两个自然数, 然后从这五个数中选出若干个(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,能够得到k个不同的非零自然数。那么k是多少? 12.试确定积的末两位的数字 13.有五种价格分别为2元、5元、8元、11元、14元的礼品以及 五种价格分别为1元、3元、5元、7元、9元的包装盒。一个礼品配 一个包装盒,共有种不同价格。 14.将一个数的各位数字相加得到新的一个数称为一次操作,经连 续若干次这样的操作后能够变为6的数称为“好数”,那么不超过 2020的“好数”的个数为,这些“好数”的公约数是。

初中数学竞赛常用公式

初中数学竞赛常用公式内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

初中数学常用公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1:在角的平分线上的点到这个角的两边的距离相等 28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角) 31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论 2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1:关于某条直线对称的两个图形是全等形 43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

初中数学竞赛竞赛讲座(数字、数位及数谜问题)

竞赛讲座(数字、数位及数谜问题) 一、 知识要点 1、整数的十进位数码表示 一般地,任何一个n 位的自然数都可以表示成: 122321*********a a a a a n n n n +?+?++?+?--- 其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0. 对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=1 21a a a a n n - 2、正整数指数幂的末两位数字 (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。 (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。 3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。 二、 例题精讲 例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。 分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。 解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得: (a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988 ∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988 比较等式两边首、末两位数字,得 a+d=8,于是b+c18 又∵c-2=d ,d+2=b ,∴b-c=0 从而解得:a=1,b=9,c=9,d=7 故所求的四位数为1997 评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。 例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。 分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定。 解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba 。由“新生数”的定义,得

最新:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套) 初一数学竞赛讲座 第1讲数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重. 数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的. 特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

其中p 1<p 2<…<p k 为质数,a 1,a 2,…,a k 为自然数,并且这种表示是唯一的. (1)式称为n 的质因数分解或标准分解. 4.约数个数定理:设n 的标准分解式为(1),则它的正约数个数为: d (n )=(a 1+1)(a 2+1)…(a k +1). 5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ; 4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数. 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位 数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是: 990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222. 比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2. 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8. 例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来. 解:依题意,得

初中数学竞赛专题辅导-代数式的求值

初中数学竞赛专题辅导代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,①

求a+b+c的值. 解将②式因式分解变形如下 即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:

即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy, 所以 求x2+6xy+y2的值.

相关文档
最新文档