初中数学竞赛讲座——数论部分7(同余)

初中数学竞赛讲座——数论部分7(同余)
初中数学竞赛讲座——数论部分7(同余)

第7讲同余的概念及基本性质

数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯.

先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜?

取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜.

在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以2000年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用.

同余,顾名思义,就是余数相同.

一、基础知识

定义1 给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作

a≡b(mod m),

并读作a同余b,模m.

否则,就称a与b对于模m不同余,记作a≡b(mod m),

根据定义,a与b是否同余,不仅与a、b有关,还与模m有关,同一对数a和b,对于模m同余,而对于模n也许就不同余,例如,5≡8(mod 3),而5≡8(mod 4),若a与b对模m同余,由定义1,有

a=mq1+r,b=mq2+r.

所以a-b=m(q1-q2),

即m|a-b.

反之,若m|a-b,设

a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,

则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2.

于是,我们得到同余的另一个等价定义:

定义2 若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a 与b对模m同余.

另外,根据同余的定义,显然有以下几种关系是成立的:

⑴a≡a(mod n)

⑵a≡b(mod m)?b≡a(mod n)

⑶a≡b(mod n)

?a≡c(mod m)

b≡c(mod m)

由此可见,同余是一种等价关系,以上这三条分别叫做同余的反射性,对称性和传递性,而等式也具有这几条性质.

二、典型例题;

例1.如果a≡b(mod m),以下命题正确的有哪些?请说明理由?

⑴m | a-b

⑵a = b+mt

⑶a = k1m+ r1,b = k2m+ r2(0≤r1,r2<m)?r1= r2

解:⑴因a≡b(mod m),所以可得a = k1m+ r,b = k2m+ r,那么a-b=(k1-k2)m,由于k1-k2是整数,因此m | a-b是正确的.

⑵根据⑴可得a-b= mt,即a= b+mt

⑶根据⑴可得,m | r1-r2,又因为0≤| r1-r2 |<m,所以| r1-r2 |=0,故r1= r2.

例2.判断正误,并说明理由.

⑴如果a≡b(mod m)那么ka≡kb(mod m)

⑵如果a≡b(mod m),c是整数,那么a±c≡b±c (mod m)

⑶如果a1≡b1(mod m),a2≡b2(mod m),那么a1±a2≡b1±b2 (mod m),

a1a2≡b1b2 (mod m).

⑷如果3a≡3b(mod 6 ),那么a≡b (mod 6 )

解:⑴∵a≡b(mod m),∴m | a-b,∴m | k (a-b)即m | (ka-kb)

∴ka≡kb(mod m)⑴成正确

⑵∵a≡b(mod m),∴m | a-b

又因为c是整数,所以m | a-c-b+c,即m | (a-c) -(b-c)即a-c≡b-c(mod m)同理可得,a+c≡b+c(mod m)

⑶仿照上面的两个小题的方汪,可以判定这个命题也是正确的

⑷显然6≡12(mod 6),而2≡ 4 (mod 6),因此,这个命题不正确

说明:⑶的结论可以得到同余的另一条性质,即a≡b(mod m)?a n≡b n(mod m)此题说明两个同余式能够象等式一样进行加、减、乘、乘方,但同余式两边却不能除以同一数,那么,同余式的两边在什么情况下可以同除以一个数呢?我们先看下面的例题.

例3.由下面的哪些同余式可以得到同余式a≡b(mod 5)

①3a ≡3b (mod 5) ②10a ≡10b (mod 5) ③6a ≡6b (mod 10) ④10a ≡10b (mod 20) 解:①因3a ≡3b (mod 5),所以5 | 3(a -b ),而5 | 3 , 因此5 | a -b ,故a ≡b (mod 5)

②由10a ≡10b (mod 5)可以得到5 | 10(a -b ),而5 | 10,因此5不一定整除a -b ,故a ≡b (mod 5)就成立

③由6a ≡6b (mod 10)可得10 | 6(a -b ),而10=2×5,6=2×3,因此5 | a -b , 故a ≡b (mod 5)成立

④由10a ≡10b (mod 20)可得到20 | 10(a -b ),而20= 4×5,4 | 10,因此5 | (a -b )

故a ≡b (mod 5)不成立

综上所述,由3a ≡3b (mod 5)或6a ≡6b (mod 10)都可以得到a ≡b (mod 5)

说明:在①中,因为(3,5)=1,因此由5 | 3(a -b )一定可以得到5 | a -b ,进而得到a ≡b (mod 5),一般地,如果(k ,m )=1,ka ≡kb (mod m ),那么a ≡b (mod m )

在③中,因(6,10)=2,因此由10| 6(a -b )一定可以得到5 | a -b ,进而得a ≡b (mod 5),一般地,如果(k ,m )= d ,ka ≡kb (mod m ),那么a ≡b )(mod

d

m

例4.如果a ≡b (mod 12)且a ≡b (mod 8),那么以下同余式一定成立的是哪些?

①a ≡b (mod 4) ②a ≡b (mod 24) ③a ≡b (mod 20) ④a ≡b (mod 48) 解:正确的有①和②

①由题中的条件可得12 | a -b ,又因4 | 12,所以4 | a -b ,故a ≡b (mod 4). ②因12 | a -b ,8| a -b ,所以a -b 是12和8的公倍数,又因为[8,12]=24,因此 a -b 必是24的倍数,即24 | a -b ,故a ≡b (mod 24).

③显然,当a = 26,b = 2时满足条件a ≡b (mod 12)和a ≡b (mod 8),但却不满足 a ≡b (mod 20).

④同③,用a = 26,b = 2验证即可. 【说明】:

⑴一般地,若a ≡b (mod m )且n | m ,那么a ≡b (mod n ) ⑵若a ≡b (mod m ),a ≡b (mod n ),那么a ≡b (mod [m ,n ]),它的一个特殊情况就是:

如果a ≡b (mod m ),a ≡b (mod n )且(m ,n )=1,那么a ≡b (mod m n )

【一些结论】

1.同余定义的等价形式

①a ≡b (mod m )?m | a -b ②a ≡b (mod m )?a = b +mt 2.同余式的同加、同乘性

如果a 1≡b 1(mod m ),a 2≡b 2(mod m )那么 ⑴a 1±a 2≡b 1±b 2(mod m ) ⑵ka 1≡kb 1(mod m )(k ∈Z ) ⑶a 1a 2≡b 1b 2(mod m ) ⑷a 1n ≡b 1n (mod m )(n 是整数). 3.如果(k ,m )=d ,ka ≡kb (mod m ),那么a ≡b )(mod

d

m

. 这条性质的直接推论就是:

如果(k ,m )=1,ka ≡kb (mod m ),那么a ≡b (mod m ) 4.如果a ≡b (mod m )且n | m ,那么a ≡b (mod n ) 5.如果a ≡b (mod m ),a ≡b (mod n ),那么a ≡b (mod [m ,n ])

这条性质的一个推论就是: 如果a ≡b (mod m ),a ≡b (mod n )且(m ,n )=1,那么a ≡b (mod m n )

例5.⑴求19992002除以9的余数;⑵求1010除以7的余数

解:⑴∵9 | 1999-1000,∴1999≡1000≡1(mod 9) ∴19992000≡12002≡1(mod 9),∴19992000除以9的余数是1 ⑵∵10≡3(mod 7),∴103≡33≡-1(mod 7) ∴106≡(-1)2≡1(mod 7),∴1010≡104(mod 7) 又∵102≡9≡2(mod 7),∴102≡10 4≡22≡4(mod 7) 所以1010除以7的余数是4.

说明:求较大数的余数时,可先设法找到与±1同余的数,然后利用同余式的性质,求出所求数的余数.

例6.求14589+32002除以13的余数.

解:∵145≡2(mod 13),∴1456≡26≡-1(mod 13)

∴(1456)14≡(-1)14≡1(mod 13)即14584≡1(mod 13) 又∵1455≡25≡6(mod 13)

所以14589≡14584·1455≡6×1≡6(mod 13) 又∵33≡1(mod 13),∴(33)667≡32001≡1(mod 13),∴32002≡3(mod 13) 所以,14589+32002≡6+3≡9(mod 13) 即14589+32002除以13的余数是9

例7.求19982002的十位数字

分析:此题可以通过19982002的末两位数来求解,与前面的方法类似 解:∵199898≡-2(mod 100),∴19982002≡(-2)2002≡22002≡41001(mod 100) 因为4≡4(mod 100),42≡16(mod 100),43≡64(mod 100),44≡56(mod 100),45≡24(mod 100),46≡96(mod 100),47≡84(mod 100),48≡36(mod 100), 49≡44(mod 100),410≡76(mod 100),411≡4(mod 100)…

所以4 n 除以100的余数是以4、16、64、56、24、96、84、36、44、76周期性出现

的,因41001=410×

100+1,所以41001≡4(mod 100),因此19982002≡4(mod 100),故19982002的十位数字是0.

说明:正整数幂的末位数、末两位数、末三位数都具有周期性.

例8(1998年匈牙利奥林匹克竞赛题)求使2n +1能被3整除的一切自然数n . 解∵

则2n +1

∴当n 为奇数时,2n +1能被3整除; 当n 为偶数时,2n +1不能被3整除.

例9 求证31980+41981能被5整除. 证明 ∵

例10.求20032002的末位数字.

分析:此题就是求20032002除以10的余数 解:∵2003≡3(mod 10),∴20034≡34≡1(mod 10), ∴20032002≡(20034)500·20033≡1500·33≡27≡7(mod 10) ∴20022002的末位数字是7.

说明:对于十进制的整数011a a a a n n -有如下性质:)10(mod 0011a a a a a n n ≡- 例11.已知n 是正整数,证明48 | 72n ―2352n ―1 证明:∵48=3×16,(3,16)=1

∴只需证明3| 72n ―2352n ―1且16 | 72n ―2352n ―1即可 ∵7≡1(mod 3),2352≡0(mod 3)

∴72n ―2352n ―1≡12n ―2352×0-1≡0(mod 3) ∴3 | 72n ―2352n ―1,又∵2352=16×147,∴2352≡0(mod 16) ∴72n ―2352n ―1≡49n -1≡1n -1≡0(mod 16) ∴16 | 72n ―2352n ―1,所以48| 72n ―2352n ―1.

说明:当模很大时,可以用本题的方法把问题化为较小的模来求解,请同学位用这个方法重解例8.

例12.已知n是任意的正整数,且m | 7n+12n―1,求正整数m的最大值.

解:设a n=7n+12n―1,那么,a1=7+12―1=18,a2=72+24―1=72

∴(a1,a2)=(18,72)=18,∴m≤18,

下面证明对任何正整数n,都有18 | 7n+12n―1

又因为18=2×9,所以只须证明2 | 7n+12n,9 | 7n+12n―1即可.

∵7≡1(mod 2),∴7n+12―1≡1n+0―1≡0(mod 2)

即2 | 7n+12n―1,对n进行分类讨论,

⑴若n≡0(mod 3),则n=3k(k为正整数)

7n+12n―1≡73k+36k+1≡(―2)3k+0―1≡(―8)k―1≡1k―1≡0(mod 9)

⑵若n≡1(mod 3),则n=3k+1(k为非负整数)

7n+12n―1≡73k+36k+127+12―1≡0(mod 9)

⑶若n≡2(mod 3),则n=3k+2(k为非负整数)

7n+12n―1≡73k·72+36k+24―1≡72+24―1≡0(mod 9)

因此,对一切自然数n,都有9 | 7n+12n―1.

综上所述,18 | 7n+12n―1,因此m的最大值为18.

例13 把1,2,3…,127,128这128个数任意排列为a1,a2,…,a128,计算出

|a1-a2|,|a3-a4|,…,|a127-a128|,

再将这64个数任意排列为b1,b2,…,b64,计算

|b1-b2|,|b3-b4|,…,|b63-b64|.

如此继续下去,最后得到一个数x,问x是奇数还是偶数?

解因为对于一个整数a,有

|a|≡a(mod 2),a≡-a(mod 2),

所以

b1+b2+…+b64

=|a1-a2|+|a3-a4|+…+|a127-a128|

≡a1-a2+a3-a4+…+a127-a128

≡a1+a2+a3+a4+…+a127+a128(mod 2),

因此,每经过一次“运算”,这些数的和的奇偶性是不改变的.最终得到的一个数x≡a1+a2+…+a128=1+2+…+128

=64×129≡0(mod 2),

故x是偶数.

例14 求证:一个十进制数被9除的余数等于它的各位数字之和被9除的余数.

10≡1(mod 9),

故对任何整数k≥1,有

10k≡1k=1(mod 9).

因此

即A被9除的余数等于它的各位数字之和被9除的余数.

说明(1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.

(2)算术中的“弃九验算法”就是依据本题的结论.

三、模拟训练

1求证:

(1)8|(551999+17); (2) 8(32n +7); (3)17|(191000-1).

证 (1)因55≡-1(mod 8),所以551999≡-1(mod 8),551999+17≡-1+17=16≡0(mod 8),于是8|(551999+17).

(2)32=9≡1(mod 8),32n ≡1(mod 8),所以32n +7≡1+7≡0(mod 8),即8|(32n +7). (3)19≡2(mod 17),194≡24=16≡-1(mod 17),所以191000=(194)250≡(-1)250≡1(mod 17),于是

17|(191000-1).

2.求20032002的末位数字

分析:此题就是求20032002除以10的余数 解:∵2003≡3(mod 10),∴20034≡34≡1(mod 10),

∴20032002≡(20034)500·20033≡1500·33≡27≡7(mod 10) ∴20022002的末位数字是7

说明:对于十进制的整数011a a a a n n -有如下性质:011a a a a n n -)10(mod 0a ≡.

3求2999最后两位数码.

解 考虑用100除2999所得的余数. ∵

∴2

999

的最后两位数字为88.

4.求证:22000+1不能被7整数.

分析:只需证明22000≡-1(mod 7)即可

证明:∵26≡1(mod 7),∴22000≡(26)333·22≡1·22≡4(mod 7),∴22000+1≡5(mod 7)所以7 | 22000+1

5 对任意的自然数n,证明

A=2903n-803n-464n+261n 能被1897整除.

证1897=7×271,7与271互质.因为

2903≡5(mod 7),

803≡5(mod 7),

464≡2(mod 7),

261≡2(mod 7),

所以

A=2903n-803n-464n+261n

≡5n-5n-2n+2n=0(mod 7),故7|A.又因为

2903≡193(mod 271),

803≡261(mod 271),

464≡193(mod 271),所以

故271|A.因(7,271)=1,所以1897整除A.

6 任意平方数除以4余数为0和1(这是平方数的重要特征).

证因为

奇数2=(2k+1)2=4k2+4k+1≡1(mod 4),

偶数2=(2k)2=4k2≡0(mod 4),所以

7 任意平方数除以8余数为0,1,4(这是平方数的又一重要特征).

证奇数可以表示为2k+1,从而

奇数2=4k2+4k+1=4k(k+1)+1.

因为两个连续整数k,k+1中必有偶数,所以4k(k+1)是8的倍数,从而

奇数2=8t+1≡1(mod 8),

偶数2=(2k)2=4k2(k为整数).

(1)若k=偶数=2t,则

4k2=16t2=0(mod 8).

(2)若k=奇数=2t+1,则

4k2=4(2t+1)2=16(t2+t)+4≡4(mod 8),

所以

求余数是同余的基本问题.在这种问题中,先求出与±1同余的数是一种基本的解题技巧.

8 形如

F n=22n+1,n=0,1,2,…

的数称为费马数.证明:当n≥2时,F n的末位数字是7.

证当n≥2时,2n是4的倍数,故令2n=4t.于是

F n=22n+1=24t+1=16t+1

≡6t+1≡7(mod 10),

即F n的末位数字是7.

说明费马数的头几个是

F0=3,F1=5,F2=17,F3=257,F4=65537,

它们都是素数.费马便猜测:对所有的自然数n,F n都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数F5是合数.

初中数学竞赛讲座之数论初步(一)

初中数学竞赛讲座之数论初步(一) 整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)|(a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N

②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N ⑧.13||41n n a a a --a a a |?13|N 推论:三个连续的整数的积能被6整除. 例题: 1.设一个五位数d a c b a ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|d a c b a ∴ 11|a +c +d -b -a 即11|c +3 ∴ c =8 1≤a ≤9,且a ∈Z 2.设72|b 673a ,试求a ,b 的值. 解:72=8×9,且(8,9)=1 ∴ 8|b 673 a ,且9| b 673a ∴ 8|b 73 ? b =6 且 9|a +6+7+3+6 即9|22+a ∴ a =5 3.设n 为自然数,A =3237n -632n -855n +235n ,

初一数学竞赛讲座.

初一数学竞赛讲座(三) 数字、数位及数谜问题 一、 知识要点 1、整数的十进位数码表示 一般地,任何一个n 位的自然数都可以表示成: 122321*********a a a a a n n n n +?+?++?+?---Λ 其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0. 对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n Λ- 2、正整数指数幂的末两位数字 (1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末 位数字就是a n 的末位数字。 (2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末 位数字与m q 的末位数字相同。 3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条 件的整数是多少的问题,这类问题称为数迷问题。这类问题不需 要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜” 的方法求解,是一种有趣的数学游戏。 二、 例题精讲 例1、有一个四位数,已知其十位数字减去2等于个位数字,其 个位数字加上2等于其百位数字,把这个四位数的四个数字反着 次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序 数的关系列式来解决问题。 解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得: (a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988 ∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988 比较等式两边首、末两位数字,得 a+d=8,于是b+c18 又∵c-2=d ,d+2=b ,∴b-c=0 从而解得:a=1,b=9,c=9,d=7 故所求的四位数为1997 评注:将整数用十进位数码表示,有助于将已知条件转化为等式, 从而解决问题。 例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新 排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正 好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。 分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差 后分析求出所有三位“新生数”的可能值,再进行筛选确定。 解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为 cba 。由“新生数”的定义,得 N=()()()c a a b c c b a cba abc -=++-++=-991010010100

初一数学竞赛系列讲座9

初一数学竞赛系列讲座(9) 应用题(一) 一、一、知识要点 1、 1、 应用题是中学数学的重要内容之一,它着重培养学生理解问题、分析问题和解决问 题的能力,解应用题最主要的方法是列方程或方程组。 2、 2、 列方程(组)解应用题的一般步骤是: (1) (1) 弄清题意和题目中的数量关系,用字母表示题目中的一个未知数; (2) (2) 找出能够表示应用题全部含义的一个相等关系; (3) (3) 根据这个相等关系列出方程; (4) (4) 解这个方程,求出未知数的值; (5) (5) 写出答案(包括单位名称)。 3、行程类问题 行程类问题讨论速度、时间和路程之间的相互关系。它们满足如下基本关系式: 速度?时间=路程 4、数字类问题 数字类问题常用十进制来表示数,然后通过相等关系列出方程。 解数字类问题应注意数字间固有的关系,如:连续整数,一般设中间数为x ,则相邻两 数分别为x-1、x+1;连续奇(偶)数,一般设中间数为x ,则相邻两数分别为x-2、x+2。 二、二、例题精讲 例1 从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶 20千米,下坡时每小时行驶35千米,。车从甲地开往乙地需9小时,乙地开往甲地需21 7小时,问:甲、乙两地间的公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?(第五届华杯赛复赛题) 分析 本题用方程来解简单自然。 解 设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,根据题意得方程组 ?????=+=+(2) 2172035(1) 93520y x y x 解这个方程组有很多种方法。例如代入消元法、加减消元法等。由于方程组系数比较特殊(第 一个方程中x 的系数201恰好是第二个方程中y 的系数,而y 的系数351 也恰好是第二个方程中x 的系数),也可以采用如下的解法: (1)+(2)得 (x+y)( 201+351)=9+217

全国初中数学联赛初二卷及详解

全国初中数学联赛初二卷及详解

————————————————————————————————作者:————————————————————————————————日期:

2017年全国初中数学联合竞赛试题 初二卷 第一试 一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b c a b ++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1, 1110135 a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2 的值为( ). A.125 B.120 C.100 D.81 3.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.1 4.已知正整数a,b,c 满足a 2 -6b-3c+9=0,-6a+b 2 +c=0,则a 2 +b 2 +c 2 的值为( ). A.424 B.430 C.441 D.460 5.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A. 1023 B.103 3 C.32 D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ). A.56 B.58 C.60 D.62 二、填空题:(本题满分 28 分,每小题 7 分) 7.使得等式3 11a a ++=成立的实数a 的值为________. 8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 9.设a,b 是两个互质的正整数,且3 8ab p a b =+为质数.则p 的值为________.

初中数学竞赛讲座6

第六讲整式的运算 吴忠市第一中学韩瑞峰 一、知识要点 1、整式的概念:单项式,多项式,一元多项式; 2、整式的加减:合并同类项; 3、整式的乘除: (1)记号f(x),f(a); (2)多项式长除法; (3)余数定理:多项式f(x)除以(x-a)所得的余数r等于f(a); (4)因数定理:(x-a)|f(x)?f(a)=0。 二、例题示范 1、整式的加减 例1、已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值。 提示:只有同类项才能合并为一个单项式。 例2、已知A=3x2n-8x n+ax n+1-bx n-1,B=2x n+1-ax n-3x2n+2bx n-1,A-B中x n+1项的系数为3,x n-1项的系数为-12,求3A-2B。 例3、已知a-b=5,ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值。 提示:先化简,再求值。 例4、化简:x-2x+3x-4x+5x-…+2001x-2002x。 例5、已知x=2002,化简|4x2-5x+9|-4|x2+2x+2|+3x+7。 提示:先去掉绝对值,再化简求值。 例6、5个数-1, -2, -3,1,2中,设其各个数之和为n1,任选两数之积的和为n2,任选三个数之积的和为n3,任选四个数之积的和为n4,5个数之积为n5,求n1+n2+n3+n4+n5的值。 例7、王老板承包了一个养鱼场,第一年产鱼m千克,预计第二年产鱼量增长率为200%,以后每年的增长率都是前一年增长率的一半。 (1)写出第五年的预计产鱼量;

初一数学竞赛系列讲座解一次方程(组)与一次不等式(组)教师版

初一数学竞赛系列讲座 解一次方程(组)与一次不等式(组) 一、知识要点 1.一次方程组 解一次方程组的基本思想是“消元”,常用方法有“代入消元法”和“加减消元法” 2.不定方程 不定方程(组)是指未知数的个数多于方程个数的方程(组)。它的解往往有无穷多个,不能唯一确定,对于不定方程(组),我们常常限定只求整数解或正整数解。 定理:若整系数不定方程ax+by=c (a 、b 互质)有一组整数解为x 0,y 0,则此方程的全部整数 解可表示为:???-=+=)k ( 00为任意整数这里ka y y kb x x 3.一元一次不等式 只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式,叫做一元一次不等式。 它的标准形式:ax+b <0或ax+b >0(a ≠0) 解不等式的根据是不等式的同解原理。 4.不等式的基本性质和同解原理 不等式的基本性质 (1)反身性 如果a >b ,那么b <a (2)传递性 如果a >b ,b >c ,那么a >c (3)平移性 如果a >b ,那么a+c >b+c (4)伸缩性 如果a >b ,c >0,那么ac >bc 如果a >b ,c <0,那么ac <bc 不等式的同解原理1:不等式的两边都加上(或减去)同一个数或同一个整式,所得的不等式与原不等式是同解不等式。 不等式的同解原理2:不等式的两边都乘以(或除以)同一个正数,所得的不等式与原不等式是同解不等式。 不等式的同解原理3:不等式的两边都乘以(或除以)同一个负数,并把不等号改变方向后,所得的不等式与原不等式是同解不等式。 5.解一元一次不等式的步骤 (1)去分母(根据不等式性质2或3); (2)去括号(根据整式运算法则); (3)移项(根据不等式基本性质1); (4)合并同类项(根据整式的运算法则); (5)将x 项系数化为1(根据不等式性质2或3); 6.不等式组及其解集 几个一元一次不等式合在一起,就成了一元一次不等式组;几个一元一次不等式解集的公共部分,叫做由它们组成的一元一次不等式组的解集。 7.解一元一次不等式组的方法和步骤:

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

初中数学竞赛讲座.doc

竞赛讲座01 —奇数和偶数 整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用21表示,这里k是整数. 关于奇数和偶数,有下面的性质: (1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数; (2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)若a、b为整数,则与有相同的奇数偶; (5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数. 以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜. 1.代数式中的奇偶问题 例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数? □+□=□,□-□=□, □×□=□□÷□=□. 解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数. 例2(第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组 是整数,那么

(A)p、q都是偶数. (B)p、q都是奇数. (C)p是偶数,q是奇数(D)p是奇数,q是偶数 分析由于1988y是偶数,由第一方程知1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而2711x为奇数,所以是奇数,应选(C) 例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数. 分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面 都添上正号和负号不改变其奇偶性,而1+2+3+…+1992996×1993为偶数于是题设的代数和应为偶数。 2.与整除有关的问题 例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样 的:0,1,3,8,21,…。问最右边的一个数被6除余几? 解设70个数依次为a123据题意有 a1=0,偶 a2=1 奇 a3=3a21,奇 a4=3a32,偶 a5=3a43,奇 a6=3a54, 奇 ……………… 由此可知:?当n被3除余1时,是偶数; 当n被3除余0时,或余2时,是奇数,显然a70是31型偶数,所以k必须是奇数,令21,则 a70=31=3(21)+1=64。

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初一数学竞赛讲座特殊的正整数

初一数学竞赛讲座特殊 的正整数 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

初一数学竞赛讲座(二) 特殊的正整数 一、 知识要点 1、完全平方数及其性质 定义1 如果一个数是一个整数的平方,则称这个数是完全平方数。如:1、4、9、…等都是完全平方数,完全平方数有下列性质: 性质1 任何完全平方数的个位数只能是0,1,4,5,6,9中的一个。 性质2 奇完全平方数的十位数一定是偶数。 性质3 偶完全平方数是4的倍数。 性质4 完全平方数有奇数个不同的正约数。 性质5 完全平方数与完全平方数的积仍是完全平方数,完全平方数与非完全平方数的积是非完全平方数。 2、质数与合数 定义2 一个大于1的整数a,如果只有1和a 这两个约数,那么a 叫做质数。 定义3 一个大于1的整数a,如果只有1和a 这两个约数外,还有其他正约数,那么a 叫做合 数。 1既不是质数也不是合数。 3、质数与合数的有关性质 (1) 质数有无数多个 (2) 2是唯一的既是质数,又是偶数的整数,即是唯一的偶质数。大于2的质数必为奇数。 (3) 若质数p ?a ?b ,则必有p ?a 或p ?b 。 (4) 若正整数a 、b 的积是质数p ,则必有a=p 或b=p. (5) 唯一分解定理:任何整数n(n>1)可以唯一地分解为:k a k a a p p p n 2121=,

其中p 1

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

初中数学竞赛竞赛讲座(数字、数位及数谜问题)

竞赛讲座(数字、数位及数谜问题) 一、 知识要点 1、整数的十进位数码表示 一般地,任何一个n 位的自然数都可以表示成: 122321*********a a a a a n n n n +?+?++?+?--- 其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0. 对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=1 21a a a a n n - 2、正整数指数幂的末两位数字 (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。 (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。 3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。 二、 例题精讲 例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。 分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。 解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得: (a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988 ∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988 比较等式两边首、末两位数字,得 a+d=8,于是b+c18 又∵c-2=d ,d+2=b ,∴b-c=0 从而解得:a=1,b=9,c=9,d=7 故所求的四位数为1997 评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。 例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。 分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定。 解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba 。由“新生数”的定义,得

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

初一数学竞赛系列讲座容斥原理

初一数学竞赛系列讲座 容斥原理 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

初一数学竞赛系列讲座(15) 容斥原理 一、 知识要点 1、容斥原理 在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A 个,属于集合B 的东西有B 个,既属于集合A 又属于集合B 的东西记为B A ,有B A 个;属于集合A 或属于集合B 的东西记为B A ,有B A 个,则有:B A =A +B -B A 容斥原理可以用一个直观的图形来解释。 如图, 左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A , 由图可知:B A =A +B -B A 容斥原理又被称作包含排除原理或逐步淘汰原则。 二、 例题精讲 例1 在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个 分析:根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。 解:在1到200的整数中,能被2整除的整数个数为:2?1,2?2,…,2?100,共100个; 在1到200的整数中,能被3整除的整数个数为:3?1,3?2,…,3?66,共66个; 在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6?1, 6?2,…,6?33,共33个; 所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:

最新:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套) 初一数学竞赛讲座 第1讲数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重. 数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的. 特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

其中p 1<p 2<…<p k 为质数,a 1,a 2,…,a k 为自然数,并且这种表示是唯一的. (1)式称为n 的质因数分解或标准分解. 4.约数个数定理:设n 的标准分解式为(1),则它的正约数个数为: d (n )=(a 1+1)(a 2+1)…(a k +1). 5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ; 4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数. 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位 数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是: 990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222. 比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2. 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8. 例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来. 解:依题意,得

初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制 一、基础知识: 1.我们通常接触的整数都是―十进制‖整数,十进制计数法就是用0,1,2…9十个数码,采用―逢十进一‖的法则进行计数的方法。例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为: 1999=1×1000+9×100+9×10+9 底数为10的各整数次幂,恰好是十进制数的各个位数: 100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1 位上的数) 故1999=1×103+9×102+9×101+9×100 二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。例如二进制中的111记为(111)2 111=1×22+1×2+1=7

60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1 所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。 具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。 例如:0.25 0.25*2 = 0.5 ------------整数部分:0 0.5*2 = 1.0 ------------整数部分:1 所以十进制数0.25转为二进制数即为 0.01 所以十进制数 60.25 转为二进制数即为 (11100.01)2 二、典型问题: 例1 证明:形如abcabc 的六位数总能被7、11、13整除。 证明:将已知的六位数写成十进制表达形式,得 c b a c b a abcabc +?+?+?+?+?=10101010102345 )110()1010()1010(3 4 2 5 +?++?++?=c b a 100110010100100?+?+?=c b a )10100(1001c b a ++?= )10100(13117c b a ++??= a b c a b c ∴总能被7,11,13整除。 【变式】试证明:任何一个四位正整数,如果四个数字和是9的倍数,那么这个四位数必能被9整除。并 把它推广到n 位正整数,也有同样的结论。 证明:设一个四位数为103a +102b +10c +d ,根据题意得

初中数学竞赛辅导讲座19讲(全套)

第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。

相关文档
最新文档